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Abstract

A real-time motion engine for interactive synthetic characters, either virtual or physical,
needs to allow expressivity and interactivity of motion in order to maintain the illusion of
life. Canned animation examples from an animator or motion capture device are expres-
sive, but not very interactive, often leading to repetition. Conversely, numerical procedural
techniques such as Inverse Kinematics (IK) tend to be very interactive, but often appear
“robotic” and require parameter tweaking by hand. We argue for the use of hybrid example-
based |earning techniques to incorporate expert knowledge of character motion in the form
of animations into an interactive procedural engine.

Example-based techniques require appropriate distance metrics, statistical analysis and
synthesis primitives, along with the ability to blend examples; furthermore, many machine
learning techniques are sensitive to the choice of representation. We show that a quaternion
representation of the orientation of a joint affords us computational efficiency along with
mathematical robustness, such as avoiding gimbal lock in the Euler angle representation.
We show how to use quaternions and their exponential mappingsto create distance metrics
on character poses, perform simple statistical analysis of joint motion limits and blend
multiple poses together.

We demonstrate these joint primitives on three techniques which we consider useful
for combining animation knowledge with procedural algorithms: 1) pose blending, 2) joint
motion statistics and 3) expressive IK. We discuss several projects designed using these
primitives and offer insights for programmers building real-time motion engines for ex-
pressive interactive characters.
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Chapter 1

Introduction

This dissertation will describe a set of building blocks | have found useful in the design
and implementation of expressive interactive motion engines for both virtual and physical
characters such as those illustrated in Figure 1-1. These building blocks are based on a
guaternionrepresentation of joint orientation and rotation for an articulated figure model
like that depicted in Figure 1-2.

| will show the reader how to use quaternions to solve some of the common problems
in a real-time motion engine that usually are intended to be “solved” by an Euler angle
parameterization. The problems| will address are:

Multi-target pose blending : Morphing between multiple example poses of a character
Real-time Inverse Kinematics (IK) : What's the nearest posture will put my hand there?
Statistical joint modelling : How doesthisjoint tend to move?

Fast, learnable joint limits : Where does thisjoint not move?

Pose sub-space analysisHow do these joints tend to vary together?

Expressive IK : What is a posture which will put my hand there without looking like a
robot?

| will also show that quaternions are an appropriate choice from a computational point
of view. I will also show why any of the Euler angle parameterizationsisamost alwaysthe
wrong choice of representation from both group-theoretic and computational arguments.
Instead, | will argue that the use of the logarithmic mappingf a quaternion into a 3-vector
On ispreferable, maintaining many of the desirable properties of an Euler angle decomposi-
tion (minimal parameter, “linear”) while avoiding most of the undesirable properties, such
as the infamous gimbal lock | will show how to use the exponential mapping (which is
related to the theory of Lie groupsand Lie algebras) to “locally linearize” pose data so that
it can be analyzed with standard, powerful analysis methods such as Principal Component
Analysis (PCA).

In particular, the set of building blocks | will introduce are:
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Figure 1-1: Virtual and Physical Expressive Interactive Characters. The virtual charac-
ters, developed by Blumberg's Synthetic Character&roup, are (clockwise from top |eft):
Dobie the learning dog (SIGGRAPH 2002), the Raccoon from Swamped!(SIGGRAPH
1998), shy Elliot from (void*) (SIGGRAPH 1999), Duncan and sheep from Sheep|Dog
(Media Lab Europe Opening, 2000), and two wolf pups from «-Wolf [90] (SIGGRAPH
2001). On the right are some physical robots which were designed to be expressive. They
are (clockwise from top left): Breazeal’s Kismet[13], Leonardofrom Stan Winston Stu-
dios (www.stanwinston.com) with skin and without, and the (unskinned) Public Anenome
(SIGGRAPH 2002) by Breazeal’s Robotic Life Group.
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Figure 1-2: The bones (colored solid) which are animated underly the mesh (grey transpar-
ent) skin. Each bone rotates with respect to its parent by a 3D rotation, making a hierarchi-
cal skeletal model with the pelvis at the root.

Pose distance metricsAppropriate group-theoretic distance metrics on poses for use in
any algorithm which requires domain-specific metrics, like most example-based |earn-
ing methods we focus on.

slime and sasquatch Two new algorithmsfor computing aweighted blend of » unit quater-
nions representing rotationsin 3D. These are useful for multi-target animation inter-
polation. Also, most example-based function approximation methods require robust
blending primitives of some sort to blend exemplars.

QUTEM joint model A statistical model of individual joint motion |earnable from exam-
ple data and consisting of: 1) mean joint coordinate frame, 2) principal axes of joint
variation and variances associated with these and 3) hard joint limits described as an
isoprobability contour.

Eigenpostures A statistical model of posture (coupled joint motion, or multiple quater-
nions) which best models the variations in animation data and can serve as an “ex-
pressive” basis for a character's motion in algorithms or as the starting point for
character-based animation compression algorithms.

Fast, Learnable Quaternion Joint Limits How to estimate aconvex joint constraint bound-
ary to represent fast, hard joint limits on a quaternion joint representation.

Quaternion Cyclic Coordinate Descent (QUCCD)A fast quaternion version of the re-
cent real-time heuristic Cyclic Coordinate Descent (CCD) IK agorithm which can
incorporate joint limits.

29



| will then show how we use these primitivesin tackling three main areas of expressive
interactive character motion:

Multi-Target Pose Blending Blending n poses together simultaneously. Pose blending
can be used to blend n animations in real-time or blend examplars in powerful and
well-known non-parametric function approximation agorithmslike k-nearest neigh-
bor, k-means clustering, and locally-weighted regression.

Statistical Joint Analysis and SynthesisHow to learn a model of the ranges of motion
on each joint from a corpus an animation data, how to use these to make pose metrics
invariant to these ranges, how to generate new poses (and simple animations) which
respect the joint variances and limits, and how to use the model to compute fast,
simple joint motion limits.

Expressive Inverse KinematicsHow to implement a fast heuristic IK algorithm called
Cyclic Coordinate Descent (CCD) with quaternionsand quaternionjoint limits. Also,
we sketch several ssmple ways to use all of our building blocks together to make an
IK solver produce less “robotic” looking solutions. For example, we discuss using a
learned posture subspace model to constrain a procedural K solution space and give
initial results at coupling pose-blending and CCD.

Therest of this chapter will proceed as follows:

Section 1.1 liststhe design principleswetook in thisresearch and presents our thesis state-
ment.

Section 1.2 defines the scope and audience of the thesis.

Section 1.3 gives a capsule description of related work areas and summarizes our contri-
butions to each.

Section 1.4 givesaroadmap through the rest of the thesiswith capsul e descriptions of each
chapter.

Section 1.5 summarizes this chapter and the contributions of our research.

In thiswork, | followed a set of design principles, summarized in the next section.

1.1 Principles and Thesis Statement
The following set of principles were followed throughout this work:

Interactive/Real-Time Interactive characters means real-time. Much of the work in mo-
tion editing and “interactive’” methods in the computer graphics community are fo-
cused on “interactive design tools for animators.” In other words, they are alowed
to produce incorrect results, but should be easily tweakable by an animator in “real-
time” (about 5hz) to get around these and make a perfect production animation, like
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afilm. Ultimately, the animator will coerce any tool into making the animation he or
she desires, and most algorithms are focused at making these easier for the animator.
We are not talking about these tools. By “interactive” or “real-time,” we mean an
engine that takes commands from the “brain” of an interactive character and must
respond in-character, right away, with no glitches and with no input from an anima-
tor except for the use of animation examples created off-line. In general, we have
milliseconds to decide the next animation frame. In a production animation tool, the
animator has minutes or hours for this. This principal also quickly eliminates the
ability to use most of the recently popular motion transformation algorithms which
use expensive optimization techniques.

Example-Based This work started from the simple assertion that “Animators know best
how a character should move and are best able to express this by creating canned
animation examples, not programming.” Therefore, all the algorithms we devel oped
had to be learnable from animation data or exploit it in some way, such as blending
or synthesisfrom alearned statistical model.

Let the Animator Work Naturally Most character engines will enforce a particular ar-
ticulated figure structure (usually Euler angles) on the animator for them to animate,
even if the axes are not simple to animate. We try to avoid these forced models.
Rather, we want the animator to work naturally and then we can use analysis and
synthesis methods to coerce these into the real-time data structure we need.

Quaternion-based Although | motivate the use of quaternions after the fact, it is (ar-
guably) well-known that they are the best computational representation of orientation
for rigid bodies without mathematical problems, as we will see in Chapter 3. Unfor-
tunately, the use of quaternions in articulated figure animation is fairly recent. The
standard representation of a character’s posture is usually a vector of Euler angles,
which entails the use of rotation matrices for performing coordinate transformations,
avery common operation for interactive character algorithms which we describe in
Chapter 5. Most useful character animation algorithmswere therefore based on these
less desirable (as we argue in Chapter 4) representations. The few quaternion algo-
rithmswere treated as ablack box. Instead, we chose to follow a principled approach
and extend the toolbox of standard figure animation techniques which we described
above to work with a quaternion representation.

Based on these principles, we summarize our thesis statement:

Thesis Statement: By exploiting a unit quaternion representation of joint
rotation, we can create computational building blocks for the design of ex-
pressive interactive character algorithmswhich afford us:

e Maximally leveraging an animator’s skills
e Computational efficiency in space and time

e Mathematical robustness
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1.2 Scope

This dissertation covers real-time example-based expressive motion for interactive charac-
ters. We will limit ourselves to just kinematics (motion without regard for dynamics) .
Furthermore, we will restrict the work to rigid articulated skeletal models with only rota-
tional joints and not mesh deformation techniques.

The intended audience is a senior programmer or engineer given the task of writing a
fast, expressive animation engine for interactive characters that needs to incorporate canned
animation clips for expressivity, such as in a videogame. For this reason, we try to focus
on geometric intuition and insight rather than group theory, while explaining the deeper
mathematical reasons for using quaternions rather than the more standard Euler angles for
real-time articulated figures. When we approached the problem, there were only few people
(for example, Hanson [ 36, 34, 37]) who focused on intuitive approaches to quaternions for
designing new algorithmsrather than using them as a “black box.”

In particular, the audience should be sick of the practical problems associated with
using Euler angles in interactive applications and tired of the lack of intuitive algorithms
and design approaches for creating new quaternion algorithms or extending known ones,
which theinitial motivation for this thesis.

1.3 Related Work Areas and Contributions
This dissertation covers severa broad areas of related work. These are;

e Real-time articulated figure animation engines

Multi-target pose interpolation

Example-based function approximation methods

Orientation statistics

Posture Statistics

e Red-time Inverse Kinematics

We offer new contributions to each area, discussed in turn.

1.3.1 Real-time Motion Engines

Traditionally, most real-time motion engines use an Euler angle or homogenous matrix
representation of rotation. Thisis due to the fact that many useful algorithmsfor rea-time
motor control, such as Inverse Kinematics, came out of the robotics community where Eu-
ler angles are manifested physically as servos. Also, most interpolation algorithms assume
that the examples are vectors that form a vector space in order to decompose (factor) the

1Recent work by Matt Grimes in the Synthetic Character&roup has begun to look at extending these
ideas to dynamics control.
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problem into smaller scalar sub-problems. This leads many designers to use Euler angles
since they seem to offer a linear, factored representation that can be used in these algo-
rithms. Unfortunately, rotations do not form a vector space, as we will see, which often
leads to strange, hard to understand behavior or “hacks’ to try to patch the problems. This
quickly eliminates any perceived advantage of using Euler angles.

Instead, we argue for the use of a quaternion representation motion and show how to
solve many of the common problems in interactive character animation that usualy lead
to an Euler angle parameterization or to inefficient conversions from quaternions to Euler
angles and back. We discuss these in the next severa sections.

Also, we try to provide a comprehensive introduction to quaternions with a focus on
computation and intuition. We also collect together many of the ideas which are spread
throughout the literature in several fields and give pointersto useful recommended reading.

1.3.2 Multi-target pose interpolation

Multi-target pose blending is an extension of the classic multi-target mesh interpolation
algorithms used to morph between several examples of a polygon mesh that span a space
of geometry. The standard technique, since it operates on mesh vertices (which are true
vectors), cannot be used for rotations without modification since they are not. The stan-
dard methods for multi-target pose interpolation either use an Euler angle model so that
Euclidean methods such as RBF's may be applied (e.g. Rose [44]) or use nested slerp
constructions (e.g. Grassia[30], which scale poorly and which cannot be used smply as a
black box to blend NV examples with specific weights. Shoemake's classic slerp quaternion
interpolator handles interpolation of rotation by using quaternions, but can only blend be-
tween two examples with one parameter between them. To solve these problems, we offer
two new primitivesfor pose blending, which we introduce now.

The first, Spherical Linear Interpolation of Multiple Examples (slime) is a fast unit
guaternion blending primitive which approximately satisfies the rotation group metric, but
is not rotationally-invariant since it transforms the unit quaternions to a fixed tangent space
to perform the blend within. On the other hand, a fixed tangent space offers us the ad-
vantage of speed since we may preprocess quaternions and end up with an algorithm that
scales linearly with examples and uses few trigonometric calls. A poor choice of tangent
space, however, can cause similar (though mathematically and computationally much bet-
ter behaved) problemsto Euler anglessinceit isasingular representation. To solvethis, we
show that the mean across all dataof ajoint’sorientation isagood choice of fixed blending
space since it places the singularity as far from the data as possible, unlike an Euler angle
representation, which often placesit right in the middle of the data unless complicated pre-
processing steps are taken. Also, due to the singularity and the fact that the space is fixed,
slime is not appropriate for blending bodies that are allowed to rotate freely. Thisis not
amagjor disadvantage in practice, however, since amost all physically-plausible character
joints cannotspin all the way around any axis like Regan’s head in The Exorcist

The second, sasquatch, is an iterative extension to slime which uses a moving tangent
gpace to handle joints that revolve all the way around, such as the root node that lets a
character move around in avirtual world. Also, sasquatch affords us rotational-invariance,
respects the rotation group metric, offers linear scaling in examples, linear convergence
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(one floating point digit per iteration), good parametric behavior and a way to perform
pseudo-linear blends on the sphere for more than two examples. In thisway, it extends the
slerp building block to more than two quaternions, as we intended, which maintaining all
of its desirable properties.

1.3.3 Example-Based Function Approximation

The use of example datain aprocedural context isthe domain of example-based learnirg
function approximation. We do not offer any new algorithmsin thisfield, but instead offer a
set of domain-specific primitives (pose metrics and synthesis primitives) which are required
by these methods. Most such methods are very sensitive to the choice of representation
of the data and require domain-specificity for good results. Example-based methods are
appropriate here since we want a simple way to encode animation examples in the system,
while also allowing for real-time on-line incremental |earning on this representation.

1.3.4 Orientation Statistics

Orientation statisticsis the statistics of orientations of objects in space (see the recent [57]
for a comprehensive overview). Often orientation statistics are calculated on a matrix rep-
resentation of orientation which leads to complicated mathematics. Instead, we can use the
unit quaternion representation to simplify the mathematics significantly. This fact seems
little known in the literature on orientation statistics as most methods seek to be work for
arbitrary dimension, resorting to manifold-tangent methods, differential geometry, or ex-
terior calculus 2. These methods are all too complicated, inefficient and unnecessary for
the quaternion group and its simple spherical topology. Furthermore, the existence of an
algebra on the sphere allows us to simplify estimation of parameters.

One way to use a unit quaternion representation is to estimate a Gaussian probability
density function in R* conditioned to live on the unit sphere. This result is called the
Bingham distribution7] 3. Although the principal axis estimates are the same on the
sphere and in the embedding space (eigenvectors of the sample covariance matrix), the
Bingham variances are much harder to estimate. Also, due to the fact that the Bingham
variance parameters are not estimated in the rotation group itself means that the parameters
do not have a direct physical interpretation in terms of joint angles.

As an dternative to the Bingham distribution and matrix distribution approaches, we
offer the QUTEM model which can estimate orientation statistics of joints from data. It
uses the Lie group structure of the quaternions (in particular the exponential mapping and
Lie algebra, described in Chapter 3 and Appendix D) and the well-known Gaussian esti-
mation and sampling methods. The covariances # it estimates have physical meaning (units

2An exception we found recently is [64] which relates the statistics of SO(3), SO(4) and quaternions.

3Although they seem fairly uncommon in the literature, recently they have been gaining in use (see, for
example, Matt Antone’s excellent thesis on using them for camera pose recovery from examples[1])

4We feel that our QUTEM distribution is mathematically closely related to the Bingham distribution since
both end up solving an eigenvector problem on the sample covariance matrix, but have not worked through
the mathematical detailsat thistime. We predict that the principal axesof motion and the mean will extremely
related, if not identical, and that the varianceswill be related by a monotonic function.
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arein radians) and can be used as a smooth joint limit constraint manifold for IK. Also, the
quaternion mean isauseful primitive for finding agood tangent space in which to linearize
data for statistical analyis of pose as well as a good choice of tangent space for perform-
ing fast pose blending, as discussed above. Finally, we can use these structure to create
dimensionless pose metrics using the standard Mahal anobis distance.

1.3.5 Posture Statistics

Finally, we offer a sketch of using the powerful subspace analysis algorithms such as Prin-
cipal Component Analysis (PCA) which have had great success in analyzing image datain
the computer vision community to characterize and model the intrinsic degrees of freedom
in example animation data. These methods usually assume a Euclidean space and naive
use of quaternion data with them can lead to problematic, non-intuitive results. Instead,
we show how the exponential mapping and quaternion mean primitives can be used to lin-
earize the data in an invertible way, allowing us to use PCA without resorting to Euler
angles, which is the standard approach to the statistical analysis of posture.

1.3.6 Real-time Inverse Kinematics

Inverse kinematicsis often the most expensive primitivein any engine. Most engines use an
Euler angle representation of rotation, following the robotics community where numerical
IK algorithmsoriginated, in order to use linear algebratechniques. Standard Euler angle IK
algorithms, since they use a matrix description, scale quadratically in the number of joints,
which can be computationally infeasible. As an alternative, we offer a fast quaternion
version of the Cyclic Coordinate Descent (CCD) algorithm Euler angle algorithm which
has shown recent popularity in the videogame industry since it avoids matrices by using
heuristics and therefore is much faster.

Furthermore, we show how to learn fast quaternion joint limits from data and augment
our quaternion CCD agorithm to respect these limits. The standard approach to joint limits
isto clamp Euler anglesinside a certain interval. At the time we began this research, there
did not exist any way to do joint limits on quaternions without converting to an Euler angle
representation and back. Furthermore, we show how to learn these limits from example
data rather than forcing an animator to specify them by hand, which is the case for al the
recent quaternion limits except for the excellent recent work of Herda, Urtason, Fua and
Hanson [39, 40].

1.4 Thesis Roadmap

This dissertation is divided into two parts— Imaginary and Real. Part |, Imaginary, argues
for example-based methods, gives background information and motivatesthe use of quater-
nions for modeling joints. Part |1, Real, then shows how we actually exploit quaternionsin
addressing the problems we introduced in this chapter.

Part |, Imaginary, proceeds as follows:
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Chapter 1 introduced the three main areas of expressive charcter motion we will address.

Chapter 2 motivates the use of example-based methods coupled with procedural ago-
rithms for leveraging the skill of an animator in a real-time expressive interactive
character engine.

Chapter 3 introducesand discusses mathematical background in rotations. It presents sev-
eral commonly used parameterizations of rotation — rotation matrices, axis-angle,
Euler angles. It then introduces quaternions, our choice of representation, from an
algebraic and geometric viewpoint, providing required background for the rest of the
dissertation.

Chapter 4 offers a set of criteria for the representation of a statistical model of joint ro-
tation. It then evaluates three of these parameterizations — rotation matrices, Euler
angles and quaternions — against these criteria, arguing that quaternions offer both
mathematical robustness and computational efficiency.

Part |1 proceeds as follows:

Chapter 5 presents the commonly-used rigid bone-joint skeletal model of articulated fig-
ure animation and introduces terminology and notation used throughout the remain-
der of the document. It shows how quaternions can be used to model joints and
defines the form of the example animation data.

Chapter 6 defines the QUTEM statistical joint model, shows how to estimate a QUTEM
from examples and shows how to sample new joint orientations from the model.

Chapter 7 describes the problem of multi-variate unit quaternion weighted interpolation
for pose-blending. It presents our two new algorithms — slime and sasquatch—
for pseudo-linear weighted unit quaternion blends. It then describes how these can
be used to extend a Euclidean example-based non-linear interpolation function —
Radial Basis Functions (RBFs) — to work with quaternion inputs and outputs.

Chapter 8 presents the problem of posture subspace analysis. It then presents our Eigen-
postures algorithm, which extends a Euclidean subspace analysis algorithm — Prin-
cipal Component Analysis (PCA) — to quaternion joint data.

Chapter 9 introduces the difficult problem of Expressive Inverse Kinematics (Expressive
IK). We show how to implement hard joint [imitswith the QUTEM. We then describe
QUuUCCD, our quaternion extension to the fast CCD IK algorithm. We also describe
how to use the QUTEM as ajoint equilibrium point. Finally, we offer initial ideas of
how pose-blending, the QUTEM, the QUCCD algorithm and Eigenpostures could be
coupled to approach the problem of Expressive IK.

Chapter 10 presents results on applying some of the building blocks to animation data.
Wevisualize QUTEM modelslearned on animation data and show how new poses can
be synthesized. We then describe several experiments on the sasquatch algorithmto
demonstrate its behavior and choose parameters. Finally, we describe the projects

36



which have used the slime algorithm for pose-blending and discuss the issues that
motivated the building blocks chronologically.

Chapter 11 discussesinfluential and related work in the areas we covered in this research.

Chapter 12 presents conclusions and directions for future.
We also offer several appendices for required background:

Appendix A givesa cursory description of complex matrices which we use in portions of
the document.

Appendix B givesaquick introduction to multi-variate Gaussian probability densities and
terminology.

Appendix C describes quaternion differential equations and how we solve them.

Appendix D offersamoreformal mathematical treatment of the algebra, group theory, and
topology of quaternionsto serve asareference or introduction for the mathematically-
inclined.

1.5 Summary

The chapter presented the following problems of real-time expressive interactive character
animation we will discussin this dissertation:

e Appropriate pose metrics

Multi-target pose blending

Statistical joint modelling

Pose sub-space analysis

Joint limits learned from data

Real-time Inverse Kinematics

e Expressive K

We also introduced the new set of computational and mathematical building blocks we
found useful for solving these problems and which we will serve as the main contributions
inthisthesis:

Appropriate pose distance metrics: domain-specific primitivesfor usein example-based
methods

slime and sasquatch : two new multi-variate weighted unit quaternion blending primi-
tives
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QUTEM model : statistical analysis of quaternion-represented joint motion
Eigenpostures : posture subspace analysis using a quaternion extension to PCA

Fast, learnable quaternion joint limits : How to usethe QUTEM to learn fast, hard limits
on joint motion from a corpus of animation data

QuCCD : afast quaternion version of the CCD IK agorithm that incorporates quaternion
joint limits

Expressive IK : a description of the problem of Expressive IK, an initial evaluation of
several ways to approach it using our building blocks in conjunction

The next chapter will motivate the use of exampled-based methods coupled with nu-
merical, procedural algorithms for leveraging the skill of an animator in the design of ex-
pressive character engines.
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Chapter 2

Approach: Example-Based Procedural
Animation

This chapter will argue for the use of example-based procedura algorithms which com-
bine the expressivity of motion of a hand-animated animation such as those found in an
animated feature film like Pixar's Toy Storywith the infinite variability and interactivity
of a numerical agorithm such as an Inverse Kinematics * (IK) algorithm. Figure 2-1 de-
picts the structure of our argument abstractly. We will argue that canned animation clips
are easy to make expressive since an animator can tweak them iteratively until they are,
but not very interactive since they are fixed in advance and therefore are only appropriate
in the specific context for which they were created. We will then argue that a numerical,
algorithmic approach such as IK offers much more interactivity since it can handle contin-
uously changing goals, such as tracking a flittering butterfly with its head and eyes. On the
other hand, we will argue that these algorithms, which are typically hand-programmed, are
very hard to make expressive since parameters and heuristics must be tweaked by hand.
Thisis an unnatural way for an animator to work. We then argue for the use of example-
based algorithms which offer the best of both worlds, allowing for procedural control to
handle interactivity while incorporating expert knowledge of expressive movement from
animation clips.

2.1 Interactivity, Expressivity and the lllusion of Life

In their book on the Disney approach to hand-drawn animation The lllusion of Life[84],
Thomas and Johnston define the illusion of life as follows:

It is the change in shape that shows what the character is
thinking. It isthe thinking that givesthe illusion of life.

In the case of an autonomous virtual 3D character, the change in shape is defined by its
motion and the thinking by the Artificial Intelligence engine driving the character’s motion.

1Recall that IK can be described as the problem of finding the joint angles of a character that will place
some part of its body, such as adog’s paw, on some specified location in the world, such as on that cat’s tail.
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Figure 2-1: Canned animation clips (motion capture or hand-animated) offer maximal ex-
pressivity since they can be fine-tuned, but minimal interactivity since they are specific.
Procedural methods (such as Inverse Kinematics) are usually maximally interactive since
they offer an algorithmic, general solution, but tend to be very hard to make expressive.
Example-based methods based on a hybrid of the two techniques offer the best of both
worlds.

Therefore, in order to create and maintain the illusion of life, the character must think; in
order to convey thought, the character must move expressively to show its internal mental
state to a viewer at al times. Any time the motion loses this expressivityof motion, the
illusion of life can be lost. Likewise, if the character does not appear to respond properly
to the continuously changing demands of interactivitywill also appear lifeless.

Loss of expressivityn motion could be due to a glitch in the motion such as a velocity
discontinuity. It could also be due to an obvious repetitive motion such as a hand-animated
walk cycle or karate chop commonly seen in videogames. Even though the animation is
hand-crafted to be very expressive, if it does not vary over timein response to changesin the
world dueto interactions with other creatures or ahuman participant, it will appear dull and
lifeless no matter how great the animation clip is. Also, since a character’s emotional state
can change continuously, canned animations cannot express this since they were designed
for discrete emotional states. For example, if a character is somewhat depressed and a
friend slowly cheers him up but there are only clips for happy and despondent, this subtle
mental state which changes continuously due to interaction cannot be expressed. Thus,
a canned animation clips can be said to be very expressivdor the specific menta state
and context for which it was created, but not very interactive Figure 2-1 depicts this
graphically.

Likewise, if a character needs to respond to a sudden change in mental state, such as
being surprised, the motion must respond appropriately and immediately to maintain the
interactivity of motion as well. For example, say the character motor engine ssmply plays
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a canned animation clip from an animator to reach for a doorknob when the brain tells it
to. The animation was created with a certain doorknob height and character’'s mental state
implicit in it. If the character then encounters a hobbit-hole door half as high, it needs
to reach for the doorknob in the appropriate lower location or it will not appear interac-
tive. To solve this problem, reaching and tracking for virtual characters is usually done
with a general procedural algorithm such as Inverse Kinematics (IK) to handle the infinite
variability required for maintaining interactivity. Since IK algorithms came out of the clas-
sical robotics community where the expressivity of motion does not matter, only where the
robot’s end-effector ends up, these algorithms often will be ascribed as having “robotic”
motion by a human viewer. To dea with this, the programmer must tweak parameters or
enter heuristics by hand, which is laborious and usually the result is still not very expres-
sive. Therefore, procedural, numerical algorithms tend to offer maximal interactivity, but
minimal expressivityasis shown in Figure 2-1.

In order to create a strong illusion of life in a virtua character, we would like to
maximize both the expressivity and the interactivity of the motion. Some sort of hybrid
example-based procedural algoritharhich allows the incorporation of expert knowledge
in the form of animation clips should be able to offer the best of both worlds, as depicted in
Figure 2-1. A hybrid should offer the continuous variabilityneeded to maintain interactiv-
ity while simultaneously incorporating expert knowledgef motion in the form of canned
animation examples, either from motion capture or an animation package. We argue that:

Leveraging the animator’s knowledge of expressive character motion in the
form of canned example clips into the infinite variability of a numerical
procedural algorithm should maximize bothinteractivity and expressivity in
order to maintain the illusion of life of a character.

So how can we leverage an animator’s knowledge of expressive animation that is im-
plicitly contained in animation examples?

2.2 Exploiting an Animator’'s Knowledge of Expressive Char-
acter Motion

The last section argued for using example-based procedural algorithms for leveraging an
animator’s knowledge implicit in animation examples. This section will describe three
ways which we will exploit animation knowledge from expressive examples:

Pose Blending: Multi-target interpolation and extrapolation of clips

Statistical Analysis and Synthesis of Joint Motion: Modeling how ajoint tendsto move,
estimating joint limits implicit in clips and generating new motions to test whether
they arevalid
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Figure 2-2: Blend of two animations, sampled at the same time ¢ but at different happi-
ness values from -0.1 to 1.1. The examples (red boxes) are the original animations. The
frames in between the examplesinterpolatethe posture according to the level of happiness.
The frames outside the interval [0, 1] extrapolatethe examples, making caricatures of the
original walks.

Expressive Inverse Kinematics (IK) : Augmenting a numerical “robotic” looking IK
solver with a model of body knowledge to find more “natural” and expressive so-
lutions.

2.2.1 Pose Blending: Multi-Target Interpolation/Extrapolation

Animation clips give examples of how a character should movein a specific context. Con-
sider Figure 2-2. The character is shown frozen at the top of ajump. The two boxed frames
are from a hand-animated jumping animation of the character in a happy mood (1.0) and
a sad mood (0.0). These two examples define constraints on the motion of the charac-
ter by specifying how it should move when it needs to jump and is happy or sad. If we
assume that the space of motion (motion-space) is smooth and continuous between these
examples, we can use an interpolation or weighted blendinglgorithm to try and estimate
poses for a jump and values of happiness between 0 and 1. Figure 2-2 shows samples of
framesinterpolated by performing aweighted average of the two examples using the value
of happiness as a weight. Interpolation algorithms are thus a way to proceduralize exam-
ples directly They assume that a weighted average of expressive examples should also be
expressive and recognizable. After Rose [44], we call the content of the animation (here a
jump) averband the style (here happiness) an adverh

Some interpolation algorithms are also capable of extrapolation or estimating the na-
ture of the motion outside of the convex hull formed by the examples (see Figure 2-3). In
Figure 2-2, the frames sampled at -0.1 and 1.1 ? are examples of extrapolation. They pro-
duce plausible looking exaggerations of the examples in order to “caricature” the motion.
Thus, a good pose-blending algorithm should allow for extrapolation in order to leverage
the animator’stalent, which is one of our design principles espoused in the Introduction.

2“Our knobsgo to 11.” — Spinal Tap
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Happiness

Anger

Figure 2-3: Extrapolation and Interpolation. The circles on the axes represent example
animations of a happy, normal, and angry verb. The triangular filled region (convex hull)
of the examplesistheinterpolation space. A point outside this space, such asthe dark point
specifying an angry andhappy verb is an example of extrapolation By extrapolating well,
we can obviate the need for the animator to increase the size of the interpolation space with
anew example at this point. Asthe number of axes increase, this gives us an exponential

decrease in necessary examples.
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Furthermore, our character will have more than just one degree of stylistic freedom. For
example, in a-Wolf (see Section 10.4.6) awolf pup had three axes of variability in itswalk
cycles: turning left/right, happiness, and how old the pup was (the pups grow up slowly to
be adults). Thisimplies the need for a multi-targetinterpolation algorithm that can blend
more than N animation exampl es according to some continuous adverb that can be used to
calculate weights on examples.

To summarize:

Leveraging the animator by proceduralizing expressive motion examples with
multi-variate interpolation implies the need for appropriate and robust
pose-blending primitives.

2.2.2 Statistical Analysis and Synthesis of Joint Motion

Clearly, if we keep extrapolating the character’s happiness value in Figure 2-2, the charac-
ter'sjoints will begin to exhibit unnatural behavior since they will break the implicit joint
motion limitson the joint. The character’s joints should be unable to move further due to
the limits on joint mobility to maintain the illusion of life. Unfortunately, an interpola-
tion algorithm has no notion of these constraints and will blithely spin the character’'s arms
backwards.

Joint Motion Limits

Thisimpliesthe need for away to enforce joint range limitson the possible mobility of the
joint. Then if the interpolated solution tries to break a constraint, we can explicitly force
it to remain at the limit. For example, an elbow should not rotate backwards unless the
character is preparing for a trip to the hospital or is skilled in yoga. Ideally, we want to
leverage the knowledge inherent in the animation clips rather than forcing the programmer
to specify them by hand. How can we find these?

Notice that the joint limits are implicit in the animation in terms of the space where
there are no examples nearblzack of examplesimplies either that:

e Theregion is avalid subset of motion space for that character where no examples
have been seen yet.

e Theregionisnot avalid subset of motion space since it violates some constraint on
natural motion of the character.

We hypothesize that we can estimate the joint motion limits by learning a statistical
model of the motion over all examples we have seen for the character. If we had such a
model, we could then use an isocontour of probability as a constraint boundary! In other
words, we can find aregion that contains as much of the data (or all of it) aspossible. If we
find that a posture of the character has too low a likelihood, then we can assume that the
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joint should not go there and use this to constrain motion. Since we can estimate it from
data, we can then learn the model from the corpus of all animation examples in order to
leverage the animator best.

Most statistical analysis methods will assume a metric on the data being analyzed. In
this case, we will need a distance metric between two joint orientations of the character.
The metrics need to be appropriate to the problem domain to be useful. Therefore:

Statistical joint analysis implies the need for appropriate distance metrics on
joint orientations.

Posture Constraints

Unfortunately, joint constraints are not enough. A posture could also be invalid if it would
cause an interpenetration of the body with itself. Again, these constraints are also implicit
in the animation in terms of where the data is not. Whereas joint limits are local, posture
constraints imply the need for analysis of the coupled motiorof joints. If we could find a
statistical model of the space of postureswe hypothesize that we should be able to use the
model to constain posture to the subspace of examples which we have seen.

As above, metric are needed:

Statistical analysis of posture will imply the need for appropriate distance
metrics between two postures of a character.

2.2.3 Expressive Inverse Kinematics

The essential problem of Inverse Kinematics (IK) is to find a pose of a character’s body
that resultsin a particular body part (or parts) ending up at a certain position in the world.
Inverse Kinematics shows up in two main roles. animation tools and real-time charac-
ter engines. In the former case, the animator uses the IK algorithm to help iteratively
make keyframes more naturally in situations where constraints are required. In the case of
videogame engines, IK is often a procedure applied to some jointsin order to procedurally
track moving objects with the character’s head or (often) weapon. The former can run at
“interactive’ ratesfor the animator, like around 5hz. An IK enginefor areal-time app needs
to run at more like 100hz. Also, production IK tools allow a visual feedback iterative ap-
proach for the animator, while a character motor system requires fast and correct placement
of the body parts on the fly without any chance for later correction.

Inverse kinematics techniques came out of mechanical engineering and robotics, where
often robots were designed to have analytically solvable solutions. Also, these robots were
designed to solve engineering and manufacturing tasks, so the content of the motion was
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all that mattered — it doesn’t matter how you get the torch to the part to weld, just make
sure it doesn’t hit anything and gets there. Thus, robots have “robotic” motion.

Systemsthat cannot be solved analytically require anumerical, iterative solution, which
makes it a computational expensive operation in general when there are many characters.
These numerical solutions usually encode some simple notion of body knowledge (such as
where joints tend to be and a stiffness) and sometimes some kind of joint limit.

In general, a given IK problem will have multiple (potentialy infinite) solutions. To
a traditional robotic system, the closest solution is usually all that is required. For an
interactive, expressive character like ahuman, however, some of these solutionswill appear
more “natural”. For example, peopl€e's postures are subject to the force of gravity, therefore
alower energy posture is preferable and will ook more natural. We argue that the exact
manner that a character exploitsits redundant kinematic degrees of freedom isamajor part
of the expressiveness of the character’'s motion. Therefore, an example-based statistical
model of the motion subspace of a character should capture this expressive knowledge to
some degree.

Therefore, we arguefor an expressive Ikystem which consists of combining a“robotic”
content solution with a model of body knowledge that lets us “project” the robotic solu-
tion onto the subspace of our character’s actual motion. Such a system must handle the
following issues:

e Speed
e Joint limits
e Expressive

We argue that we can leverage the procedural power of the numerical methods that
exist by augmenting the iterations with a model of body motion knowledge gleaned from
an animator’s examples. Explicitly, we will argue for the following approach to solving
expressive IK:

Augment the procedural power of numerical search with the expressive
power of expert body knowledge.

2.3 Summary
To summarize, this chapter argued that:

e Canned animation examples (clips) are maximally expressive, but minimally inter-
active

e Numerical, procedural algorithms are maximally interactive, but minimally expres-
sive.
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We then stated the main hypothesis of our thesis:

Leveraging the animator’'s knowledge of expressive character motion in the
form of canned example clips into the infinite variability of a numerical
procedural algorithm should maximize both interactivity and expressivity in
order to maintain the illusion of life of a character.

We then motivated three ways which we chose to explore the use of example-based
procedural methods to leverage the animator:

Pose Blending: Multi-target interpolation and extrapolation of clips

Statistical Analysis and Synthesis of Joint Motion: Modeling how ajoint tendsto move,
estimating joint limits implicit in clips and generating new motions to test whether
they arevalid

Expressive Inverse Kinematics (IK) : Augmenting a numerical “robotic” looking IK
solver with a model of body knowledge to find more “natural” and expressive so-
lutions.

We showed that these methods entailed the need for:

e Appropriate metrics on joint orientation
e Appropriate metrics on postures

e Appropriate pose-blending algorithms that extrapolate well.
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Chapter 3

Rotation, Orientation and Quaternion
Background

This chapter will introduce the theory and issues of mathematically modeling the familiar
notion of spatial rotations and rigid body orientations in our physical world (three spatial
dimensions). Even though the concept is familiar physicaly, there are many ways to rep-
resent rotation mathematically and computationally, each with its own pros and cons. To
appreciate these issues, an understanding of rotation is required. We will describe spatial
rotation from first principles by introducing Euler’s theorenof rotation. We will then de-
scribe four rotation representations popular in character animation in some detail in order
to illustrate the mathematical issuesthat arise in using them. These are:

e Coordinate Matrix
e Axis-Angle
e Euler Angles

e Quaternions

We will briefly introduce the first three representations and compare them from a math-
ematical and computational point of view. In particular, we will focus on the important
issues of interpolation, distance metrics, computational speed and mathematical robustness
which we motivated in the previous chapter.

We will then focus on a mathematical and geometric introduction of quaternions, which
are the basic mathematical representation which we use throughout our work, along with a
similar discussion.

We will end the chapter with a multi-page table summarizing the useful formulas
for quaternions from an algebraic and geometric viewpoint to serve as a reference. The
mathematically-inclined reader can also find a more group theoretic reference on quater-
nionsin Appendix D.
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3.1 Rotation, Orientation and Euler's Theorem

Rotation of solid rigid bodies (for example, arock) isintuitive. We grab objects all day and
rotate them in different ways as we use them without thinking about it. How do we model
this phenemenon mathematically and computationally? It turns out that this problem is
far from intuitive. This section will introduce the basic principles of rotation of 3-space.
We will explain the relationship between rotations and orientations of rigid bodies. This
section will focus on basic concepts and fundamental issues with understanding rotation
and orientation and not on any particular representations.

3.1.1 Rotationversus Orientation

The astute reader may have noticed our distinction between rotationsand orientations The
differenceis subtle and should be made clear.

A rotationis the action that transforms one vector into another vector. By definition,
arotation 1) preserves the magnitude of a vector and 2) preserves the handedness of the
space (in vector algebraterms, it preservesthe direction of the cross products between basis
vectors). In most of thisdocument, wewill be assuming rotationsin 3-space. Occasionaly,
we will discuss rotations of 4-space and will be explicit. Rotations in 3-space have 3
degrees of freedom, so we will need at |east three numbers to define them.

An orientation on the other hand, isthe attitude of arigid body in space. Thetermsare
often and easily conflated because orientations are usually represented as a rotation with
respect toa fixed, known coordinate frame (also called an inertial frameor basig. Fig-
ure 3-1 depicts arigid body with an attached body (local) coordinate system [B] which is
measured with respect to some fixed world coordinate system [W|] with primes denoting
the moving frame. Often the term angular displacemenits used to make the distinction
between rotation and orientation clear in the case of rigid bodies, since displacement im-
plies action. For our purposes, we will ignore the translational component and focus on the
rotation component.

3.1.2 Euler's Theorem and Distance Metrics

The fundamental principle of rigid body orientationis Euler’s theoren{Figure 3-2). Euler’s
theorem can be stated as follows:

Euler's Theorem: Every displacement (or orientation with respect to afixed
frame) of arigid body can be described as a rotation by some angle 6 around
around some fixed axis .

Intuitively, Euler’s theorem just saysthat if we grab arock at some orientation in space
and we want to rotate it to some other orientation, there alwaysexists a fixedaxis that we
can rotate around in order to get to that orientation, and the magnitude of the rotation isthe
angle. In other words, the axis us tells us which wayto rotate the object and the angle tells
us how far.
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Figure 3-1: A moving body coordinate system B can represent the orientation of the body
with respect to a known world coordinate system W. We ignore trandlational effects for
simplicity.
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-

Figure 3-2: Euler’s theorem states that the angular displacement of any rigid body can be
described as a rotation about some fixed axis (n) by some angle ¢
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A useful property of Euler's theorem is that the angle directly gives us an intuitive
notion of a distance metric on rotations and therefore orientations! In fact, this angle is
the natural group metric for rotations. Therefore, if we want the distance between two
orientations, we can directly use the angle of the rotation between the two orientations. We
will see that thisangle is easier to calculate in some representations than others and will be
one motivation for a quaternion approach.

Finally, we note that Euler’stheorem impliesthat spatial rotations have three degrees of
freedom — two to specify the axis (sinceit isnormalized, we can use spherical coordinates)
and one for the angle. Therefore, the minimum number of parametersto describe arotation
isthree.

Composition and Non-Commultivity

Two rotations can be composedogether by applying one rotation first and then the next.
Euler’s theorem assures us that the rotation created by this composition has its own axis
and angle decomposition, though getting to this from the factors is dependent on repre-
sentation. Unfortunately, 3D rotations do not (in general) commute under composition. In
other words, if one rotates around some axis and angle to get anew orientation then rotates
by a second angle and axis from that new orientation the resulting orientation will in gen-
eral be different than if we applied the rotations in the reverse ordiérs is not the case
for 2D rotations, where the angles can be added in any order.

To visualize non-commutivity intuitively, take your right hand and make coordinate
axeslikethosein Figure 3-3. Point your thumb up and index finger forward. If you rotate by
90 degrees around your thumb (positive angles being counter-clockwise), then 90 degrees
around your middle finger's new position, your index finger will be pointing down. If
instead you rotate by 90 around your middle finger followed by 90 around the new thumb
position, your index finger will point left!

Non-commuitivity is a fundamental property of 3D rotations and will be important in
some of our later discussions.

3.1.3 Summary

This section introduced some terminology and explained Euler’s theorem. We described
how Euler’s theorem immediately gives us a natural distance metric on rotations and there-
fore between two orientations. The next section will introduce mathematical and computa
tional representations and parameterizations of rotation.

3.2 Representing Rotations

Since we will describe ajoint as an orientation with one, two or three rotational degrees of
freedom, we need a way to represent this fact computationally. In general, there are four
main ways that rotations are represented in practice:

e Coordinate Matrix
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e Axis-Angle
e Euler Angles

e Quaternions
Ideally, we would like our choice of representation to have several important properties.

Efficiency The representation should take up minimal space in memory and be efficient
in time for the tasks required. We want to minimize conversions to and from other
representations since thisis essentially “wasted” computation if we can get around
it with the right choice of representation. Also, if our representation has its own
algebra, we can perform rotation compositions within the representation.

RobustnessThe representation should be robust. Some representations, such as the Euler
angles as we shall see, contain discontinuities that must be handled. We would like
our representation to avoid these issues. Also, some representations are redundanin
that several (or an infinite number, at times) elements can represent the same rotation.
This can cause problemsif not handled properly.

Ease of Use and Visualizationldeally, we want our representation to be simple and easy
to visualize. Aswe saw above, we would like the representation to model the action
of Euler's theorem as simply as possible in order to simplify metrics, visualization
and understanding.

The first three representations will be introduced in this section. We will treat quater-
nions, on which thisresearch is based, in the following section for clarity.

3.2.1 Coordinate Matrix

The group of rotations of Euclidean 3-space (R?) isusually denoted as SO (3), which stands

for the group of special orthogonaB by 3 matrices. Recall that an orthogonal matrix
consists of orthogonal column vectors which are of unit magnitude — in other words, the

columns form an orthonormal basidor the rotated space as measured in the unrotated
space’s coordinate system (frame). Of the orthogonal matrices, called Q(3), there are two

subsets: those with det = +1 and det = —1, where det is the matrix determinant. The

subset with negative determinant are reflectionssince they change the handedness of space.

The subset of O(3) with det = +1 are called the specialorthogonal matrices. A rotation

matrix R € SO(3) will transform a column vector x € R? to a new column vector

y = Rx

by rotating it and preserving its magnitude.

A coordinate matrix can betrivialy produced if abasisfor the rotated space with respect
to the old one is known — it isjust the matrix with the basis in the columns of the matrix.
Explicitly,
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R = Xnew Ynew Znew

will rotate a vector in the unrotated basis space into one in the new space defined by the
vectors in the columns. In Figure 3-1, the body axes define the body’s orientation with
respect to the world and would serve as our basis. Note that this definition of the matrix
assumeswe are using column vectors. Some graphicslibraries and texts (for example, [86])
use row vectors, which means the basisin in the rows.

Composition

The composition of rotations is simply the familiar multiplication of the corresponding
matrices:

R2R1 = R21

where R,; will be applied to the column vector first. Note that the order of rotations must
be read from right to left, since we are using column vectors.

As we mentioned above, rotations do not commute. Therefore, a matrix representation
of rigid body rotation will be non-commutative as well.

Mathematically speaking,

R.R, # R.R, .

Thisfact isimportant and can be easy to forget, but has far-reaching implications.

Euler's theorem and Metric

The axis of rotation of a matrix is the eigenvector with unity eigenvalue, which Euler’'s
theorem decrees must exist. Recall that an eigenvector of atransformation is scaled by the
transformation. In the case of rotation it isthe set of pointsthat do not move under rotation,
which is the definition of an axis of rotation.

The other two eigenvectors will be complex and have complex eigenvalues e*?. They
define a plane orthogonal to the axis of rotation. Although we can get to the angle (or
metric) through the eigenvalues, we can aso rotate an arbitrary unit vector in the plane of
rotation by the matrix and then find the resulting angle between the original and resulting
vectors using a dot product and arccos.

Advantages

Mathematically, the matrix representation seems almost perfect since we used it, in asense,
to definerotations— SO(3) is exactly the mathematical group we want to represent. Ma-
tricesin SO(3) map 1-to-1 onto angular displacements of rigid bodies. We will see that
other representations do not have this 1-to-1 property, including the quaternions.
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Matrices are usually familiar since linear algebra is taught early in most college cur-
ricula. Many algorithms are based on a matrix representation, so there is alot of history
which can be drawn on as well.

Disadvantages

Unfortunately, the matrix representation has several computational problems. First, it takes
nine parameters to represent a structure with only three inherent degrees of freedom. This
means there are six constraints on the matrices that need to be enforced to remove the extra
degrees of freedom: the orthonormality of the columns and the determinant being positive.
If memory is at a premium, thisis an inefficient representation.

Additionally, when many rotations are concatenated numerically, roundoff error will
cause the matrix to drift away from special orthogonal, which introduces shearing and
scaling effects which are undesirable. We can use the standard Gram-Schmidt algorithm
(see, for example, Strang [81]) to “renormalize” the matrix, but this can be computationally
expensive if we need to do it often.

| nterpolating between matricesin SO(3) is tricky due to the multiple constraints. The
familiar convex sum interpolator used to interpolate within vector spaces.

aR; + (1 — a)Ry (3.1

does not workon SO(3) since in genera the interpolated matrices will violate the con-
straints. Mathematically speaking, SO(3) is not a vector space (although we use them
as affine transformations of vector spaces). A vector space requires linear superpositions
of elements to be closed under the space (see Appendix D for a more formal definition).
Therefore, we cannot use the many familiar and well-understood vector space algorithms
directly on rotations. Thisfact is one of the most important to remember in our research,
SO We repedt it:

The group of rotations of 3-dimensional Euclidean space, known a80(3),
does not form a vector space.

This is the crux of most people's problem with designing agorithms for rotations, as we
will see. Instead of a vector space, rotations form aLie group which we introduce briefly
in Appendix D along with references for the interested and mathematically-inclined reader.
Numerical integration of arotation matrix differential equation, which is similar to the
interpolation problem, also causes normalization problems due to numerical error.
Finally, matrices are hard to visualize in terms of the action they perform since the axis
is an eigenvector, and not directly accessible in the representation.

3.2.2 Axis-Angle

One way to parameterize SO(3) is by using Euler’s theorem directly and representing a
rotation as the pair (1, ). Thisis caled an axis-anglerepresentation and most graphics
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libraries offer conversions between matrices and axis-angle.

Composition

It is not simple to compose rotations in this notation without converting in and out of some
other representation such as a coordinate matrix and creating the formula in that manner.
This can be computationally expensive.

Euler's Theorem and Metric

A nice feature of axis-angle is that it directly represents Euler’s theorem. Therefore, we
can immediately use the angle portion of a rotation between two orientations as the met-
ric. However, the lack of a simple composition rule makes this metric computationally
expensive since we need to convert to and from a matrix.

Advantages

The main advantage of the axis-angle representation isthat it is as close to Euler’s theorem
as we can get. It directly represents the action of rotation. This makes it quite appealing
from an intuitive point of view.

Disadvantages

Renormalization does not immediately seem to be a problem since we can normalize the
axisif it drifts from unity magnitude. This method does not address what happens when
numerical error creeps into the angle portion, however. Essentially, it isignored.

Another issueisthat an infinite number of angle choices (multiplesof 27) represent the
same rotation. To avoid confusion, the convention that the axis is a unit magnitude vector
and the angle is in the interval [—n, 7] is often chosen. Even with this convention, two
axis-angle pairs till refer to the same rotation. Specifically, (—n, —#) refers to the same
rotation as (i, 7).

L ooking more carefully, there is also a hasty redundancy in the fact that a zero rotation
around any axis is the same exact rotation, the identity! In other words, the representation
of the identity element of SO(3) is not unique — in fact there is an uncountably infinite
number of them — which can cause serious problems in algorithms as rotations approach
the identity element. Often special case conditions are used near the identity to get around
this, like defining azero rotation around the x axisto be the identity rotation when the angle
approaches zero, but this can introduce discontinuities, exactly what we are attempting to
avoid.

Axis-angle may seem safe and simple for doing interpolation naively using a linear
interpolation (the convex sum in Equation 3.1) between the four components of the repre-
sentation. This approach, like the matrix version, is problematic. First, and most obvious,
the components of the representation are not in the same units, so applying the same scale
to them is suspicious at best! Almost certainly, one will not get the shortest path interpola-
tion between the two points (the interpolated axis-angles can be converted to SO(3) and a
natural distance metric there can be used to prove this). Second, one needs to deal with the
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wrap-around of the angleif one wants semi-unique representatives for the rotation (it could
also just be allowed to range over al of R, but this can be problematic computationally due
to numerical overflow).

If we choose to keep the angle in afixed range, the interpolation cannot be continuous
— at some point it needs to “jump” through the boundary from —p: to pi or from 0 to
2m. These discontinuities wreak havoc on most interpolation and numerical integration
schemes that are unaware of them.

3.2.3 Euler Angles

A common way to represent a rotation in an animation system is to factor it into three
sequential rotations around the principal orthogonal axes (x, y, z) and represent the rotation
asthetriple (6, 0., 03), with each angle being around some particular axis. Thisis based
on the fact that the rotation has three degrees of freedom, so three angles should specify
any rotation.

Each of these matrices has a simple form:

1 0 0
X =0 cosf, —sinb,
0 sinf, cosf,

[ cosf, 0 sind,]
Y = 0 1 0
| —sin 0, 0 cos Hy_

[cosf, —sinf, 0
Z = |sinf, cosf, O
0 0 1

Note that the matrices will be transposed if arow vector basisis used.

Any product of three of these matrices such that no two consecutive matrices have the
same axisisusually called an Euler angle sein the robotics ([18]) and graphics ([ 77],[86])
communities * There are twelve possible products: X-Y-Z, X-Y-X, Y-Z-X, Y-Z-Y, Z-X-
Y, Z-X-Z, X-Z-Y, X-Z-X, Y-X-Z, Y-X-Y, Z-Y-X, Z-Y-Z. These are usualy read in the
order the rotations are applied, and not the order of matrix multiplication, which can be
confusing.

Consider the factorization Z-Y-X, which means we rotate around Z then Y then X.
There are in fact two ways to think about this, which leads to confusion:

e Fixed axis

e Moving axis

This is actually a misnomer which can lead to confusion. Euler angles were invented by physicists to
solve certain problems such as the precessing gyroscope. In general, physicists refer to either Z-X-Z or Z-Y-
Z as Euler anglesby convention. The aerospace, graphics, and robotics communities borrowed these from
physicists, but along the way the name has become used for any of the twelve factorizations (see, for example,
Shoemake [77] or Watt and Wett [86].
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A fixed axisviewpoint states that you rotate the object around the world z, then the
world y, then the world x.

A moving axiviewpoint statesthat you rotate around the local (body) axes: first around
the local z, then the newly rotated y, which we denote y’, then around the newly rotated z,
which is denoted z”. Figure 3-3 shows how to think about moving axis intuitively. If you
imaginelocal coordinate axes on your fingers, then you would rotate around your thumb (z)
first, then around the new position of your middlefinger (y’), then around the new position
of your index finger (x”).

Usually only the moving axis formulation is called an Euler angle set, and the other a
fixed angle setafter Craig [18]. Surprisingly, the two viewpoints turn out to only reverse
the order of matrix multiplication of the three factors! Specifically,

Moving axis Z-Y-X = Fixed axis X-Y-Z

To prove this, consider the action of the rotations on an arbitrary frame, B. In order to
rotate Z-Y-X in world space, we first rotate around the z axis, call the rotation R, to get a
new frame, B'. In order to next apply the second rotation around the world y, we need to
use a change of basis operator to specify therotation in the origina frame, B. Theresulting
rotation we need to apply to B’ to rotate around y in B isthus:

R, =ZYZ'
Read from right-to-left, we “undo” the Z rotation to get back into the world frame, then
apply the Y rotation there, then “redo” the Z rotation. But this clearly has the effect of
reversing the order of the multiplications, since
R.,R, =ZYZ 'Z

and the two right hand factors will cancel to leave

R;R; =ZY
This composite rotation takes B into B”.
Finally, to apply the rotation around x in world space, the required rotation is:
R; =ZYXY 'Z™!

which when applied to our other two rotations gives us

Rs;RR; =Z2YX

due to similar cancellation. But this is the same result that we would get if we rotated
around x first, then thelocal y, then thelocal z! Therefore, moving axis Z-Y-X isthe same
asfixed axis X-Y-Z.

Intuitively, in order to perform a rotation in world space we need to “reach in” and
multiply it on the right.
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Figure 3-3: Euler angle illustration: pretend your fingers when held as shown are three
moving orthogonal axes. Any orientation in space can be specified by a yaw around the
thumb followed by a pitch around the middle finger then aroll around the index finger.

Euler's Theorem and Metrics

Euler angles are quite far removed from Euler’s theorem, ironically. Although in the case
of 2D rotationsthey are the same, in 3D thisis not the case. In order to find the equivalent
axis-angle of an Euler set, and therefore the natural metric between two orientations, we
need to:

1. Create the three factor matrices from the angle.
2. Multiply the three matrices together.

3. Extract the axis-angle from the resulting matrix.

Computationally, thisis too expensive. Usually the standard Euclidean vector distance
metric is used as if the Euler angle triple were a vector (it is not, as we discuss below).
In other words, given two Euler angle triples arranged in a vector, #; and 6., the standard
metric used is:

d = |0, — 02|

This“metric” ignores the coupling between the components of the Euler angles, and is
therefore appropriate only for nearby orientations. This metric will also be badly behaved
whenever one of the angles jumps through a discontinuity, such as from 27 to 0, since the
components actually live on circles (S') and not in a vector space, which the Euclidean
metric assumes.
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Advantages

One main advantage of using Euler anglesis that people can understand them quickly and
can specify an orientation with them fairly well except in certain cases, as we describe
below. They aso have a long history in physics and can make certain integrals over the
space of rotation easier to do.

The main reason they seem to still show up in animation packages like 3D Studio Max
is that they allow the animator to view and tweak animation using function curveswhich
are 2D plots of each angle over time.

Euler angles are minimal — only three parameters, so seem to be efficient. Aswe show
below, however, there is a distinct advantage to using four parameters instead of three.

Finally, the fact that the angles are used directly implies that no normalization needs to
be done on the angles (although to make the triple unique ranges must be specified, as we
see below).

Disadvantages

The principal disadvantage of Euler angles is that mathematically there is an inherent sin-
gularity in any minimal (3 parameter) parameterization of SO(3). Clearly, there isnot a
singularity in the rotation group since we can rotate afree body in space physically without
bumping into any singularities! Thissingularity resultsfrom the loss of adegree of freedom
in the representation itselicalled a coordinate singularitysee [60] for a clear description
of coordinate singularities versus singularitiesin the geometric structure itself).

As a concrete example, consider the following set of rotations: rotate 7/2 around z,
then /2 around y. Your x axis has aligned with the original z axis! (In the hand notation,
your index finger is now pointing in the same direction that your thumb started in). Any
orientation that can be gotten by adding a roll in this new configuration could have been
produced by initially rotating around the z axis instead! Mathematically, the extra degree
of freedom has collapsed.

Gimbal Lock This coordinate singularity is commonly referred to as gimbal lockfor
historical reasons. A gimbalisaphysical device consisting of concentric hoops with pivots
connecting adjacent hoops, allowing them to rotate within each other (see Figure 3-4). A
gimbal with three rings attached orthogonally asin thefigureisin fact aphysical realization
of a moving Z-Y-X Euler angle description.? Gimbals are often used to hold gyroscopes
in attitude sensors in the aeronautical industry. Since gyros want to stay fixed in space, a
gimbal connected to an airplane body or satellite can allow a gyro to actually stay fixed in
space — the gimbal will move around it in order to keep the gyro at that orientation. The
Euler angle values can then be read trivially off the pivots with simple electronics like shaft
encoders.

Figure 3-4 shows a locked gimbal on the right — here the teapot cannot be rotated
around itslocal “up” direction. Even worse, as one approaches gimbal lock, the singularity
usually causes numerical ill-conditioning, often evidenced physically by the gimbal wig-

2The author did not really understand gimbal lock until he played with areal oneand locked it up himself.
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Figure 3-4: A gimbal consists of three concentric hoops connected by single degree of
freedom pivot joints (each pivot is a physical realization of an Euler anglg which attach
adjacent hoops orthogonally (the outermost black hoop hereis considered the“ earth” and is
fixed in space and cannot rotate.). The left image depicts the gimbal in its“zero” position,
with the teapot (colored red to show that it is fixed to the red hoops's coordinate frame
and cannot rotate independently of it) in an “unrotated” position, with the three hoop pivots
orthogonal and corresponding to axes (red isx, greenisy and blueisz). The middleimage
illustrates an arbitary rotation of the teapot and the associated gimbal configuration. The
right image shows the inherent problem with three hoop gimbals and any associated Euler
angle representation — gimbal lock. Here the teapot’s nose is pointing straight up, and two
hoops have aligned, removing a degree of freedom. In this configuration, it isimpossible
to find a smooth, continuous change of the gimbal which will result in a rotation around
the teapot’s local “up” direction, here shown as a superimposed purple axis. Any attempt
to rotate around the purple axis isimpossible from this configuration — the gimbal is said
to be lockedsince it has lost a degreem of freedom. A real gimbal with agyro instead of a
teapot would shake itself to piecesif it tried to rotate around thislocked axis— avery real
phenomenon in early navigational systems using Euler angles and real gimbals.

gling madly around as it operates near the singularity 3. Gimbal lock iswhy the aerospace
industry was one of the first to switch to using quaternions to represent orientation — satel -
lites, rockets and airplanes are not happy when their navigational gyro gimbalslock up and
are likely to crash

Gimbal lock will occur somewhere in anyfixed choice of axes. The only way around it
isto add afourth gimbal ring and actively drive the other rings away from lock, but thisis
ad hoc and adds complexity. We will show below that quaternions add a fourth parameter
in a principled manner.

Interpolation  Gimbal lock wreaks havoc on any interpolation scheme or numerical inte-
grator which triesto smoothly interpolate through the singularity. Usually it isevidenced by
extremely poor numerical performance, or the system jittering (most early computer graph-
ics cameras or airplane simulations using Euler angles spin wildly when pointed straight

3Personal communication with Robert Nicholls, Lincoln Labs, MIT.

4For an interesting report on this problem in the early Apollo program, see [42] which describes how
theinertial navigation system for the Apollo Lunar Excursion Modul e suffered from gimbal lock. The pilots
were taught to steer away from the singularity, as was dramatized in the movie Apollo 13
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up). Thisis the case for numerical integration as well. Furthermore, if one interpolates
Euler angles using the standard convex sum, the resulting path when viewed in SO(3) will
not take the shortest path between the endpoints as it does in a vector space, which is usu-
aly what we want (see Watt and Watt [86] for some nice pictures of some of the paths that
can occur). Also, extrapolation will be poor for the same reasons.

Factorization of SO(3) The essential mathematical problem with an Euler angle formu-
lationisthat it triesto do aglobal factorizationof the rotation group SO(3) into a subset of
R x R x R, or R* (subset due to the angle interval constraints). Mathematically, however,
SO(3) isaminimal group and cannot be factored! In other words, any such factorization
of SO(3) into “smaller chunks’ will have problems somewhere — there is simply no way
around this.

Hanson [36] describes the factorization problem from a synthesis point of view, which
issimpler to understand and important in its own right, so we stressit:

If you rotate something aroundx and then aroundy, there will always be a
component ofz rotation in the result.

This property can be proven to oneself (and can aso be used to prove that SO(3) is un-
factorable) by multiplying an x and a y rotation matrix together and then extracting the
axis-angle description from the resulting matrix (by finding the eigenvector with eigen-
value 1, for example) — the axis will have a z component, meaning that there is some z
rotation in the result, even though we thought we added none. Hence, the components of a
factorization are coupled and cannot change independently without causing problems. If it
were avalid factorization, they would not be coupled and would transform independently.

3.2.4 Representation Summary

This section discussed several representations of rotation and the issuesinvolved with com-
putational use of these representations. The next section will introduce the quaternion rep-
resentation of rotation which we use extensively in our research.

3.3 Quaternions

Quaternions were discovered on October 16, 1843 by the great Irish mathematician Sir
William Rowan Hamilton as he was walking along the canals by the Royal Irish Academy
in Dublin, Ireland with his wife. For many years, he had been searching for a way to
multiply and divide “triples’ of real numbers (what we call a 3-vector today) by extending
the complex numbers, which allow the division of doubles (sets of two reals), into three
dimensions. On that day, he realized “in aflash of insight” that he needed three imaginary
units and one real instead of a real and two imaginary units. So excited was he by the
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discovery that he carved the fundamental quaternion algebra equationsinto arock with his
knife [6]. Today, the spot is commemorated by a plaque shown in Figure 3-5.

This section will introduce Hamilton’s quaternions, the representation of rotation we
use in this research, from an algebraic and geometric point of view, with an emphasis on
intuition. A more formal mathematical treatment can be also found in Appendix D. The
section will proceed as follows:

Section 3.3.1will introduce quaternions as an extension of complex numbers and give the
basic formulae for the quaternion algebra.

Section 3.3.2will describe the polar form of quaternions and describe how they can be
used to model 3D rotations.

Section 3.3.3will describe the topological space of the unit quaternion group, the hyper-
sphere in four dimensions, denoted S?3 (since it has three intrinsic degrees of free-
dom). Thistopology will alow usto use spherical geometry in order to design algo-
rithms.

Section 3.3.4will describe the exponential mapping of the quaternion group and itsrela-
tion to tangent spaces on the hypersphere. The exponential map and its inverse the
logarithmic mapping will be important tools in designing our algorithms.

Section 3.3.5will give abrief introduction to quaternion calculus as we will useit in this
document.

Section 3.3.6introduces the basic building block used in quaternion spline interpolation,
derp (spherical linear interpolation).

Section 3.3.9will give the interested reader pointers to recommended reading for other
approaches to quaternions. It will also give asummary of the other guises the quater-
nion group goes by in other fields.

3.3.1 Quaternion Hypercomplex Algebra

As Hamilton originally discovered, the quaternions are an extension of the complex num-
bers into four dimensions®, with a real part and three distinct imaginary parts. Higher
dimensional complex numbers such as quaternions are called hypercomplexMany prop-
erties of quaternions can be discovered by extending the familiar theorems of complex
analysis[70] by smple analogy to quaternions.

SThere does not exist a three-dimensional version of complex numbers, which was the main stumbling
block for Hamilton — even dimensions are required.
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Figure 3-5: While walking from his work at Dunsink Observatory to his home in Dublin,
Hamilton realized that he needed athird imaginary unit and was so excited that he scratched
the quaternion algebra equations onto a rock on the bridge over acanal near the Royal Irish
Academy [6]. (Photo credit: Rob Burke 2002)

Definition
Mathematically, a quaternion can be written in the form

Q=w+zi+yj+zk
where w, z,y, z € R and i, 7, k are each distinct imaginary numbers such that
==k =ijk=—1

and pairs multiply similarly to a cross product in aright-handed manner:

ij=—ji=k
jk=—kj=1i
ki=—ik=j

Hamilton called the pure real term a scalar and the collective imaginary portion a vec-
tor [33], which iswhere the current terminology originated. The collection of the four real
coefficients (w, x, y, z) he termed a quaternion We will denote the group of quaternions
as H, such that () € H denotes a quaternion with arbitrary magnitude.

A more modern and shorthand notation for a quaternion which mirrors more closely
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the traditional complex number notation is to define it © as the formal sum of areal scalar
and real 3-vector:

QEw+v
where v € R?. Expanding this out by components gives

w+v:w—|—xi+yj+zl;

and the i, j and k here can be thought of as an imaginary basis for the vector portion of
the sum:

+ 1i+ 05 + 0k
+0i + 15 + 0k
+0i + 05 + 1k

Qi e
[1>
o o o

Hamilton called a quaternion with zero real part a pure quaternion since it is purely
imaginary. A vector xinR? can be represented as the pure quaternion 0 + x, which will be
useful below. Similarly, the reals are the set of pure scalar quaternions.

Basic Operations
The conjugateof a quaternion, denoted by a star (*) superscript, simply negates the imagi-
nary part as with anormal complex number:

Q'=w—v

The magnitudeof a quaternion is simply the product of a quaternion with its conjugate,
as with complex numbers:

QI = QQ* (3.2)
=Q'Q (3.3)
=w'+v-v (3.4)

A quaternion with unit magnitude is called a unit quaternion We will make extensive
use of them in this document and describe them in more detail below.

Addition

Quaternions can be added and subtracted commutatively in the standard way by performing
the operation component-wise. It will be important later to note that if we add two unit
guaternions, we will not get another unit quaternion, so addition is only closed over the
entire guaternion group.

6The symbol £ is means “ defined as equal”
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Multiplication

Multiplication of quaternions follows by simply doing a normal Cartesian product of the
two quaternions as if they were polynomials of the terms i, j, £ and then performing re-
ductions of the higher order products of imaginary terms (i, ij, etc.) using Hamilton's
set of algebraic rules above. This manipulation gives an explicit quaternion multiplication
formula useful for computation:

1Q2 = ((wwe — 2172 — Y1Y2 — 2122)+

( )

(y122 — Yoz1 + Wixe + woxy )i+
($22’1 — X129 +W1Y2 + wal)j+
(X1Y2 — Ty + wi2e + woz1)k)

A simple corollary of this definition is that a pure unit quaternion (having zero scalar
part and a unit magnitude vector part) squares to -1 under the quaternion multiplication!
Explicitly,

0+9)?=0+v)0+V)=—-1VVER’.

This property makes the correspondence to the complex numbers obvious, but with the
imaginary component being a vector rather than a scalar.
The quaternion product can also be written in terms of vector algebra notation as:

PQ = (wiwy — vy - Vo, Vi X Vo + w1 Ve + woVy)

People familiar with the vector algebra will notice that the cross product term impliesim-
mediately that the quaternion multiplication is not commutative, as we expect. We see that
the quaternion product contains both the dot (scalar) and cross (vector) products separately
in the quaternion. Although neither the dot or cross product isinvertible by itself, their sum
isinvertible!

The quaternion with unity scalar is clearly the multiplicative identity element since
multiplying it has no effect on a quaternion.

Inverse (Division)

Theinverseof a quaternion is defined as

N
=10

just as with complex numbers. All quaternions except the zero quaternion have a unique
inverse.

Unit Quaternions

Quaternions with unit magnitude form a subgroup of the full quaternion group. In the next
sectio,n we will see that the unit quaternions are all that are required to represent rotation,
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although we need the full quaternion group in order to define rotations and derivatives. The
make the notation clear, we will denote a unit quaternion as Q € H. The “hat” implies unit
magnitude.

A useful property of unit quaternionsisthat their inverse is simply the conjugate.

Q-l — Q*

3.3.2 Polar Form and Powers

Again in correspondence with the complex numbers, a quaternion ¢ € H permits the polar
representation

[ 9+A . 9]
= r[cos = + nsin -
2 2

SIS

Q = re®

where n is apure quaternion. Here, r isthe magnitude g is called the angleof the quater-
nion, and n is called the axis It is useful to write the angle as g rather than 6, as we shall
see shortly when we show how to use quaternions to rotate vectors. The exponential must
be taken as the formal power series:

24 0. (50 (50)° (50)°
L I T 41 51
for the formula to make sense (as with matrix exponentials) and reducing terms with the
fact that n2 = —1. We will make extensive use of the exponential form of quaternions and
describe thisis more detail below.
DeMoivre's power theorem also carries to the quaternions:

+ ...

Q' = rle™s = rt[cos(tg) + flsin(tg)]

One must be careful using the exponential form of quaternions since the product is not
commutative. Therefore, standard rules of exponentials learned from high school do not
apply! This can be a potential source of errorsin derivations.

Anintuitiveway to think about exponentiation of aunit quaternionisthat it calculatesa
point that it is the fraction ¢ along the great circle from the identity (1) to the quaternion (.
This can be found by using the trigonometric form of deMoivre’'sformulaaswell. Since n
isorthogonal to thisgreat circle, if ¢ isvaried with constant speed, we will move aong this
great circle at constant angular speed aswell. Thisisthe basis for fundamental quaternion
interpolator, slerp, described below.

Rotations of 3-Vectors

A quaternion can be used to represent a rotation of normal Euclidean 3-space, R?. Recall
that we can interpret a vector as a pure imaginary quaternion. Consider the following
quadratic product:

y = QxQ*
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with both x, y € R? interpreted as pure quaternions and ( € H. It can be proven that this
triple product will alwaysproduce a pure quaternion for any unit quaternion ¢ and any pure
quaternion x. Most importantly, y will be the vector x rotated by 6 radians around the axis
n! (Theinterested reader should see Appendix D for amore formal treatment of this.)

Notice that the actual rotation is by ¢ and not g which is why we introduced the half-
angle in the first place. An intuitive way to think about this half-angle is that since the
quaternion is multipled by the vector twice, the angle is “applied” twice, so only half is
needed for each side of the multiplication ’ The half-angle also means that we need to
rotate a quaternion by multiples of 47 to get it back to where it started, not 27 like normal
rotations.

Since the inverse divides by the magnitude, the subgroup of unit quaternionsis enough
to represent rotations. For this document, we will only use unit quaternions to represent
rotations. This reduces the rotation formula to the fundamental formula for quaternion
rotation:

y = R(0,8) = QxQ"
where R (6, nn) isthe rotation matrix that rotates by 6 around n.

Double covering

An important property of the rotation formula is that both ) and its negation —Q will
produce the same rotation. Thisis an important fact to be remembered in algorithm design
aswe will see later, so we make it clear:

Both a unit quaternion @ and its negative—() represent the same rotation of a
vector. This is called adual-valued or double-covering representation.

Useful Rotation Formulae

Quaternions allow us to find the shortest rotation between two orientations (Euler’s the-
orem) trivially. If P and Q represent two orientations, then the product P*(Q) gives us a
quaternion that will rotate P into (). Thus, we can intuitively think about multiplying one
guaternion by the conjugate of the other as “subtraction,” though remembering that it is not
commutative.

Similarly, the shortest rotation that takes one unit vector x into another y is simply
found by the vector product (x*y)'/2. In fact, any unit quaternion can be written as the
product of two unit vectorsin thisway.

This product is actually the foundation for the deeper theory of Clifford or geometric
algebras ([17, 41, 32]) of which quaternions are one example.

"Hanson also provides a mathematical description of why this half-angle cregps into the formula[36] —
it results from a square root in the frame equations.
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Composition of Rotations

The composition of two rotations each represented as a unit quaternion is ssmply the prod-
uct of the two quaternions. In other words, if we want a quaternion which represents first
arotation Q; followed by a rotation (),, we need the quaternion ()>(;. Notice that the
composition order happens from right to left, as is the case with rotation matrices acting
on column vectors. Indeed, it often helps to avoid problems with forgetting about non-
commuitivity to in fact think of quaternions as matrices, since most readers are aready
familiar with the non-commuitivity of matrix multiplication.

Summary of Quaternion Algebra

In the last section, we learned that:

e Quaternions extend complex numbers to four dimensions with many formula carry-
ing over through analogy.

e Quaternions allow us to divide vectors as well as multiply them (unlike dot and
Cross).

e Unit quaternions alow usto ssimply represent rotations of vectors.

e Both aunit quaternion and its negative represent the same rotation.

3.3.3 Topological Structure of Unit Quaternions: HypersphereS?

Unit quaternions (H) are often represented computationally as unit vectors in R*. This
representation is the surface of a hypersphere in 4 dimensions! This sphere is also known
as S3, since the surface has three degrees of internal freedom, though it is embedded in
a four-dimensional space. When taking this geometric point of view, the negative of a
guaternion is called its antipode The fact that both a quaternion and its antipode refer to
the samerotation is called antipodal symmetry

Thinking of the unit quaternions as living on a hypersphere is the most useful property
of the quaternions as it allows for the use of visualization and geometric reasoning fro
algorithm design and lets us not consider quaternions as a “black box.” Many calculations
that would be difficult to do analytically in the quaternion algebra are potentially much
simpler using geometric reasoning and hyperspherical trigonometry. Algorithm design can
also use this geometric property as a starting point, using construction schemes on the
sphere rather than the algebra directly. We shall use this fact throughout this document.

3.3.4 Exponential Map and Tangent Space

We introduced the exponential above in the polar form. This section will describe the
exponential mapping and its inverse the logarithmic mapping in more detail since we will
use it throughout our work, as do severa other graphics researchers recently [52, 29, 54,
55]. The exponential and logarithmic maps will let us map vectors into unit quaternions
and vice versa. We will see that thisisrelated to the tangent space to the hypersphere and
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that thelog map can be used to locally linearize the quaternionsin an analytic and invertible
way.

Definition
Any unit gquaternion can be written as the exponential of a pure vector:

~

Q:exzegﬁ

Likewise, we can define the logarithm of aquaternion as the inverse of the exponential:

A .0
InQ = Ines® = §ﬁ

By restricting the magnitude of the vector (£) to the range [0, 7], we can get an almost
unique mapping from the solid ball of radius 7 to a unit quaternion. In this case the origin
will map to the identity element. Each point insidethe ball represents a uniquerotation.
Notice, however, that antipodal pointon the surfaceof the ball areidentical rotationssince
a rotation around any axis by 7, no matter what the sign of the axis, is the same rotation.
This representation can be used directly, though care must be taken at the surface of the
ball sinceit introduces a discontinuity (see [29] for more details on this). We expect thisto
be the case since, as we mentioned above, any three parameter representation (which the
log vector is) must have a singularity somewhere.

Computationally, the most robust way to implement the quaternion exponential map-
ping is using the equation:

Vector(q)

sinc(%)

w =20
where

5= arccos(Scalar(q))

and Scalar(q) isthe scalar component of the quaternion, Vector(q) is the vector part, and
sinc isthe “sink” function sin(x)/z whose limit at = = 0 exists ® This equation aso makes
the mapping very clear — the log is taken by dividing the vector part through by a (scalar)
sinc function and zeroing the scalar part. It is ssimple to check if we use the polar form of
the quaternion (cos § + fAsin 9):

0

ﬁSini
w=0+—"
sinc(3)
Expanding sinc = sin(z)/x gives
97 sin(?
sin(3)

8Care must be taken in an implementation to avoid divide by zero. We use a lookup table interpolation
near x = 0 and perform the division explicitly beyond this range.
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Figure 3-6. A depiction of the exponential map. Points in the tangent space are mapped
onto the sphere by the exponential mapping and vice versa by the logarithmic map, its
inverse.

and reduces to the desired

0
W =—-1n.

2

This gives us a ssmple way to convert from axis-angle to unit quaternions and back,
which as we saw above isimportant for metrics based on Euler’s theorem.

Tangent Space taS3: T S3

A powerful way of thinking about this mapping isthat w livesin the 3-dimensional tangent
space at the identity of the quaternion hypersphere. This tangent space is denoted tan 15°3.
Lack of a subscript will implicitly mean the tangent space is at the identity. Figure 3-6
depicts the mapping. Put succintly:

The logarithm maps a point on the sphere into a point in the tangent space at
the identity.

In order to map a unit quaternion Q into the tangent space at some other location on the
sphere P, we simply rotate the sphere to align P with the identity and then take the log:

A ~

Inp(Q) = In(P*Q)
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Most of our agorithms will use this basic formula, so we box it to make it clear. The
subscript denotes that we are taking the log at a different point than the identity.
Furthermore, thisis also an invertible mapping, giving us:

~ Qﬁ

6
expﬁ.(§ﬂ) = Pe>

The tangent space is R? and isin fact a vector space. Therefore, the exponential and
log maps can serve as alocal “linearization” (approximation) of the unit quaternion group,
mapping unit quaternionsinto tangent vectors. These maps are also extremely related to the
quaternion calculus and basic quaternion interpolator (slerp), described below. We discuss
their relation to Lie algebrasn Appendix D.

Tangent space mappings will alow us to more easily visualize and design interactive
manipulation algorithms, such as Hanson’s “Rolling Ball” agorithms for manipulating
guaternions [34, 37, 36].

Properties

The exponential map has a few properties which we will leverage. First, it preserves the
spherical distance from any point on the sphere to the identity. In other words, the mag-
nitude of the log vector will be the same as the spherical distance from the identity to the
mapped quaternion. This allows usto construct a simple metric between quaternions:

dist(P, Q) = 2|| In(P*Q)||

Notice that this gives the natural metric between two quaternions () directly!

Second, it preserves the angle made between two quaternions and the identity. In other
words, if the identity is thought of as the north pole of the Earth, two lines of constant
longitude emanating from the north pole will logmap to two vectors that have the same
angle between them as the longitude lines make at the north pole.

Intuitively, these properties imply that a spherical circle centered around the tangent
point on the sphere will map to a sphere (S2) in the tangent space. Likewise, €llipses map
to ellipsoids. Squares, however, will become distorted. These effects are exactly what we
see when we look down on the north pole of a globe as well.

Finally, we note that since the logmap is effectively alocal linearization, it is best near
the center of the map.

3.3.5 Basic Quaternion Calculus and Angular Velocity

This section will introduce the basic quaternion calculus formula which we will use in the
design and understanding of some of our algorithms and explain itsrelation to the familiar
instantaneous angular velocity in mechanics.

The time derivative of a unit quaternion Q(t) is:




where w € R? isthe angular velocity of the quaternion with respect to the basis frame
(identity element) and w’ € R? isthelocal angular velocity in the frame at (. (We will not
provethishere, but see [52, 53, 19].) Notice that angular velocity is atrue vector quantity.

There are severa points to mention. First, the factor of % handles the fact that the
quaternion curve will move half as fast as the corresponding SO(3) curve due to the half
angle in the rotation formula. Second, since the derivative is expressed in the quaternion
algebra, it is a quaternion, although not unit itself.

Intuitively, a derivative at a point is a tangent vector at that point. Since our derivative
is of a unit quaternion Q(t), it must be tangent to 53 at (). Since angular velocity is a
pure vector in the quaternion algebra, it must have no component in the identity direction.
Therefore, it is orthogonal to the real axis and can be thought to live in the tangent space
at the identity (real axis). By then multiplying by the location Q, we effectively “rotate”
the local angular velocity to the tangent space at () so that the derivative is expressed in the
inertial basis.

Another way to look at the derivativeisto consider afixed unit quaternion ), exponen-
tiated by time:

Qt) = Q5
which can be expressed as

A

Qt — 6tln Qo

and the derivativein timeisthen

Q(t) = Q(t) In Qo
which isthe differential equation for a constant angular velocity curve that passes through
theidentityatt =0and @y at ¢t = 1.
Finally, we discuss numerical integration of quaternion ordinary differential equations
(ODE) in Appendix C.

3.3.6 Interpolation, Slerp and Splines

Several interpolation techniques currently exist for doing interpolation on a sphere. An
advantage of the quaternion representation is that these interpol ation techniques, unlike the
ones were saw above, are smooth and continuous over the entire sphere and do not exhibit
anomalous singularities (gimbal lock).

The most important of these spherical interpolation techniques, introduced to the graph-
icscommunity by Shoemake [73], isslerp, which isshort for spherical linear interpolation
It can be defined in the quaternion algebra as.

slerp(Qb Q2, t) = Q1(Q1*Q2)t

Slerpisthe hyperspherical version of the familiar convex sumin avector space (often called
lerp) and interpolates at constant angular velocity along the shortest path (a great circle)
from p to ¢ as ¢ ranges from O to 1 at constant parametric speed. Slerp can be thought of
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Figure 3-7: A depiction of dlerp. The two examples are interpolated at constant angular
velocity as the parameter changes with constant speed. The exponential portion of slerp
can be interpreted with the exponential mapping with respect to one example. In thisview,
a constant speed line in the tangent space will map to a constant angular velocity curve on
the sphere.

as “walking along the equator at constant speed.” Figure 3-7 depicts slerp. As the tangent
point is moved at constant speed in the tangent space, its mapping on the sphere moves at
constant angular speed.

Care must be taken in the use of slerp dueto the antipodal symmetry of unit quaternions
when representing rotations in SO(3). Since both  and —( refer to the same rotation,
we need to find the shortest path irBO(3). To handle this, the simple heuristic that both
guaternions must be on the same side of the sphere isused. If it were on the other side, the
geodesic path would appear to “take the long way around” to get to the other orientation.

Given that we have a spherical analogue of the lerp geodesic, a spline construction
scheme can be used to generate Catmull-Rom, Cubic Hermite, and other splines on S3.
The interested reader should see Schlag’'s Graphics Gen{72] for more information. A
useful sourceis [52] who show ageneral construction scheme for analytic spline using the
exponential map. Our work is similar to this, except we will be performing multi-variate
interpolation rather than just temporal.

3.3.7 Advantages

So what do we get for accepting this unfamiliar object? Nothing short of the grail: lack of a
singularity intherepresentation. Thisproperty followsfrom atheorem intopology whichis
amusingly called the Hairy Ball Theorem [73] (our discussion closely follows Shoemake's
description in the reference). It statesthat it is only possible to create a continuous tangent
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vector field (which can be thought of as “hair”) on a sphere of odd surface dimension
(though possibly embedded in an even dimensional space).

This theorem is obvious for a one-dimensional sphere, or circle (S!). The “hair’ can
clearly be “combed” in one direction around the circle without discontinuities. It is aso
possible on S?, where the quaternions live. Surprisingly, however, it is not possible on a
sphere of two-dimensions (S2), which are the spheres we are familiar with as balls and
balloons and directions in space. Put ssmply, you cannot comb the hairs on a tennis ball
without getting a cowlick or “bald spot” somewhere on the surface. In other words, there
mustbe a discontinuity in hair direction or a spot where the tangent must vanish entirely to
zero (at awhorl, say). But on a hypertennisball (four-dimensional), it would be possibleto
comb it without such a problem.

This theorem implies that no matter how a point is moving continuously around the
sphere (in our case representing a smooth change in the orientation of an object in R?),
there is no spot where we will get “stuck” on a singularity trying to move in a direction
we cannot (over a cowlick or whorl) asin a minimal three-coordinate representation. Put
succintly:

Quaternions do not suffer from gimbal lock or coordinate singularities.

Another added advantage for numerical calculations is that quaternion multiplication
uses fewer multiplies than matrix multiplication, making it more computationally efficient
for composition. Another bonusis that numerical drift away from unit magnitude is easily
removed by renormalizing the quaternion in the obvious manner of dividing by the mag-
nitude. Some researchers instead use the entire quaternion group (of any magnitude) and
perform the normalization only when calculating arotation triple product on a vector [26].

The full group is useful in designing algorithms as well. For example, Shoemake sug-
gests taking the square root of a quaternion as:

(1+Q)
It +Qll

which uses the addition operator of the full quaternion group rather than by the more obvi-
ous application of the exponential form (we describe the natural log of a quaternion below):

b =

=

In(Q)

N
N

5

— E:

Q A

3.3.8 Disadvantages

The main disadvantage is that quaternions use mathematics that is less familiar to most
people, so they require alittle extra work to understand and work with. The worst draw-
back is that since quaternions live on a sphere, one cannotuse the Euclidean vector space
interpolation methods such as B-splines without modification. These techniques need to
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terminology field usual denotation
guaternion computer graphics subgroup of SO(4)
Euler parameters | mech/aero engineering | subgroup of SO(4)
Spin group quantum physics SU(2)

be reformulated to work on a sphere. Some of these methods have been extended already
(see, for example,[52, 4, 67, 26, 73, 19].

It isimportant to remember that thisis notjust a drawback of quaternions, but isin fact
inherent in the nature of the rotation group itsed$ described above. Since we are forced
to deal with thisfact anyway, quaternions allow us to use spherical geometric reasoning in
algorithm construction and visualization.

3.3.9 Recommended, Related and Other reading

Quaternions masquerade under many different namesin the literature as different fields re-
discovered the need for them. For example, the quaternions are isomorphic to the specia
unitary 2 by 2 complex matrices, SU(2), which isa spin group in quantum physics. A lot
of intuition about quaternions can therefore be gained by learning about SU(2). Artin’'s
Algebra[2] gives agreat introduction to SU(2) and the relation of the algebrato S3. Me-
chanical and aerospace engineering often use the term Euler parametergor quaternions,
which is unfortunate since they are very different from the Euler angles. Many fields use
the fact that a subgroup of SO(4) can model the quaternion algebra linearly. Table 3.3.9
summarizes some of the quaternion aliases to help the reader in a keyword search.

Many books exist which are helpful in learning about the classical groups, such as the
rotation group SO(3), aswell asthe mathematics which is useful for handling quaternions.

A great reference book which the author wishes he had five years ago is the recent
book by Gallier [23] which covers affine spaces, homogenous coordinates, Lie group and
algebras and many other geometric ideas with an eye toward computational issues rather
than pure mathematics.

There are many useful articles in the Graphics Gemseries on useful techniques for
quaternions, from random rotations to 2D input devices, to theory: [56, 28, 74, 72, 34, 27,
61, 75, 35, 76, 77, 78, 37].

McCarthy’s introduction to kinematics is also useful for understanding clifford alge-
bras, Plucker coordinates, and other structures which are useful in kinematics [59].

Kuipers has a great introductory book on quaternions [53]. Dam’s tech report [19]
contains a clear presentation of rotation representation and derives some of the properties
of slerp and the cubic Hermite (squad), as well as introducing a new interpolation scheme
(spring). They also correct abug in Shoemake's derivation of squad.

For the more mathematically inclined, arecent book exploresthe cal culus of quaternion
and Clifford algebras with an eye towards application (such as a quaternionic neura net
solution), but it is not for uninitiated! [32]. Sattinger and Weaver’s classic introduction to
Lie groups was one of the more useful to the author for understanding representations of
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rotation though it is mostly of use to quantum physicists[71]. Weyl [88] isalso aclassic
on group theory. A great introduction to SU(2) and the exponential mapping can be found
in [2].

For those unfamiliar with tensor and vector calculus, [91] isauseful start. Saff [70] is
areasonable introduction to complex analysisin general, but not quaternions. Bartels et al
[5] isagreat source for spline construction and interpolation theory. Finally, Nikravesh [62]
offers an useful discussion of using quaternions in a numerical ssmulation of rigid body
dynamics, including issues with integrating quaternion matrix equations.

A good book for learning differential geometry isBurke' s[14]. Gravitation abig black
tome, has useful sections on the spinor representation of rotation as well as some great
visualization toolsand insightsinto the nature of curved spaces, tensor calculus, differential
geometry, and the rotation group.

Finally, Geometric Algebra is a superset of the quaternions which is becoming popu-
lar in many fields as it pulls together the representation of physical groups into a unified
framework to promote sharing of ideas. Many excellent papers on quaternion techniques
ranging from quaternion wavelets to quaternion neural nets and applications ranging from
guantum, Kalman filters, computer vision, robotics, and optics can be found in [17]. The
SIGGRAPH community recently began looking at them in a course as well [68].

3.4 Quaternion Algebra and Geometry Summary

We summarize the main formulas and their geometric interpretation in terms of spheres
and great circles in the following tables. The graphics are meant to show how quaternion
operations are very related to geometric operations on spheres in the same way that unit
complex numbers amount to operations on a unit circle. In some of the images, the axis
coming out of the page is n, showing that we are taking an orthogonal projection of the
one-parameter subgroup orthogonal to n. In others, we explicitly show the real axis along
the horizontal (with the group identity, 1) and the entire vector imaginary portion collapsed
abstractly into the vertical axis asif it were a complex number °.

%In fact, it actually is. The Clifford algebra pseudoscalar I times a vector acts much like the complex unit
i timesascalar (see[17])
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Name Formula Geometry
L
e g
2t
Rectangular w+ i+ yj+ 2k = w+x
.-"---. d _.T / b
/
.- /Jw £\
| :
/
Polar/Exponential esh = cos(%) + sin(%)n " ;
deMoivre (power) | Q! = e!5® = cos(t) + sin(t%)n —
Sqrt (geometric) e
Conjugate Q" =w—x=¢ 30

Table 3.1: Quaternion Algebra Summary
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Name Formula Geometry
Scalar (real) R(Q) = L2
Vector (imaginary) I(Q) = L2

Modulus (magnitude)

a4
|"- -
4 ﬂ; 1=l =
Expmap e* = cos(||x||) + sinc(||x]|)x i’
die
|"- -
4 ¢ =l w
Logmap In(Q) =0+ m%@?) ki "J/ i

Table 3.2: Quaternion Algebra Summary |1
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Name Formula

Rotation Difference Rpg = (P*Q)

Vector Difference Rey = (X'§)2

Slerp Geodesic slerp(Qo, @1, t) Qo(Q*0Q1)! = Qpet™(@70R1)

Derivative Q= Q1) In(Q(t)) = +Qu' = twQ

Change of basisinvariant R*eSRR — ¢S RAR

Table 3.3: Quaternion Algebra Summary 111
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Chapter 4

Statistical Kinematic Joint Models

The last chapter introduced the mathematical issues with representing orientations and ro-
tations, which are the essential componentsto modeling character joint motion. It introduce
severa representations, focusing on the quaternion, which we saw had alot of nice proerties
in terms of efficiency, interpolation and metrics.

This chapter will motivate an abstract statistical kinematic joint model consisting of the
following parts:

e Joint equilibrium (center) point
e Joint motion limits around the center

e Joint motion probabilistic model around the center.

We then give a set of properties we would like the joint model to possess based on our
overall problem of learning a motion manifold from examples. These are:

e Scde-Invariance

Convexity

Constraints

Singularity-Free

Intuitive

Fast and Efficient

e Common currency

e Ableto Interpolate
We then compare the following choices of representation against these properties:
e Specia Orthogonal Matrices (SO(3))
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e Euler angles (S' x S' x S1).
e Quaternions (S?)

We conclude that the best representation of a joint uses a quaternion representation as
follows:

e Use aquaternion for representing the currentrotation of the joint with respect to the
boneit is connected to.

e Use a quaternion statistical model learned over the entire corpus of animation to
model joint motion probabilistic behavior and limits.

The rest of the chapter will proceed as follows:

Section 4.1 motivates the need for a statistical model of joint motion.

Section 4.2 motivates the use of quaternions as the representation of orientation of ajoint
for a statistical model by comparing it against Euler angles and SO(3) matrices ac-
cording to a set of desirable criteriafor a statistical model.

Section 4.3 summarizes the argument for the use of a quaternion representation of joints.

4.1 Motivation for Statistical Kinematic Model

Consider the rotation of your wrist. It tends to move around some average center point,
approximately whereit lines up with your forearm. It can rotate left-right over asmall range
and up/down over awider range. It can roll (twist) around the axis of the forearm as well.
The twist degree of freedom is often considered to be at the wrist itself in computational
skeletal models, giving the wrist three degrees of freedom, even though clearly through the
action of the tendons is occurring along the forearm. Other models place the twist degree
of freedom at the elbow which most people consider to be one degree of freedom, giving
the wrist and the elbow each 2 DOF to model the 4 DOF of the wrist to upper arm chain.
Clearly, al of these models are abstract descriptions of what is actually going on in the
underlying muscles and tendons. Actual organic joints can be quite complex, exhibiting
disturbing phenomena such as hysteresis, or path memory. We will ignore a lot of these
lower level effects and focus on the common observable rotations and how they move
bones.

On the other hand, we cannot entirely ignore this issue. A very interesting thing we
noticed isthat in switching from arigid meshfor virtual characters (in which joint rotations
rotate fixed chunks of geometry connected to the bones) to a skinningapproach (where a
seamless mesh deforms in a weighted manner according the the bone location) can change
how an animator chooses to make this decision! Consider the wrist example again: as the
wrist twists, the skin of the forearm twists. To an animator, this means the bone inside is
twisting, which happens at the elbow. If they apply twist at the wrist instead, the forearm
won’'t move as easily. We were surprised by early statistical analyses which showed that

82



elbows were 2 DOF! Therefore, by allowing a model that can find inherent degrees of
freedom of the joint we can avoid imposing artistic limits on the animator by forcing a
certain rotation structure up front that the animator must adhere to. Instead we argue for
letting the animator do what is most natural and then having us extract the proper datalater,
aswe argued for earlier.

Another interesting thing to notice about organic joints is that since they have tendons
connecting them to the bones, they in general cannot spin around in any direction by a full
360 degrees like Regan’s head in The Exorcisbr arobotic joint. Consider your wrist again.
Wiggleit around randomly in all directions. * Not only does it have a central location, but
the edge of the constraint boundary (joint limit in any direction) isfairly smooth over most
of the range, meaning that the boundary is close to convex

So what can we gather from this ssmple empirical study? We will argue that to model
an organic joint like awrist, the minimal set of statistics we will need are:

Mean, Center, Average, Equilibrium The center of the joint as a coordinate frame. This
can be thought of as some average “minimal energy” location over all possible mus-
cle equilibria points when considered as springs.

Convex Joint Limits The joint will tend to have a limited amount of rotation away from
the center of the joint. This boundary seems to be fairly convex, lacking “corners’
where we get stuck 2

Variances around the meanJoint limits and variances are clearly very related, and we
will use the same structure for them. Again, we might need a more complicated mix-
ture modetlto handle joints in certain cases. Since kernel-based mixture models are
based on sums of these second order statistics models (which serve aslocal kernels),
having a clear single second-order statistical kernel model is required first.

In summary, we will use the following simplifying assumptionsin our statistical model:

e Joint dataislocal isfairly local in the rotation group and therefore singlejoint statis-
tics can be modeled with a mean and variances about the mean.

e Joint limits can be expressed in terms of limits in the principal variance directions
and form a convex constraint surface.

¢ Joints do not spin all the way around in any direction 3, therefore the joint will live
in a closed subspace of the rotation group.

The next section will discussjoint propertiesin alittle more detail and argue that quater-
nions are the best way to model this kind of joint data.

1Schaal at USC calls this “motor babbling”. In yoga class we call it “vibration.” The effect is the same:
toforce thejoint into all its configurations. | imaginethis is what a baby is doing when it wiggles randomly.

2These do exist, however. The shoulder joint exhibits hysteresis, or path memory, or posture. Itispossible
to take a certain path into a configuration where one can’t get back out in certain directions. Thus, real joints
do exhibit singularitiesin certain places. Since we are worried about modeling expressive motion as quickly
as possible, we will ignore these strange cases which rarely happen on average. In modeling a human being
performing yoga, we will need to have a better statistical model.

3Excluding the special top level “root node” discussed in the next chapter which lets the character’s center
of mass rotate and tumble arbitrarily in space.
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4.2 Motivation for a Quaternion Representation of Char-
acter Joints

Why use a quaternion statistical model rather than something else for modeling the statisti-

cal kinematics of organic joints? We argue that an appropriate joint model which leverages

animator knowledge through analysis and synthesis of examples should have the following
properties:

e Scale-Invariance

Simple, Fast, Convex Range Constraints

Singularity-Free

Intuitive

Fast and Efficient

Common currency

e Ableto interpolate

Furthermore, there are three clear representation altenatives out there now:
e Specia Orthogonal Matrices

e Euler angles

e Quaternions

First, we will describe the properties we feel the joint representation needs. Then we
will address these properties for each of these representations.

4.2.1 Properties

Scale invariance First, the model should ideally alow scale-invarianceThis means that
in a distance metric between two joint rotations, we would like to have the distance in
dimensionless units. For example, a wrist joint rotates further in certain directions than
others. We would like to consider the relative distance of the joint rotation with respect to
its full range, for example as a percentage, or weight, of rotation in each direction. Scale-
invariance is often required by statistical algorithms.
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Joint Range Limits A model should allow for hard joint limits. Extrapolation techniques
or inverse kinematicstechniquesthat will go beyond the example datawill need away to be
constrained to avoid unnatural poses, such as an elbow going backwards. Hard constraints
are often at odds with convexity, although if we use a density with ellipsoidal isocontours
we can choose a particular contour (standard deviation) as a hard constraint surface. This
choice alows us the benefits of a hard surface while not losing the convex continuous
gradient of the underlying density. These constraints should be easy to learn from data.
Since we want to model arbitrary organic characters, we cannot make assumptions from
biometric data— we need to collect our own. Having to tweak the joint constraints on a
model by hand is not an effective way to leverage an animator’s skills. Additionally, since
constraint checks often occur inside intensiveiterations, they need to be as fast as possible.
Finally, we would like the limit model to be convex, or form a smooth boundary. Thiswill
be advantageous for many optimization techniques that can get “ stuck” on the corners of a
non-convex constraint boundary.

Singularity-free A model should not have coordinate singularitiesA coordinate singu-
larity iswhere the representation goes to zero (or infinity) due to some mathematical reason
which has nothing to do with the thing modeled (joint rotation). For example, agimbal (see
Figure 3-4) can be used physically to describe rotations. Unfortunately, there will always
exist some configuration where the gimbal gets stuck due to a coordinate singularity (loss
of a degree of freedom) as we saw in Chapter 3. Clearly, rotations themselves do not lock
up — tumbling rocks don’'t suddenly lock up at some orientation. In fact, lack of singu-
larity will be the best reason to choose quaternions. Often naive users of Euler angles will
assume that “glitches’ in interpolation and integration of Euler angles are bugs in their
code, whereas in fact they are an inherent mathematical flaw which needs to be addressed

properly.

Intuitive  Ideally, we would like our representation to be as intuitive as possible. Since
we are representing something about which people have a lifetime of intuition — rotation
of joints — we would like our representation to be as close to the geometry as possible,
with nothing extra. The proper representation will allow an intuitive understanding of
and increased ability to design appropriate and efficient algorithms for handling rotation
computationally.

Efficiency Since we our modeling interactive characters, we need to make the calcula-
tion of motion as fast and small as possible without sacrificing mathematical robustness
or simplicity. Euler's theorem gives us a target for complexity: 3 parameters is a minimal
representation. Since speed is much more important for maintaing the illusion of lifein a
character, time efficiency will be chosen over space when required.

Common Currency Related to efficiency, we would like a unified common currency
for describing rotations to avoid the numerical problems and computational overhead with
converting between representations in algorithms. Also, this will let us blend the result
of different algorithms in the same manner irregardless of how the individual algorithms
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calculate their answers. Since we need a common currency, we should try to get the best
one from a mathematical and computational point of view.

Interpolation/Extrapolation  Finally, we would like the representation to allow for sim-
ple, very fast interpolation. Ideally, it should allow for extrapolation as well, which will let
usleverage the animator better by requiring less examplesfrom him to “ patch up” problems
caused by the representation.

Next, we compare the following common choi ces of representation with respect to these
properties:

e Specia Orthogonal Matrices SO(3)
e Euler angles

e Quaternions

4.2.2 Special Orthogonal MatricesSO(3)

We discussed coordinate matrices for SO(3) in the previous chapter. Recall that a coor-
dinate matrix’s columns form a basis for the rotated joint with respect to the frame it is
measured with respect to.

Scale-Invariance Metrics on coordinate matrices are well-known (see [59]). These treat
the matrix as a large vector, however, which makes it harder to see how the matrix
metric relates to the the rotation. However, much of statisticsisbased in thelinear a-
gebra so much is known about finding principal axes using singular value techniques
(see, for example, Therrien [83]).

Constraints Joint constraints are not obviousin SO(3). Sinceit is not a vector space, we
cannot factor the space into orthogonal components and constrain in each direction
independently. We need to consider the entire representation simultaneously, cou-
pling and al. How to do thisis not clear since there are already constraints in the
matrix to keep it special orthogonal. In practice, joint constraints are usually encoded
as ranges on an Euler parameterization of the matrix.

Singularity-Free SO(3) issingularity free. Only three degrees of freedom are needed to
specify arotation. A 3x3 has 9 entries with 6 constraints to maintain orthogonality
and positive determinant.

Intuitive Matrices are familiar, but | would not call them immediately intuitive. They
look at how coordinateschange under the action of a rotation, rather than on the
geometric, coordinate-free invariants of the motion. On the other hand, we can think
of them as being a coordinate frame in terms of three orthogonal axesin the columns,
For this reason, matrices can be intuitive for entering or extracting arotation directly
in terms of the effect of the rotation on each basis element.
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Efficiency Matrices are often quite fast because they are usually implemented in hardware.
In software, it is clear that we can do better since there is much redundancy in the
representation due to the six constraints. This redundancy gets effectively squared
when we compose rotations through matrix multiplication. Also, numerical roundoff
issuesrequire usto renormalize the matricesto avoid shearing effects, which involves
invoking Gram-Schmidt or some other matrix renormalizer like polar decomposition.
Clearly, a representation which had fewer redundancies and constraints would be
more computationally efficient.

Common currency Since SO(3) isin fact the group we are seeking to represent, a co-
ordinate matrix is a natural common currency. Matrices are the most popular com-
mon currency in many graphics systems. Spectral methods allow us to extract the
trandational and rotational parts of the matrix if needed, so we can convert to other
representations, although these methods involve eigenvector calculatons which can
be expensive.

Interpolation It is not clear how to blend » matrices in SO(3) into a weighted average
that is still in SO(3). Adding them with the weights linearly then renormalizing in
genera will notwork since they are not a vector space, as we saw. The 6 constraints
make interpolation quite tricky, though integration is well-known for SO(3).

To summarize, matrices are common, familiar, well-understood and intuitive in some
situations. Mathematically, they are in some sense the group we want to represent com-
putationally since they map one-to-one onto rotations of rigid bodies. Unfortunately, the
redundanciesin the representation make it computationally sub-optimal aswell as difficult
to use in geometric algorithms, since multiple coupled constraints needed to be handled
simultaneoudly.

4.2.3 Euler Angles

Euler anglesalow atriple of three real numbersto represent arotation, so they are minimal
in the sense of having the minimal degrees of freedom. To be used in practice computa-
tionally, however, they must be turned into SO (3) matrices, making them susceptibleto all
the arguments for and against SO(3).

Scale-Invariance Since Euler angles “factor” the 3 rotational degrees of freedom into or-
thogonal axisdirections, it isfairly easy to divide out by the rangesin each direction.
However, this naive approach, while seeming to imply scale-invariance, will not be
since it ignores the coupling of the components and the underlying natural metric on
rotations. In other words, if we arrange Euler angles into a vector in R* and use the
standard Euclidean metric on them, we will get very ill-behaved metric properties
globally, though locally they appear reasonable.

Constraints Hard joint limits on Euler angles have been around for a long time and are
commonly used in kinematic and physicsengines. Even for algorithmsthat represent
rotations differently, say with an SO(3) matrix or quaternion, rotation constraints
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are often added by converting to an Euler angle set, applying the constraints, then
mappng back into a matrix. Thisis aterrible ideafor several reasons. First, thereis
computational overhead in the trigonometric calls and matrix multiplies. Secondly,
extracting Euler angles from arotation matrix isin general ill-posed numerically. Fi-
nally, the constraint boundary formed by three clamped Euler angles will notbe con-
vex when mapped into the rotation group. To avoid these “corners,” expensive non-
linear programming methods often get used to add constraints to IK algorithms[3].
Unfortunately, cosntraining Euler angles to create joint limitsis standard practice.

Singularity-Free The mapping from Euler angles into rotation matrices in SO(3) has a
singularity as we saw in the last chapter. Gimbal lock is illustrated is Figure 3-4.
Thereisno way around this.

Intuitive Euler angles have been around so long since they are intuitive to explain to an-
imators and programmers. There is no free lunch here, however. The first time the
animator encounters gimbal lock when trying to specify an orientation all intuitionis
gone. Furthermore, since there are 12 different choices of Euler set and many wildly
varying conventions # it often takes alot of trial and error to figure out which set data
came from unlessthisinformation is provided. The main reason Euler angles are not
intuitive is that they try to ignore the coupling between the axes in a global way (by
choosing fixed axes), which is not possible.

Efficiency Euler angles are maximally efficient in space since there are three parameters.
Unfortunately, since there is no simple formula for composing two rotations repre-
sented as an Euler angle set (no algebra), we need to convert to matrices, multiply
them out, then extract the angles again if we want to compose several rotations. This
is computationally inefficient. Furthermore, the singularity issues with Euler angles
often require extra computation to look for singular states and avoid them. Avoiding
them entirely in the representation seems like a much better idea.

Common currency Euler angles are a very poor choice of common currency due to the
fact that there are 12 sets and they contain an inherent singularity which others may
or may not handle properly.

Interpolation Often interpolationisdone naively with Euler angles since they appear to be
vectors. Aswe have noted, the singularities cause problemsif an interpolation passes
near it. Also, linear interpolations between two Euler angle vectors can produce
wildly varying curvesin the actual rotation group.

To summarize, although Euler angles naively appear to be memory-efficient, intuitive,
and allow us to use standard vector space linear algebra techniques, they suffer from theo-
retical issuesthat outweigh any potential advantage. Furthermore, they suffer from compu-
tational issues both from these singularities and from the fact that they are converted into
matrices anyway, eliminating much of the potential speed benefits. Therefore, Euler angles
are a poor choice of representation.

4Almost every book | picked up disagreed on the conventions and some on the definitions for what an
Euler angle set was.
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4.2.4 Quaternions

Strangely, quaternions pre-date these other representations, but lost out historically. Re-
cently, they are coming back with increased popularity in many fields under the field of
Geometric (Clifford) algebra. We argue that quaternions are an optimal trade-off of com-
putational efficiency, mathematical elegance, and ultimately for correct intuition about ro-
tation groups, though at first they are very nonintuitive since they are so unfamiliar.

Scale-Invariance Quaternions are very close to the inherent group metric between rota-
tions, which we want to represent. In fact, geodesics (great circles) on the quaternion
hypersphere are the shortest paths between rotations (in SO(3)). Therefore, our met-
rics have the best chance of being scale-invariant. The big problem isthat in general
rotation ranges (and therefore the effective scale) are not as easy to think about asin
a vector space due to the coupling between the quaternion components. Statistical
methods for scale-invariance on curved manifolds are of recent research interest, but
much of the existing theoretical statistics work for manifoldsis very opague and too
general for our problem.

Constraints Unfortunately, there was no clear way to do joint range constraints on a
quaternion representation in the literature when we began this work. Most appli-
cations convert the quaternions to a matrix, then to an Euler set, then back again,
whichishorribly inefficient. Therefore, it was an open question for usto model joint
ranges and also 1 and 2 DOF joints with a quaternion. Since then, several similar
approaches have appeared, which we discussin Chapter 11. Asfor constraints on the
representation, our quaternions must stay unitary. Sincethey are easily represented as
unit vectorsin R*, we can simply divide by their magnitude to renormalize numerical
drift. Thisis much easier than renormalizing a rotation matrix with 6 constraints to
satisfy, rather than one. Quaternions live on a hypersphere, which is a convex space.
It we choose our statistical model and cosntraint surface to be a smooth contour on
this surface, we will have a convex constraint model. This geometric isomorphism
between S* and the quaternions will therefore be a useful visualization tool for us.

Singularity-Free By far the main advantage of quaternions is that they represent rota-
tions in a singularity-free manner. Integration and interpolation can proceed on the
unit quaternion sphere without fear of gimbal lock or degrees of freedom vanish-
ing. Therefore, we can avoid extra machinery for looking for and handling these
problems.

Intuitive Quaternionsare not that intuitiveto most people when they see them. Onereason
it that quaternions are an example of spherical geometry, which isnon-Euclidean and
therefore probably not taught in a standard engineering curriculum. Furthermore, it
is 4-dimensional, making it much harder to visualize for many people. On the other
hand, quaternions are very closeto Euler’stheorem, allowing usto view the action of
aquaternion by looking at thelogarithm, aswe saw inthelast chapter. Sincethelogis
inR?, this gives us a visualization tool for visualizing quaternions [36]. Quaternions
are also non-intuitive due to the half-angle that appears — they represent rotation as
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g, not #. This is due to the antipodal equivalencef quaternions for representing
real rotations — the quaternion Q) and —Q refer to the exact same rotation of R3.
Therefore, the sign of the quaternion does not matter. Computationally, we need to
handle this symmetry. This is one of the biggest issues with errors in quaternion
algorithms.

Efficiency Quaternionsrepresent rotationswith four numbers, whichisonly one morethan
isrequired. Since the extra parameter gives us freedom from singularities, however,
the extra floating point number is well worth it. Also, quaternion multiplication has
less multiplies than matrix multiplication, so composition of rotations s efficient.

Common currency Quaternions are useful as a common currency for rotation for all the
above reasons except intuition, which is becoming less of an issue every year. They
are a better common currency than a matrix from an efficiency standpoint. The main
reason they are the best choice of common currency is that there is an algebra, so
we need not convert to other representations until we need to render. Thisisamaor
advantage.

Interpolation As we saw in Chapter 3, quaternions offer us a ssmple interpolator, slerp,
which can be used to construct spline families through geometric construction [72].
The lack of singularities means our interpolator will easier to implement. Finally,
the existence of one-parameter subgroups (great circles) that can be parameterized
by the exponential map will be useful for good extrapolation behavior, aswe will see
in Chapter 7.

Due to the geometric significance, efficiency, and robustness of the quaternion repre-
sentation, we choseto useit asour joint model. Thisled to several outstanding problemswe
needed to address which we had not seen in the interactive computer graphics or robotics
literature previously. These were:

e Weighted blend of » unit quaternion examples.

e Joint limitswith quaternions

e Statistical probability densities for quaternion data

e Inverse kinematics with joint limits and quaternion representation

In the past few years since we began this work, interest in this area has been growing
and severa researchers have begun to look at these issues as well. We cover these in
Chapter 11.

4.3 Summary of Statistical Kinematic Model Motivation

In this chapter, we argued for a quaternion representation for our statistical example-based
model for joints. We argued that quaternions were the best chocie for a statistical model
representation for the following reasons:
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e Minimal singularity-free representation
e Computationally efficient

¢ Potentialy more intuitive (closer to geometry) that any other method.

The first two ideas seem fairly clear after our discussion. The latter we hope to argue for
and demonstrate in this work.

This concludes Part One: Imaginary of this dissertation. The Part Two: Real portion
of this thesis will show how to use these abstract concepts and ideas to actually look at
real data and characters. We hope to validate the arguments we made in Part One through
examples.

The next chapter will introduce the skeletal articulated figure model common to most
animation packages and engines and show how to implement it with quaternions. We will
show how to use quaternions to model the poseof a character as atuple of n quaternions,
one for each joint, and various operations such as distance metrics on pose.
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Real
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Chapter 5

Quaternions for Skeletal Animation

Aswe demonstrated in the last two chapters, quaternions are an efficient and non-singular
representation for rotations in three-dimensional space. So how do we use them for mod-
eling a character’s joints?

This chapter will introduce the standard articulated skeletal model for rigid-body char-
acter animation, using quaternions as the representation for rotation of joints. We will also
introduce terminology, concepts and formal notation that will be used throughout the rest
of this document for describing the kinematic configuration of a synthetic character.

Specifically, the reader will learn the following in this chapter:

¢ Joint-Bone Skeletal Model
e The Quaternion Joint Model
e Forward Kinematic Equations with Quaternions

e Postures, Posture Metrics and Animations
The chapter will proceed as follows:

Section 5.1 introduces the articulated skeletal model which consists of a tree structure of
bones connected by joints. We aso discuss simplifying assumptions we make.

Section 5.2introduces coordinate frame terminology and notation. It then presents the
concept of open kinematic chains through a skeleton and the forward kinematic cal-
culations. We show how coordinate frames along a kinematic chain can be computed
efficiently in terms of quaternions and vectors rather than using the traditional 4x4
homogenous matrix representation.

Section 5.3 will introduce postureg(tuples of unit quaternions) for representing the joint
rotational degrees of freedom of afigure and how to perform metrics on posturesin
the quaternion algebra. It will also define the concept of motion (time-derivative of
posture) and describe the form that example data describing motion (animation) that
we assume.

Section 5.4 summarizes the main points of the chapter.
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Figure 5-1: The bones (colored solid) which are animated underly the mesh (grey transpar-
ent) skin. Each bone rotates with respect to its parent by a 3D rotation, making a hierarchi-
cal skeletal model with the pelvis at the root.

5.1 Articulated Skeletal Model

Rigid skeletal models of characters are standard these days in animation packages and
videogameengines. A skeletal modetonsists of a hierarchy of rigid bonegor links) which
are connected together by joints (see Figure 1-2). Bones are rigid bodies in the sense that
they cannot bend or change length, so can be described with just a single parameter —
length. Joints connect bones together and allow them to move with respect to (which we
will shortentow.r.t.) each other, either rotationally or trandlationally. Joints have an attach-
ment poinbn the bone to which they connect and between one and three rotational degrees
of freedom (DOFs) and one to three trandlational degrees of freedom. The orientationof a
joint will be described as an angular displacememith respect to the boneit is attached to.
If we alow trandational DOFs in the joint, we get a general spatial displacementUnder
this definition, we see that bones describe coordinate framegrotation plus translation) and
jointsrigid transformationdetween them, which we discuss further below.

Using displacements implies that if just an elbow is rotated, all the bones below it in
the tree (hands, fingers, lower arm) rotate with respect to the elbow’s parent bone (upper
arm) aswell. *

L Although this definition might seem obvious to someone familiar with an interactive animation program,
some physics systems represent bones as floating rigid bodies defined with respect to the world coordinate
system and consider the joints as constraints on the relative motion of the bones. The definition of rotations
as relative rather than absolutesimplifies the kinematic mathematics while also allowing familiar behavior
for designers used to working with keyframe animation systems.
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Figure 5-2: An articulated figure can be considered as a tree with joints as edges connect-
ing limbs (nodes). The black circle shows the root of the tree, although any point in the
structure could be chosen.

5.1.1 Simplifying Assumptions

We make several simplifying assumptions. First, we will restrict our model to only rota-
tional joints and not discuss trandational, or prismatic, joints which are often modeled in
robotic simulations. This assumption is reasonable for most situations in character anima-
tion. Also, trandlational effects are the easier of the two, being a standard vector space.

Furthermore, some simulations also model different types of rotational joints, such as
revolute joints (1 DOF), universal joints (2 DOF) and ball-and-socket joints (3 DOF). Other
systems force 3 DOF joints to be created from three hinge joints with zero length bones
between them, which is essentiadly just an Euler angle set. Thisis often done to use linear
algebratechniques asif the joint angles formed a vector.

Instead, we will consider al rotational joints to be full ball-and-socket joints (3 DOF).
This restriction lets us model the rotation of al joints with a single unit quaternion for
simplicity. Note that a 1 DOF joint will be a quaternion with afixed axis. We will see later
how to find the inherent joint DOFs from example animation data automatically and how
to constrain the quaternion rotation to these degrees of freedom.

5.1.2 Skeletal Tree Structure

A valid skeleton is considered as atreein the graph theory sense, with the joints considered
as edgesand the bones as nodes(see Figure 5-2). This might seem a little weird at first,
since normally we think of bones having length and joints not. Since bones can have more
than one joint attached to them, but not vice versa, we see that bones must be nodes.

A tree must have a single root node usually placed at the pelvis. Since it has no joints
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above it, a character can only move around an environment if we attach it so some fixed
inertial coordinate system called the world by afull six degree of freedom rigid body joint.
Asmentioned above, all of the other internaljoints have only rotational degrees of freedom.
For this document, we will also ignore the root joint translation since it is a more familiar
Euclidean space and can be factored out.

Also, a unique acyclic path can be found between any two bones in the tree consisting
of all the bones and joints along the way. Clearly, the collection of joint displacements
along a path define a compound transformation between the bone coordinate systems. We
now formalize these notions.

5.1.3 Root Joints are Special

Theroot joint needsto be handled specialy. Internal joints, since they are relative rotations
from their parent, can have animations played out on them directly and will look correct as
long as the animations were defined with respect to the same basis posture of the character
(Figure 1-2 shows the dog's basis). The root joint, however, defines the orientation of the
character in the world frame, which is an arbitrary choice. For this reason, we cannot play
aroot animation directly on the character, since the orientation will be defined by where
the animator chose to start and end the animation.

For example, awalk cycle turning to the left may start from the orientation at the iden-
tity, and end up going 90 degrees to the left. To deal with this, the root joint orientation
must be handled differentially. In other words, we will need to find the derivative of the
motion and integrate it forward from the current orientation rather than just set the orien-
tation absolutely from the animation data. In general, we will only be discussing internal
joints for this document. We will make points about handling the root node as needed.

5.2 Bones, Joints, and Coordinate Frames

This section will introduce our notation for describing coordinate systems and vectors de-
fined in different coordinate bases. It will then show how the joint parameters (the quater-
nion representing orientation and the attachment point to the parent) represent the transform
between two bones.

5.2.1 Coordinate Frame Terminology

A bone can be used to define a coordinate framedenoted B, which describes the orienta-
tion and tranglation of one frame with respect to another frame. For this section, we will
usually denote a coordinate frame as afamiliar 4 x 4 homogenous matriwhich relates the
coordinates in one frame to those in the basis of another by acting on homogenous column
vectors. We denote the transformation (equivalently, spatial displacement) that describes
one coordinate frame B with respect to another coordinate frame A as4D. We will denote
avector x defined in a coordinate frame B asBx. A point x in B (®x) can be described in
the basisof A by matrix multiplication:
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Ax = £DPx.

This formula reveals the choice of notation (which follows Craig [18]): the superscript
which describes the basis can be though of syntactically * cancelling out” with the subscript
defining the relative frame, leaving only the superscript which describes the basis of the
new point. This syntactic sugar is useful for avoiding errors in transformation equations.

A displacement can be factored into arotational component and a translational compo-
nent:

sD TR

which describes the orientation of B in the frame A asarotation matrix and the origin asa
tranglation matrix made from the origin’s coordinates in the reference frame. Thus, aframe
can also be described as the pair (5R,”og) where 4R isa3 x 3 rotation matrix and “op
isthe origin of B written in the basis of A. In this notation, we can write the coordinate
transform as

AX = éR BX+AOB

Compound Transforms and Intermediate Frames

If two frames A and C are related by an intermediate coordinate frame B, then a vector
©x can be expressed in coordinate frame A by the compound transformation

A, _ApBPC
x =gD¢cD "x

where again the frame scripts cancel between transformations as well. This equation is
important since we can often use an intermediate coordinate system to relate two arbitrary
frames as long as we know each frame’s displacement relative to the intermediate one.

Since displacements form a group, we can write also factor the compound transforma-
tion in terms of the pair representation (2R, “o¢) as

(8R,"0c) = BGRER, LR Poc +“op) (5.1)

which can be checked by ssmple algebra. Clearly this also extendsto arbitrary products of
connected intermediate transforms, which we will use below.

Since quaternions represent rotationsand R isarotation matrix in SO(3) (homogenous
coordinates are not needed in the pair notation), we can equivalently describe a coordinate
frame as a unit quaternion and a vector. We now show how we can use this fact to model
joints and bone transformations with quaternions.

5.2.2 Joints and Bone Transformations with Quaternions

Definition 1 A joint is represented as the pa@@, a) whereQ is the current orientation
defined with respect to the parent aads the joint’'s attachment point defined in the parent
coordinate system.
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Figure 5-3: Thelink transform from a parent bone's coordinate system in akinematic chain
(B,) toitschild (B;) depicted in 2D. The coordinate system L; (and associated grey bone)
show the zero rotation (basis) configurarion. The quaternion Q; isthe angular displacement
from the basis and thus specifies the current orientation of the child bone with respect to
the parent’s coordinate system.

Figure 5-3 depicts the attachment of two bonesin atree such asthat shown in Figure 5-
2 by ajoint. For ssimplicity of presentation, we have assumed that the attachment point
of a bone to its parent is coincident with its origin. If the origin of the bone is located
somewhere else, then we must know the attachment point’s location in both frames and
perform extra translations between the attachment point and bone origins (see Craig [18]
or McCarthy [59] for details).

Let Pa. be the attachment point of the child bone B, in the coordinate system of its
parent bone B, and ?(). be the unit quaternion defining the child's orientation with respect
to the parent. The transform D that takes a child point °x into its description in the parent
frame Px is the displacement

'D— ITIR

which can be written as

Py — P PR € — PR C P
x=TR"x={R"x+"a.

where PT is the trandation matrix created from Pa. and PR is the rotation matrix made
from the unit quaternion Q.p. This equation can be thought of astaking a point in the child
frame and rotating it into a frame with the same orientation of the parent but |ocated at the
attachment point and then translating to make the frame coincident with the parent.

In our model of ajoint as the pair Pa. and ”(),, this equation can be interpreted simply
in the quaternion algebra as

x = 7Q, °x "Q," +a. (5.2)

Theinversetransformation that takesapoint in parent coordinatesinto child coordinates

;D =(TR)

which can be written as
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ER-l (';T-l
or equivalently
D= R;T.
Recall that the inverse of arotation isits transpose
R =FtR’

and that theinverse of atrandation created from avector a issimply the translation created
from -a. Simple agebra shows that we can write the inverse of the joint transformation as

‘x = ;DPx =FR'Px — PR'Pa, (5.3

where syntactic cancellation assures us that we can subtract the vectors. We can factor the
rotation out to get

‘R (Px — "a,)

which gives us the inverse transform equation

x = R" (Px —Pa,) (5.4)
which lets usimmediately write

°x =PQ.,* (Px —Pa,) Q. (5.5)
strictly in the quaternion algebra.

Computational Issues Thisformulation takes us less memory and is good for rotating a
small number of vectorsaswill often be the casein an inverse kinematics algorithm (such as
oursin Chapter 9). If alarge number of vectors must be transformed, however, converting
the quaternion to a3 x 3 rotation matrix and using Equations 5.3 and 5.4 should probably be
used if spaceis not an issue since there will be less total multiplies. Homogenous matrices
are most often only used to simplify the linear algebra or when other effects are needed,
such asscale.

5.2.3 Open Kinematic Chains and Compound Transformations

A path through a skeletal tree defines a kinematic chainbetween the bones at the end-
points [59]. Thefirst bonein the chain, By, is called the baseand the last one, B,, iscalled
the end An openchain does not have any cycles in it, while a closedchain does. We
will restrict ourselves to open chains since atree structure will not have any cyclesin it by
definition. Since we know all the parent-child transforms for each joint in the chain, we
can create a compound transform relating the endpoint bones by composing al the joint
transformations down the chain.
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Let B; denote the ith bone coordinate frame in a kinematic chain and (Q;, a;) be the
joint parameters connecting it to its parent bone frame B; ;. Let!'D be the transform from
child coordinates to parent coordinates created from the joint parameters as above. Then
the transformation relating a bone B; to a bone By, J-kD, can be found be composing the
transformations along the chain between £ and j:

D ={.DED - iD'D (5.6)
This transformation is often written using the base of the chain, B, as an intermediate
frame:
k _k 1
‘D =D /D

or

ky — 1y11
‘D=ID"ID. (5.7)

Forward Kinematics

The transformation from the base of a kinematic chain to the end of the chain ;D is called
the forward kinematics equatioaf the chain. Since the joint attachment points as fixed,
the forward kinematics are only afunction of the joint orientations along the chain with the
attachment locations specifying the length of the boines. These can be considered implicit
fixed parameters of the function so we can write:

x = 1(Q)

where Q isthe ordered set of joint orientations along the chain 2.
The inverse kinematicgroblem tries to find the posture that achieves a certain end
effector(point in the last bone) location in the world:

Q=" (xgon

We will describe our solution to this problem in Section 9.4.

Quaternion Forward Kinematics

If we use the factored notation (}‘R, “o;) for the compound transform along a chain, we can
find }‘D efficiently by recursively going down the chain and composing the joint transform
aswe go using Equation 5.1 to cal cul ate the compound frame transform (1R, *o;) and using
the efficient inverse formula

('R,%0:)" = (R, - IR Y0y) .

This equation can be written in the quaternion algebra as

2We use the underbar to denote an ordered set, or tuple, of quaternion values.
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(IQi; lOi)-l = (IQi*, —'Q;" Yo; IQz) (5.8)

for efficiency. Since 'D and (D share many intermediate frames D, it is computationally
efficient to cache both the forward and inverse transforms at each bone in the chain to avoid
redundant computation.

These quaternion operations can be used to efficiently compute the coordinates of a
point Jx in any bone frame B; along the chain with respect to any other bone in the frame
By from thejoint parameters as each joint. We will use these these operationsin Chapter 9.

5.3 Postures, Posture Distance, Motions and Animations

Since the trandational parameters of the joint transform are fixed by the geometry of the
figure, we often will not need them and instead will focus on the rotational degrees of
freedom. It will be useful to collect these into a single data structure. We will call the
collection of al the rotational degrees of freedom of the skeletal model a posture

5.3.1 Postures

Definition 2 The posture of a character, denoted, is represented as a tuple of unit
guaternionsP; containing the rotational degrees of freedom of the skeleton from a depth-
first left-right traversal of the tree.

We will refer to the ith quaternion in the posture, P; as the ith joint. The root joint which
connects the character to the world will be denoted as Qo and will only be used in certain
situations.

A skeletal model has a distinguished identity postureor basis posturan which the
character is considered to have zero rotation on all the joints, or the identity quaternion, 1.
Although the actual resulting kinematic configuration of the character in this posture can be
arbitrary depending on the character modeler’s choices, often the modeler is asked to use
a particular configuration of the skeleton as reference point for animations. In the case of
humanoid characters, the coordinate system of the bone geometry (and therefore the joints
that link to them) isusually chosen such that the identity posture is the configuration of the
character with arms stretched out to the side, paims down, and legs straight and slightly
apart. Inthe case of our dog character, the reference postureis similar, but with all the dogs
legs on the ground and head looking straight ahead (see Figure 5-1).

Posture Algebra and Calculus

The algebraand basic calculus of postures followsimmediately due to the quaternion prod-
uct group representation. All quaternion operations can be performed component-wise in-
dependently on the posture quaternions.
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5.3.2 Posture Distance Metric

We can perform a weighted Euclidean norm component-wise:

distyy (Z w;|| In(A*; ||2)

where the w; are scalar weights on the components which allow us to weight the contribu-
tion from each component quaternion.

One thing to note is that the metric is dependent on n, the dimension of the quatuple.
For this reason, it is often desirable to use a metric with weights that sum to unity. The
Root Mean Square (RMS) metric is simply obtained with w; = =

This metric can also we found using the power operator:

distyy (ann ((A*;B)™) ||2)

since the scalar power w; gets pulled down by the log.

Several important points must be made here. First, this metric is valid over the entire
guaternion sphere. This means that it does not take into account antipodal symmetry. Sim-
ilar to the use of slerp, each of the joint quaternions must be pre-processed so that they live
on the same local hemisphere of S3. For two samples thisis atrivial check. We describe
how to do thisfor n samplesin Chapter 7.

Second, this metric usestheintrinsic metric on the sphere. In other words, itisasif you
were a person living on the sphere who could only make measurements along the surface.
This will give us the angle between orientations of joints which Euler’s theorem specifies
must exist. Therefore, thisisanatural metric.

Finally, it should be noted that the chord-length between two hemisphere-local unit
guaternions is a good approximation of this metric when the arguments are nearby on the
sphere, but we prefer to use the geodesic metric since the units are in radians and this will
make specifying weights more meaningful.

5.3.3 Motions

When a character moves, its pose changes over time. This trgjectory of poses is usually
called amotion:

Definition 3 A motion (or posture trajectory) is a continuous trajectory of poses param-
eterized by a single time parameter,

In general, we also want our motions to have some other subjective qualities, such as
smoothness, which can be handled in many ways, e.g. cubic splines. We can also take
derivatives of amotion in the standard manner by component-wise differentiation, and de-
note this with the standard overdot, }l The space of all motionsis called motion-space
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5.3.4 Animations

An animationrefers to a particular, known trgjectory of postures, such as that created by
a motion capture device or by a commercial package. An animation is represented com-
putationally as a list of postures and the corresponding time which the pose occursin the
animation. These postures are usually called keyframesor samples The associated times
are often called keytimes To formalize this slightly, we define a keyframe animation as
the ordered set of poses and associated keytimes. Note that angular velocity information is
contained within implicitly within the interframe displacements.

For smplicity, samples will be considered uniformly samplegdor having the same du-
ration of time separating samples. For uniformly sampled animations, the keyframe anima-
tion will be represented by an ordered set of postures along with the ssmple rate, At. For
this case, the keytimes are integral multiples of At:

t=1At

so we can simply refer to keyframe poses by an index.

5.4 Summary

This chapter described the terminology and computational structures involved in skeletal
animation technology, and how we can use quaternions to model the poses of a character.
We define a quatuple and introduce distance metrics on them which we will use throughout
thisthesis.

The reader should have learned:

e Thejoint-bone skeletal model for articulated figure animation

Coordinate and kinematic frames on xthe hierarchy efficiently in termsof quaternions

Representation of posture as a tuple of quaternions

A basic metric on postures

How animation data is represented as an ordered set of uniformly sampled postures
and atime increment At between them

The next chapter will show how to learn a statistical model of joint motion from a
corpus or animations and how to generate new poses according to this model.
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Chapter 6

QUTEM: Statistical Analysis and
Synthesis of Joint Motion

This chapter will describe a simple statistical model of the motion of individual joints
whose orientations are modeled as unit quaternions. The model is called the QUTEM
(Quaternion Tangent Ellipsoid at the Mean) and contains the following data:

Mean unit quaternion
Covariance about the mean (principal motion axes and associated variances)

Constraint boundary (finite support radius)

We will see that the QUTEM will be a Gaussian distribution in the tangent space at the
mean value.
In this chapter, the reader will learn:

How to find the mean orientation from unit quaternion data concentrated around one
of the modes on S3.

How to use the choice of mean representative to flip al data efficiently to a hemi-
sphere of S? to deal with antipodal symmetry.

How to find principal axes and associated variances around the mean representative
and estimate inherent joint degrees of freedom.

How to cal cul ate the M ahal anobi s distance of some query unit quaternion to the mean
representative.

How to find amaximal isoprobability contour to model data on alocal convex subset
of the sphere (finite support, or constraint, radius).

How to sample new points from the distributions.

This chapter will focus on definitions, algorithms and discussion. Results from experi-
ments on real data can be found in Section 10.1.
The rest of the chapter will proceed as follows:
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Section 6.1 describes the QUTEM model of joint motion statistics and how it can be used
as aproportional probability density function.

Section 6.2 presents estimation algorithms for each of the parameters.
Section 6.3 shows how to sample new quaternions using the QUTEM density.

Section 6.4 summarizes the uses of the QUTEM and discusses several outstanding prob-
lems.

6.1 QUTEM

This section will describe the QUTEM model of joint motion, estimation of parameters
(mean, covariance, support radius), and sampling new joint orientations from the distribu-
tion.

6.1.1 Motivation

Aswe saw in Chapter 4, we desire amodel of joint motion which has smooth isoprobability
contours so that we can use the model for joint constraints. Also, the model should be easily
learnable from data and allow us scale-invariant (with respect to motion ranges) metrics.

Gaussian (also called normal) probability density functions (p.d.f.'s) are the standard
workhorse of probabilistic analysis (see Appendix B for a quick overview, or [8] or [83]
for amorein-depth treatment). Since the maximum likelihood estimation (MLE) of param-
eters and sampling from a Gaussian is straightforward and well-known, and also since the
isoprobability contours of a Gaussian are ellipsoids, we chose to use a Gaussian distribution
to model the motion of ajoint.

There are two basic ways to use a Gaussian distribution to model unit quaternion data:

e Embedding Approach (R*)
e Wrapping Approach (T ;;5?)

In the embeddingapproach, a Gaussian is estimated in R*, the space in which the
unit quaternion manifold (S?) is embedded, and conditioned to live on the sphere. This
approach leads to the Bingham distributionwhich is described in [7, 57, 47, 50, 51, 58]
and used recently by several computer vision researchers [1, 16]. Maximum likelihood
estimation of the variances leads to handling confluent hypergeometric functions of matrix
argumentwhich is tricky.

Instead, we chose to use the wrapping approach{see [57]) where a distribution on
tangent vectors at the mean is wrapped onto the sphere to make a spherical distribution.
This choice was made for simplicity, since the estimation of parameters is ssmpler, which
isdesirable.

Notice that for unit quaternion data representing rotations (SO (3)) the distribution will
exhibit antipodal symmetrySince we assume our dataislocally-concentrated on the sphere
(sincejointstend to livein around some equilibrium point), the distribution will be bimodal
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Figure 6-1: A sktech of a bimodal distribution on 53 which exhibits antipodal symmetry.
Such distributions are valid distributions over SO(3) through the double-covering.

having a maximum on opposite sides of the sphere at the modes -+ M/ (see Figure 6-1) To
handle this, we choose to model only one hemisphere of the distribution (a single choice
of sign for M) and flip any quaternion to be on this hemisphere before the distribution is
used.

Finally, we note that tangent vectors to S* are easily described in terms of the loga-
rithmic map, as we saw in Chapter 3. Since the exponential map preserves distances and
angles from the center of the map, hyperellipses around the map center on S* will map to
3D ellipsoids in the tangent space (R?). Furthermore, a point on a particular isocontour
of the distribution on the sphere will map to a point the same distance from the origin in
the tangent space. For this reason, we can use the exponential and logarithmic mapsin a
straightforward manner to pre-process our data analytically without losing information.

To summarize the main idea of the approach:

Wrap a zero-mean Gaussian irR* onto a hemisphere ofS? using the
exponential map at one of the modes.

To summarize the assumptions we make:
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e Data will form a fairly concentrated bimodal distribution on the sphere exhibiting
antipodal symmetry since data can be considered to be compact around some equi-
librium point of thejoint.

e Antipodal symmetry will be handled by modeling one hemisphere of 53 and flipping
datato that side before using the model.

e For the purposes of this document, we will not need normalized densities (densities
that integrate to unity over S*), but will instead look at proportional densities

6.1.2 QUTEM Definition

Definition 4 TheQuaternion Tangent Ellipsoid at the Mean(QUTEM) model i
defined as the tuple)/, &, v, p) whereM e H is themean representative R ¢ H
is theprincipal axes rotation, v € R? is thevariance vector, andp € R is the
constraint distance

U)

In the model, M isthe choice of the mean representative. This defines the hemisphere
of S wemodel, since the other sideis the same dueto symmetry. To usethe density, query
quaternions need to be flipped to the hemisphere defined by M/, as we show below. R is
the rotation of the tangent space that aligns the principal axes of the data with the basis
axes and v isthe 3-vector of variances associated with these axes. These parameters model
the covariance about the mean. Finadly, p is the Mahalanobis distance (standard deviation
value, see Appendix B) from the mean beyond which the density is defined to be zero.
Thisallowsthe model to handle the fact that organic jointswill have constraints that do not
allow them to range over the entire S3.

Figure 6-2 gives an abstract depiction of the QUTEM model in one lower dimension.

6.1.3 QUTEM as a Wrapped Gaussian Density

This section shows how to calculate the proportional probability density value of a partic-
ular query unit quaternion () from the QUTEM model (M R,v . P)-

The QUTEM is a zero-mean Gaussian vector density in the tangent space at one of the
quaternion modes wrapped onto a hemisphere of S? using the exponential mapping (see
Figure 6-3). Recall that the density function for a Gaussian distributed random vector is:

1 1 Trc-1
N(x;m,K) = —— ¢ 2(x-m) K(x-m)
(2m)"/2 K2
where x is the random vector, m is the mean vector, and K is the covariance matrix of the
data (see Appendix B for aquick review of multi-variate Gaussian densities or areference
such as [8, 65]). Note that here K is assumed to be positive semi-definite (all eigenvalues
real and greater than or equal to zero). The pseudo-inverse (see, for example, Strang [81])
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Figure 6-2: An abstract depiction of the QUTEM. The mean is the tangent space point,
the elipse depicts the p Mahalanobis distance constaint surface, and the axes depict the
principal axes of the density and their relative variances (covariance).

must be used if K is singular, which will happen if the data has |less than three rotational
degrees of freedom.

Given the exponential mapping of unit quaternionswhich lets us map to atangent vector
at some point on 3, we can define our unit quaternion density directly in terms of the vector
Gaussian distribution. Let R € SO(3) denote the rotation matrix associated with the unit
quaternion R. Let V be the diagonal matrix created from the vector of variancesv. Then
we define the covariance matrix (K) for a zero-mean normal distribution in terms of the
matrix representation as:

K = RVR'

and itsinverse

K'=RV'R
where the pseudo-inverseisused if V issingular.
Since we are assuming only measurements on the sphere, we cannot directly “ subtract
off the mean” as in the vector Gaussian density. Instead, we need to use the logarithmic
mapping at the mode representative M to perform this.

Let q = In(M*Q) be the mode-tangentector of ) at M. The QUTEM density is then
just avector Gaussian density on the mode-tangent vector q:

P(Q: MR, v, p) = cem =K

where ¢ is a normalization parameter to make the density integrate to unity over S3. For
the purposes of this document, we will not need to find this term and assume it to be unity.
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Figure 6-3: The QUTEM models a spherical distribution by estimating a zero-mean Gaus-
sian density in the tangent space to the unit quaternion mean.

Note that this makes the density not integrate to unity over S3, but in practice often only
proportional densities are needed so thisis not a severe limitation.

We can expand the density out in terms of quaternion algebra as:

QM Ry, p) = ce A GR)Y Hi 1)

where V ~! denotes the inverse (or pseudoinverse ! if V issingular) of the diagona matrix
of the variances made from the vector v.

Finally, we address the extra parameter, p. Since we are modeling data which we have
assumed does not range over the entire sphere, we need to force the density to zero out-
side of some constraint region. Since we argued previously for using a smooth constraint
boundary, we decided to choose a particular isodensity contour of the tangent space Gaus-
sian distribution beyond which the density is zero. In other words, this amounts to finding
a standard deviation value away from the mean (Mahalanobis distance) beyond which we
define the density to be zero. Figure 6-4 depicts what the distribution will ook like when
wrapped to a hemisphere of S3. Since joints tend live on the constraint boundary some
portion of the time, thisis a reasonable model.

Since the quadratic in the exponent of the Gaussian distribution is the Mahalanobis
distance sguared, we can factor the formula into a simple test to see if we are outside the
valid density region or not. In our notation, this gives the constraint equation:

1Recall that the pseudoinverse, which is related to the Singular Value Decomposition, ignores variations
in singular directions (see, for example, Strang [81]) and can be created from the diagona matrix with the
simple rule that % — 0 for each singular variance in the pseudoinverse.
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Figure 6-4: A sketch of a spherical density on S® constrained to be zero beyond a certain
distance from the mean.

~

p(@ =0 if [V 2In(RAQR)| > p

and otherwise is the same as Equation 6.1.

6.1.4 Scaled Mode Tangents (SMT), Ellipsoids, and Mahalanobis Dis-
tance

We will find it useful for the remainder of the discussion and for intuition to collect the
multiple stage quaternion transformation used in the definition of the density into a single
transformation from a unit quaternion into its “ Scaled Mode Tangent” description (which
we shorten to SMT) with respect to the QUTEM. Formally, mixing notation a little for
convenience,

s = SMT(Q; M, R,v) = V2U" In(M*Q) (6.2)

or entirely in the quaternion algebra:

1 1 1 . NP
, , ,R* In(M*Q)R
= e e (M*Q)R)
where we have collected the non-uniform scale of the vector portion of the quaternioninto a

function of the three scales factors (one for each component respectively) and the vector in
R3. The SMT transformation converts a unit quaternion into a unit-variance tangent vector

A

SMT(Q) = Scale(
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at the mode representativeéhisimpliesthat the magnitudeof the SMT of aunit quaternion
isits Mahalanobis distance from the mean. Therefore, we the constraint boundary defined
by p can be described in terms of the maximal allowable magnitude for the Mahaanobis
distance beyond which the density isforced to zero.

The SMT transformation is invertible. A scaled mode tangent vector of a quaternion
can be converted back into a unit quaternion by undoing each stage of the transformation
— scaling the space back into an ellipsoid, rotating back into the original basis from the
principal axes basis, exponentiating the vector onto the sphere and multiplying by the mode
to place it at the correct location. We will use this extensively in the section on constraint
projection (Section 9.2).

Geometrically, the SMT transformation mapsall the pointson aspherical ellipsearound
some center point on the sphere, call it M, into a sphere in the tangent space at M. Fig-
ure 6-5 shows the transformation’s steps applied to a spherical ellipse on S?, the familiar
sphere embedded in R3. An €ellipse on the sphere around some point (shown as the red
point on the sphere) is mapped into an ellipse in the 2-dimensional tangent space with the
point as the origin.

Plotting the mapping for full degree of freedom quaternions is trickier. Figure 6-6
shows the exponential mapping image of points sampled randomly on an ellipsoidal surface
(aparticular choice of Mahalanobis distance) in R?. In order to depict the hypersphere, we
haveignored the z component of the quaternion, which effectively projectsit ontothez = 0
hyperplane. This alows usto view the image of the map in three-dimensions, but at a cost
— the éllipsoidal boundary mapsinto a hyperspherical ellipse, but when we projection plot
it onto a unit spherein R?, it will not lie on the sphere (since it really lies on the spherein
R*) and points will appear to be insidethe ellipse. We can, however, see that the mapping
still preserves ellipses by viewing it directly over the center of the mapping.

Note that

dqmahala(@) = ||SMT(Q> M, Ra V) || (63)

This form is the most efficient for implementations, and we shall see in Chapter 9 that
we can use the SMT transformation to model joint constraints as a smple point-sphere
boundary test.

Thisform simplifiesthe density aswell:

p(@) =c 67%(dqmahala(é))2

6.2 QUTEM Parameter Estimation

This section describes how to estimate each of the QUTEM parameters from example ani-
mation data.
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Figure 6-5: A three-dimensional visualization of the SMT transformation which turns el-
lipses on the hypersphere into ellipsoids in the tangent space at the center of the ellipse.
The left image (a) shows the original spherical ellipse with its center; the right upper (b)
showsthe ellipse in the tangent space by using the exponential map at the center point (no-
tice the center maps to the origin in the tangent space); the bottom right image (c) shows
the result when the space is rescaled by the axis lengths on the ellipseto form acircleina
warped tangent space. Notice al true objects are one dimension higher.
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Figure 6-6: Points sampled randomly on an ellipsoid around the origin in R? (left) and 3D
projection plot of the exponential mapped points (right, created by ignoring the z compo-
nent of the quaternion). Notice the points, although are on the boundaryof an ellipsoid on
the left, appear to map inside the ellipse on the sphere. This artifact results from the pro-
jection, which ignores the z direction. By viewing the sphere along the direction directly
pointed at the center, however, we see that the shape is lliptical, as it should be.

6.2.1 Estimation of the Mean from Data

We have defined the QUTEM object in terms of parameters, but our ultimate goal isto learn
the QUTEM from data. The first of these we will need is the mode (maximum density
value, which we will aso call meanthroughout the remainder of the document since they
are the same in the case of a Gaussian.). This section shows how to estimate the mode
representative M/ from a set of unit quaternion data. We will show that the solution is
simply an eigenvector of the sample covariance matrix of the quaternion data represented
as unit column vectorsin R*. To motivate the approach, we shall introduce the problem in
terms of the Euclidean analogue of finding the mean of vector data.

Approach

The mean of Euclidean vector data is usually found with the familiar average over their
coordinate values:

1 N
X—N;Xi

For unit quaternion data, thisformula does not in general work for two reasons. First, it
ignores antipodal symmetry. This means that a datapoint could be either @ or -(). Clearly,
the weighted Euclidean sum will not work here, since the mean we get will depend on the
sign of the data, which we do not desire. Also consider the case with two data points, ¢ and
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-(). Their coordinate mean will be zero, which is not on the sphere. Second, the formula
does not respect the unit quaternion group. We could renormalize the result to lie on the
sphere, but consider again two anitpodal samples. Since their mean is zero, we cannot
renormalize them.

Instead, we will estimate the mode of unit quaternion data by finding the unit quaternion
that minimizes squared distances between it and all the data points. This seems appropriate
since it can be shown that the Euclidean mean coordinate formula above is the point that
minimized the sum of squared Euclidean distances between it and the samples.

Recall that the intrinsic metric for two unit quaternionsis:

dlst(QZ,QJ) = || In(Q":Q;)|l

Recall that this distance metric covers the entire hypersphere and does have the antipodal
symmetry for a metric on rotations. To handle this, we need to take the minimum of this
metric over the choice of relative signs of the quaternions to get the metric for SO(3):
dlst(P Q) 42 min d1st(P, A) .
1S3 A=Q,-qQ S°
Note that the same distance function can a so be written using the embedding space and
linear algebra notations with absolute value:

dist(q;, ;) = 2 arccos(|q; - q;|)
where () denotes the dot product of the quaternions as unit vectorsin R*. Since the dot
product of two unit vectors is the cosine of the angle between them, the absolute value
ignores the sign before returning the angle.
Therefore, the estimation of the mode representative quaternion asamountsto aquadratic
nonlinear minimization problem:

= arg mln Z dist P Q

|53\

In other words, the quaternion @ which minimizes the sum of squared distances between
itself and all the data (taking into account antipodal symmetry), is defined as the mean of a

set of unit quaternion data representing spatial rotations. So how do we solve for Q2

Finding the Mean

Unfortunately, the distance function contains non-linear elements, both with the inverse
cosine required for the quaternion log and the absolute value function that makes or dis-
tances orientations. This makes analytic minimization tricky. To simplify the problem, we
use the fact that the function we are minimizing is quadratic (and monotonic). For this
reason, we can replace this minimization with the minimization of a monotonic function
of the distance and get the same answer. Since our distance isjust 6, the shortest arclength
between the quaternions, we can replace 6 with 1 — cos(#), which is monotonic over thein-
terval [0, /2], asisrequired. Minimizing @ is clearly equivalent to minimizing 1 — cos(0).
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We can simplify this even further by noticing that minimizing 1 — cos(#) is the same as
maximizingcos(6) over the interval, since we just invert a monotonic function. But cos(f)
is just the dot product of two unit vectors! Also, the absolute value can be removed by
noticing that the square of the cosine is monotonic aswell. These simplificationslead usto
the equivalent but ssmpler problem:

This formula make intuitive sense as well — we want to maximize the directional match
between the unit quaternions, which the dot product does. The square means that we will
ignore the sign of the dot product — both cos(6) and —cos(6) contribute the same amount
to the error function, exactly as desired.

We can solve this equation for () by performing a constrained minimizatioon the sum
of squared distances (see for example Strang [80]). In other words, we need to find the
guaternion that minimizes the function subject to the constrait that it be unit magnitude.
We handle this by adding a Lagrange multiplier (\) and implicit constraint equation. This
gives us the final minimization equation which we need to solve for P:

N
E(P) =Y (P-Q)*+A(P-P)* —1)
i=1
where the extra term with the Lagrange multiplier \ is the constraint term that keeps the
magnitude of the quaternion unit and can be thought of a causing extra “energy” to be
added to the system for points off the sphere.

For simplicity, in the rest of this derivation we will use the linear algebra of the embed-
ding space (R*) rather than the quaternion algebra. This gives us the vector equation:

N

E(p)=> (P'a)*+A(pPp-1).

i=1

Rewriting the square using symmetry of the vector magnitude we get

E(p) =) _[(P'ai)(ajp)] + A(p'P — 1)

i=1

from which we can factor out the p terms since they do not depend on the sum:

N
E(p)=p"()_dla)p+A(p'p— 1)
i=1
In thisform, we notice that the summation can be rewritten as simply the outer product
matrix of the data vectors. Specifically, if we create a data matrix Q whose columns are
the quaternion examples, we get a4 x N matrix of data. The outer product of this matrix
with itself is the summation we require:
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E(p)=pQQp+App—1)

Thisis the ultimate formula we need to solve. A necessary condition to be aminimum
isthat the derivative of E(p) with respect to the argument (p) must be zero. Specifically,

a T
55 E(P) =2QQ'p +2Ap =0
p

We recognize this as afamiliar eigenvector problem:

Ax = )x

where A isthe outer product of the datamatrix QQ". Noticethat A is4x4, so the problem
is computationally easy to solve. In order to maximize the original function and get the
mean, we need the eigenvector with the maximumeigenvalue, since that will maximize
the directional match function when plugged in and not the other eigenvectors 2. We use
a Singular Value Decomposition (SVD) of the A matrix in order to find the eigenvector
associated with the largest eigenvalue, call it ;. Since either 4+ is a solution (SVD will
return an arbitrary one), we choose the one nearer the identity and use ;. as the estimate for
the mode representative of our QUTEM, denoted M.

Algorithm and Summary

To summarize, the mean (mode) of unit quaternion-represented orientation data for R? is
the maximal eigenvector of the standard 4x4 scatter matrix formed by the outer product
of the data matrix. Since the objective function is symmetric its solution has two possible
eigenvector solutions + .

The algorithm is summarized as follows:

1. Let ¢; be the column vector representation of the unit quaternion sample Q;.

2. Let the 4x N matrix Q be the data matrix with column ¢ being the 4-vector q;
for the ith sample.

3. LetS=QQ"
4. Let e; be an eigenvector of S with real eigenvalue a;.

5. Choose one of the two eigenvectors +e. associated with the maximal eigen-
value a, asthe estimate of the mean, M.

2This analytic result has also shown up in different guise in the computer vision community, where Horn
does a similar calculation in a stereogrammetry problem [43].
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Figure 6-7: Our data is antipodally symnmetric, and therefore we might arbitrarily get the
sample +Q;. We would like all data on the same local hemisphere of 53 for simplicity.
This hemisphere will be defined by the choice of the sign on M. To hemispherize data,
we simply flip the data to lie on the same hemisphere as the mean choice A/ using a dot
product as atest.

6.2.2 Hemispherization

This section will describe how to handle the antipodal symmetry (double-covering) of
SO(3) with S3. There are many times we need all unit quaternion data on a local hemi-
sphere of S3, for example if we want to use the simple geodesic distance metric or locally
linearize the data.

We noted above that the QUTEM density will have antipodal symmetry due to the
double-covering of unit quaternions to rotationsin SO(3). Since we choose to handle this
by assuming that the density isvalid only in the hypersphere associated with the mode rep-
resentative M, we need away to map our data (and any query points) onto this hemisphere
if it is not before applying the density formulas or SMT transformation.

Figure 6-7 shows how we want to choose the sign of each unit quaternion datapoint so
that the processed data are in alocal hemisphere of S3. Note that we cannotjust choose a
global hemisphere, such asthe one nearest the identity, as should be clear in theillustration.
Asthe data is rotated closer to the identity, parts of it would pass through the hemisphere
boundary orthogonal to the identity, but not others.
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Algorithm

Hemispherizing N unit quaternions which represent orientations of R* can be done using
the same calculation as the mean. Since by construction the mean representative was cal-
culated by minimizing distances from it to the data, if we flip all data to be on the same
side as the choice of mean 1, they will all lie on alocal hemisphere of S defined by M.

Formally, let q; be the column vector representation of the sth unit quaternion sample
Q;. Let the 4xN matrix Q be the data matrix with column i bei ng the 4-vector q; for the
ith sample. Then the algorithmiis:

1. Find the mean representative of the example data, call it M.

2. For each example Q;:

(@ If M-Q; <0thenQ; + —Q.

After this operation, the unit quaternions live on the same local hemisphere.

Hemispherize Discussion and Summary

In general, most researchers simply “flip the signs until it converges.” In other words, pair-
wise distances between quaternions are compared using dot products and the sign on one
example changed if the dot product is negative (other side of the sphere). Since the process
needs to be restarted each time aflip is done, this can be expensive if thereis alot of data.
Ultimately, there are 2"V choices of sign to be tested.

For small amounts of data, thisis often fine, but to process a lot of data, we suggest
using our method of finding the mean first. Solving for the mean involves an outer product
of a4xN matrix. Creating the outer product matrix takes O(n?) operations since it is a
matrix multiplication. Finding the eigenvector takes constant time (O(1)) sinceitisafixed
size 4x4 symmetric matrix. Testing the sign of each datum with the mean takes O(n)
operations. Therefore, our hemispherize operator takes O(n?) to compute whereas the
naive brute force approach takes O(2").

Finally, it isimportant to note that since the choice of mode representative is contained
in our QUTEM model, we can smply flip a new query unit quaternion to the same hemi-
sphere as the mean using a smple dot product calculation.

6.2.3 Estimation of Unit Quaternion Covariances

Now that we can find the mean of unit quaternion data representing orientations, we need

to look at its covariancearound the mean, or second moment of the distribution. The

covariance describesthe principal axesand associated variances of thedata. Inthe QUTEM,

we saw that the parameters R and v encode the covariance for the density. This section

describes how we estimate these parameters by transforming the data to the tangent space

at the mean and applying standard Gaussian vector estimation to the “linearized” data.
The approach in this section is straightforward:
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e Transform the data into the tangent space at the mean using the exponential map.

e Apply standard Maximum Likelihood Estimation techniquesto estimate a zero-mean
Gaussian density on the transformed data.

Estimation of Spherical Variances

In terms of unit quaternion algebra, the Euclidean operation of “subtracting off the mean”
M from a sample (); translates to the unitary operation of rotating the sample so that the
identity aligns with the mean:

P = NQ,
Next, we apply the logarithmic map to the mean-aligned data:

Recall that the exponential mapping (and inverse) preserves the distance and direction
from the center of the map and maps into the tangent space at the center. This means that
the transformed data w; will live in the tangent space at the mean and can be thought of
as zero-mean Euclidean data with units in terms of the intrinsic group metric (6). This
transformation leaves us a standard Euclidean estimation problem for a Gaussian density.

To solve this, first we create the column data matrix W from the transformed exam-
ples w;, which isa3x N matrix. We then create the 3x3 sample covariance matrix the
standard manner using the outer product of the data:

- 1 .
K= N 1WW :

The (real) eigenvectors of this resulting 3x3 symmetric positive semi-definite matrix,
call them u;, correspond to the principal axes of an ellipsoid in 3-space, and therefore form
an orthonormal basis aligned with the principal axes of the density. The corresponding
eigenvalues are the associated variances in the eigenvector direction. We write thisin the

linear algebra as:

K =UAU’

with U € SO(3) containing the column eigenvectors and A is a diagonal matrix with the
eigenvalues \; on the diagonal corresponding to the angular variance for the eigenvector
u;.

We can align the principal axes with the coordinate basis axes by ssmplying rotating
them by the eigenvector basis matrix:

x; <+ Uw;

As we saw before, however, a rotation of a 3-vector is simply a unit quaternion quadratic
product, so the orthogonal matrix U rotation can be converted into quaternion algebra as
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If we write the entire set of resulting transformationsin the quaternion algebrawe get a
transformation from a quaternion to a principal-axis aligned 3-vector which can be thought
of as living in the tangent space at the mode. Therefore, this is an example of a mode-
tangent decomposition. Let’s be explicit about this transformation. Itis:

~ A~

x; = Uln(M*Q)U*

which can also be written as

x; = In(UM*QU™)

since changing the basis of the vector does not change an invariant subspace (eigenvector)
of atransformation.

Notice that these are exactly the parameters of the QUTEM we were seeking. The
parameter for the tangent space rotation from the mean-aligned data, denoted R in the
QUTEM, is simply the tangent space rotation to principal axes, U/. This unit quaternion is
found from the estimated SO(3) eigenvector matrix in the standard manner. The vector
of variances associated with these axes, called v in the QUTEM, is formed from the the
eigenvalues of the sample covariance matrix.

Handling Singularities in the Analysis

The sample covariance matrix is only guaranteed to be positive semi-definite, which im-
plies that its eigenvalues \; > 0. Eigenvalues of zero correspond to directions with zero
variance. Therefore, if the data has less than 3 DOF then the singular directions will have
eigenvalues of zero. Data gotten from a 1 DOF joint such as an elbow will have only one
non-zero eigenvalue since it can only move around a fixed axis. Therefore, the eigenvalues
of the sample covariance of the transformed data at the mean give us a direct, intuitive and
computational way to automatically discover the underlying degrees of freedom of the data.
We can leverage this in algorithms by making sure they respect these degrees of freedom.
For example, if we model 1 DOF hinge joints as quaternions with fixed axis then we can
use special case scalar solutions (like an Euler angle) instead of the full quaternion to solve
the problem correctly.

The eigenval ues of the embedded covariancein R* do not directly have this property, as
we mentioned above, being related by a Bessel function, which is why we sought to avoid
them.

Summary of Covariance Estimation Algorithm
To summarize the estimation process for the parameters, we use the following algorithm:
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Let M be the quaternion mean of the data (;.
Hemispherize the examples ); using M.
Let P, « M*Q;.

Let w; « In(F;).

Construct the data matrix W with w; as the ith column of W.

o o &~ w N B

Let K ¢ - WW'.

7. Perform an eigenvector decomposition (SVD) of K into U and a 3-vector v
of the eigenvalues (diagonal).

8. Convert U into its equivalent unit quaternion representation 4.

9. Storethevalues U and v as the parameters of the QUTEM R and v.

6.2.4 Estimating Constraint Radius

Estimating a QUTEM support radius using thisformulationis simple. The constraint radius
is simply the maximum Mahalanobis distance (measured as standard deviations from the
mean) of the hemispherized samplesin the unconstrained model:

p=max dist (Q;, M)

t  Mahalanobis

In other words, the standard deviation of the furthest exampleis used as the constraint.
The density is defined to be zero beyond this range.

6.2.5 Summary of QUTEM Parameter Estimation

This section described how to estimate the four parameters of the QUTEM model (M, R, v, p)
from example data by using the exponential mapping to transform data into a Euclidean
space and then estimating a Gaussian density there using standard techniques. We aso de-
scribed how to handle antipodal symmetry. The next section will describe how to generate
samples from a QUTEM model given that we know the parameters.

6.3 QUTEM Sampling
We have found synthesis of new data from the QUTEM density useful in two main ways:

e Generating new test datafor Monte-carlo simulations of agorithms by hand-entry of
QUTEM parameters
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e Generating new joint orientations similar to example animation data

The former will be used to test our pose blending algorithms in Chapter 7. The latter
application was tested for learning a “Perlin noise” model for character motion (see [63])
from example data described in Chapter 10, though more work needs to be done in this
area.

Since we used the standard Gaussian vector density at the heart our model, synthesisis
straightforward using standard techniques and the exponential map.

6.3.1 QUTEM Sampling Algorithm

We can generate new random quaternions by sampling the tangent Gaussian density and
then mapping the result onto S* with the exponential map at the mode. Sampling from
a vector Gaussian distribution is peformed by the Box-Muller method and is covered in
Appendix B.

To sample a new unit quaternion from the QUTEM density, first generate a sample in
the mode-tangent space, call it w, generated from the density with covariance parameters
R and v from a QUTEM. Since this vector is with respect to the mean M, we can use the
exponential map to put in on the sphere at the right spot:

Q= Me"

It is crucial to notice that this tangent sample (unlike the transformed data in the esti-
mation case) will actually exist in the entire space of R? (the entire tangent space) and not
justinthe ball of radius /2, since the Gaussian has infinite extent. When we wrap it back
onto the sphere, the point could potentially end up anywhereon the sphere.

Since we are concerned with modelling closed regions on the sphere (maximally, the
entire hemisphere around the mode representative), we actually can use asimple rejection
method to sample points. For example, to keep the samples on the hemisphere, we can
reject sampled tangent points not in a proper-sized ball in the tangent space. Specifically,
if the sampled point w is outside the solid ball of radius 7/2, we can simply throw it out
and try again. In general, this method will be efficient since the estimated variances of
the tangent space Gaussian will be in this length range since they are estimated from data
in this range. Therefore, the mgority of sampled points will fall within several standard
deviations of the mean which will likely also be inside the solid ball of radius = /2, which
can be seen by ssimple geometry. Therefore, few of these rejected points will be rejected.

We also apply rejection sampling using the constraint radius p. If the generated tangent
sample’'s Mahalanobisdistanceisoutside of theradius p, the point isthrown out and another
tried.

6.3.2 Singular Data Woes

This regjection method is sometimes grossly inefficient in practice since the TEM radius
really isin terms of standard deviations. For fixed or near fixed joints, which effectively
have zero variance in all directions and whose only valid sample is effectively the mode
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itself, our estimation procedure would model the joint as a mode with a tiny lower bound
variance in all directions (since it cannot be zero), but with atiny (or even zero) constraint
radius. Unfortunately, rejection sampling for these cases is extremely inefficient 3. To
handle these specia cases, we use the fact that we knowthat the datais singular (since we
have stored the variances explicitly as the weight vector a, singular directions have weight
0). Hence, we just do not sample singular components, but rather just set them to zero (the
mean in our case).

6.3.3 Summary of Synthesis
Sampling is done by the following algorithm:

1. Generate a sample w in the tangent space Gaussian distribution using
QUTEM parameters and the Box-Muller algorithm.

2. Exponential map w onto S? to get an identity mean quaternion @ < e™.
3. Map it to the QUTEM mean by rotating the sample by the mean Q « M Q).
4. Return Q.

The sampleisrejected if it is outside the constraint radius p.

6.4 QUTEM Summary

This chapter presented a ssimple approach to unit quaternion statistical analysis and syn-
thesis by coupling the quaternion exponential mapping and a standard vector Gaussian
probability density. The resulting model, called the QUTEM, models the mean, covariance
and finite support region of the density.

The QUTEM isauseful building block. It can be used to:

e Learn aprobability density from data
e Sample new points from this density
e Hemispherize data

e Use covariance as a distance metric that “divides out” differing variances

Thefirst three pointswe discussed in the chapter in some detail. Thefinal point we only
quickly touched on since we have not used it in depth in our work, but we feel it will be
useful for futurework. The main remaining issueisthat the Mahalanobisdistanceis defined
between a point and the mean, and not two arbitrary points. It isnot immediately clear how
to handlethisproperly. Ininitial testswe convert the examplesinto their SM T (scaled mode

3The author notes that it results in an infinite loop when p = 0, which is very bad.
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tangent) descriptions and then used the standard Euclidean norm on the resulting vectors
which we think is a reasonabl e approach which needs to be looked at more carefully.

Now that we can analyze quaternion statistics we need to be able to synthesize new
examples with a blend operator as well as a statistical operator. Pose-blending involves
the weighted blend of »n quaternions and is covered in the next chapter. We will use the
QUTEM to solve certain problems we encountered there, as we shall see.

125



126



Chapter 7

Multi-variate Unit Quaternion
Interpolation

This chapter will describe two new algorithms for performing a weighted blend of NV unit
guaternions:

e Slime
e Sasguatch

Such a blending operator is needed to create the multi-target pose blendinguilding
block we motivated in Chapter 2 in order to interpolate between multiple example anima-
tions.

The chapter will proceed asfollows:

Section 7.1 will introduce the problem and discuss some of the properties we desire the
operatorsto have.

Section 7.2 presents the slime algorithm discussesiits properties.

Section 7.3 presents the sasquatch algorithm, which improves on several problems en-
countered with slime in practice at the cost of slower performance.

Section 7.4 describes how these two operators can be used to allow an example-based non-
linear vector space function approximation algorithm called Radial Basis Functions
(RBFs) to work with unit quaternions.

Section 7.5 summarizes the chapter and main conclusions.

7.1 Problem Description
Formally, we can describe the problem of pose-blending as follows. Given a set of N

example postures, P = {P,}, and aweight vector a € RY whose a; component specifies
the desired contribution from the ith posture, create a posture B according to the weight
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Ql Q = Q

J

Joint Controller

Figure 7-1: An abstract depiction of the unit quaternion blending building block. The algo-
rithm should take NV unit quaternion examples (; with associated weights a; and perform
aweighted sum of them. These answer isthen usually written to ajoint controller.

vector. Figure 7-1 gives an abstract depiction of the problem. We will use the function
QWA (Quaternion Weighted Average) to denote such an operator:

QWA(P,a) = B

7.1.1 Interpolation and Extrapolation

We would like our operators to have the following properties:

¢ Interpolation

e Extrapolation

The blend function should interpolatethe examples for the standard basis weight vec-
tors e; (recall, e; has zero entries for al except the ith, which is 1). Mathematically, the
interpolation constraint is:

~

In other words, if the only non-zero weight is on a particular example, we wish to get
that example out. Some blending methods only approximate the examples.
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Often weight vectors are required to sum to one in order to stay inside the convex hull
of the examples, which leads to pure interpolation behavior. If we relax this constraint,
we can alow some extrapolation or making a guess as to the answer outside of the region
for which we have data. This is useful to make caricatures of motion, such as making a
happy walk even more happy. Also, if we have good extrapolation behavior, it islikely that
fewer exampleswill be needed. Thisisimportant for leveraging the animator’s skill, aswe
argued in Chapter 2.

7.1.2 Vector Spacess. Spherical Interpolation

Unfortunately, as we saw in Chapter 3, quaternions do not live in a vector space, so the
standard linear algebra technique of producing a linear combination of the quaternion ex-
amples:

N
B= Z aiQi
i=1

will not produce an answer on the sphere. Also, antipodal symmetry implies we need to
hemispherize the data, as we saw in Chapter 6.

We can renormalize the solution to get around this, but we would also need to handle
antipodal symmetry. Furthermore, this renormalization means that a constant speed change
in the weight vector does not produce a constant angular velocity change with respect to the
spherical metric (see Chapter 3). Thiswas the original motivation for Shoemake's famous
slerp function, which performs a constant angular vel ocity interpolation of two examplesas
the single parameter changes with constant speed. We desire this behavior an our extension
to IV quaternions. This section chapter will consider two algorithms that were motivated as
an multi-variate (more than one interpolation parameter) extensionsto slerp.

7.2 Slime: Fixed Tangent Space Quaternion Interpolation

This section describes the first of our two quaternion weighted blending operators, slime.

7.2.1 Motivation: Extension ofslerp

In order to lead into our slime algorithm, we first return quickly to Shoemake’s slerpfunc-
tion, which served as a starting point for our algorithm. Recall that slerp essentially defines
a constant angular velocity geodesic curve (great circle) on the quaternion hyperspherein
terms of areference point (the first example) and a second point which defines the direction
of the curve from the reference (hence the angular velocity).

The geodesic traced by slerp can be parameterized in the exponential form:

slerp(Qo, @1, ) = Qo €' (@0 Q1) (7.0)
or to make the angular velocity portion clear:
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slerp(Qo, Q1,t) = Qoe' ¥ (7.2)
wherew isIn(Q*, Q).

In thisway, we can think of slerpas using the exponential map to represent one quater-
nion with respect to another (the reference) in terms of the angular velocity of a unit time
curve between them. Therefore, the reference quaternion shows up on the left as the “zero
point” aswell as inside the logarithm. Also, in our formalization, we would actually con-
sider slerp as generating only a blend of one example, since its single parameter can be
thought of as aweight vector of dimension one. Figure 3-7 depictsthis graphically.

How do we extend slerp to more than one example quaternion to blend at once? The
first thing we need to realize is that we will still need areference quaternion. Thisreference
quaternion isthe particular location on the sphere whose tangent space we will be using (we
will see below that it is similar to the mean of the vector space interpolation scheme). As
we saw earlier, each tangent space on the sphere is a different spaceven though they have
similar algebraic structure, so the decision of areference quaternionisextremely important.
We will see that all examples need to be represented in the same tangent space. We shall
return to this decision later.

We saw in Section 3.3.4 that the logarithmic map creates a linear vector space (since
angular velocities are true vector quantities). For this reason, we can use map at a fixed
reference point to create alocally-linear space in which to blend the quaternions with the
standard Euclidean weighted sum. The blended tangent space element can then be mapped
back onto the sphere with the exponential map.

7.2.2 Slime Algorithm Definition

Let us formalize these intuitive notionsinto an agorithm definition:

Definition 5 Given a set ofV unit quaternion example® = {Q,}, a reference
quaternionP, and a weight vectos € R

Sllme(a, p, Q) — ]562?;1 a; ln(f?* QI)

7.2.3 Slime Properties

Several points need to be addressed about slime. First, we need to show that is satisfies the
interpolation constraints (we drop the parameters for clarity):

Property 1 slime satisfies the interpolation constraints

slime(e;) = Q; .

This follows trivially by substituting the standard basis vectors e; into the formula for
slime— the only contribution is from In( P* @);) and when exponentiated the reference P
and its conjugate cancel leaving (Q; as desired.
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In general, we will not force our weight vectors to sum to one so that we can perform
extrapolation on quaternions as well. Therefore, we look at another special case of weight
vector, the zero vector 0, which is the answer we would get if we did not ask for a contri-
bution from any example.

Property 2 The zero contribution blend is the reference quaternion:

~

slime(0) = P

Thisfollowssincee® = 1. Thisproperty isuseful sinceit givesusacriterion for choos-
ing areference quaternion for our blend. Since the zero contribution answer isthereference
point, we can choose the reference point by deciding what our “zero contribution” quater-
nion should be. Slerp clearly choosesthefirst of the examplesasthe zero contribution since
thisis desired for a univariate blend.

Geometric Interpretation of Slime

Figure 7-2 and Figure 7-3 depict the slime algorithm graphically. The yellow vectorsarein
the tangent space at the reference quaternion (also yellow for consistency) and illustrate the
logarithm of the red geodesics (great circles), or equivalently, the angular velocities of unit
time spherical curves from the reference to each to example (in green). The interpolation
is performed linearly on the yellow vectors to get a blended angular velocity vector for the
curve through the reference, as shown by the orange vector in Figure 7-3. This linearly
interpolated velocity can then be integrated back onto the sphere since it describes the
orange great circle. By integrating forward unit time, we get the blended example (orange
sphere) which lives on the quaternion group.

Extrapolation Discussion

The geometric interpretation makes it clear how extrapolation works in slime. Consider
some weight vector, a, which we are using to blend. This vector will specify some par-
ticular tangent vector at the reference point. In vague terms, if we want to extrapolate, we
want to “keep going in that direction” away from the reference. Since any scalar multiple
of a will also be in the same direction from the reference as a, we see that it lies on the
same one-parameter subgroup (great circle) of the sphere. The magnitude of a specifies
how far along the curve to go. Therefore, as we extrapolate further in the same direction in
the tangent space, we are moving along a geodesic in the quaternion group. In other words,
as we extrapolate in a straight lines using the exponential map coordinates, we movein a
straight line (great circle) from the reference on the sphere as.Walls property is highly
desirable and makes intuitive sense. It is notthe case with an Euler angle parameterization
of the same examples and using a vector space weighted blend, however.

This property is related to the idea of canonical coordinates of the first kir(dee Sat-
tinger and Weaver [71] or Gallier [23]) in the Lie group theory. Canonical coordinate sys-
tems of the first kind are coordinates 6; such that the constant velocity curves 6;(t) = ta;
in the coordinate system map to one-parameter subgroups when lifted back to the group.
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Figure 7-2: The slime agorithm maps examples (green spheres) into tangent descriptions
(yellow vectors) with respect to a chosen reference quaternion (yellow sphere) by describ-
ing the examples in terms of geodesic curves (red great circles) that pass through the ref-
erence and the example. The yellow vectorslivein alinear space since they correspond to
angular velocities of the curves, and therefore can be blended linearly.
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Figure 7-3: The slime algorithm linearly blends the tangent vector description (yellow
vectors) of the geodesics (red great circles) of the examples (green spheres). Asan example,
the orange vector is an arbitrary weighted blend of the three example vectors. This blend
is actually specifying a particular different geodesic through the reference point — the
orange great circle. By integrating this blended angular velocity forward unit time from the
reference (using the exponential), we get the blended quaternion (orange sphere).
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Clearly, the exponential map (tangent space) coordinate system (6n) hasthis property since
any constant velocity line through the origin in the coordinates:

1

fort ¢ R, w € R?, andw € R3. The coordinates are clearly the individual components of
the w vector, w;. When lifted to the group by exponentiating, we get the familiar geodesic
curve:

Q(t) = e

which as we saw describes the great circle through the identity at ¢ = 0 and with angular
velocity 1w *

Euler angle coordinate systemsfor SO(3), however, do not form acanonical coordinate
system. We do not form a proof here, but refer the reader to the Lie group theory. For this
reason, however, we can argue analytically that the extrapolation behavior of the Euler
parameterization will not be as good since it will not extrapolate along a geodesic from the
reference.

To summarize,

Slime is better at extrapolation than an Euler angle blend since it moves along
one-parameter subgroups.

Slime Coordinate Singularities

One immediate problem with the slime algorithm is that since it uses a fixed tangent space
for blending the quaternions which is only 3-dimensional, we introduce a singularity into
the algorithm. In particular, the singularity will occur on the great circle orthogonal to the
reference quaternion, since opposite points on this circle are identified in the exponential
map. In terms of the tangent space, this occurs in a spherical shell of radius g = 3, since
the great circle is 90 degrees from the reference.

In practice, the singularity amounts to the slime algorithm being useful only for blend-
ing realistic character jointsthat are not allowed to spin afull 360 degreesin any direction.
Since the joint cannot spin 360 degrees, we can map any quaternion path for the joint into
alocal hemisphere that never crosses the shell by choosing the right quaternion reference.
It seems intuitively obvious that the mean of all animation data for the joint would be an
optimal choice, since it places the singularity as far from the data as possible. We saw
how to calculate this using the QUTEM model in Chapter 6. We discuss this choice further
bel ow.

We are being a little Soppy with the factor of 2 in the angular velocity terms here. In fact, since we use
it merely as a representation here, and not in terms of actual derivatives of curves, we can often ignore this
factor, aslong as we are consistent.

134



Figure 7-4: Choice of the reference quaternion (yellow sphere) affects the interpolation
of examples (green spheres) since quaternions are represented as one parameter subgroups
(red great arc circlesthrough the examples and reference) through the reference quaternion.
As the choice approaches the “average” of the examples, the curves (examples) become
more separated from each other and therefore the interpolation becomes better.

Finally, we mention again that root jointsare special. Sincetheroot jointisarigid body,
it is allowed to rotate in one direction by 360 degrees. For this joint, we need a different
algorithm that avoids this problem. Thiswill motivate our discussion of sasquatch below.

Choosing a Reference Quaternion

Choice of the reference quaternion isimportant since this quaternion specifies the tangent
space which is being used to blend the examples. Different choices will result in different
blends for the same weight vector. This property can be clearly seen in Figure 7-4.

So what is a good choice for a fixed reference quaternion? We will consider three
choices here:

e One of the examples
e The mean of all examples over all animations

e Theidentity, 1

An Example Thefirst of theseis similar to slerp, which uses one of the examples as the
reference. Unfortunately, for more than two examples, this does not work as easily. If we
were to choose one of the examples as the reference, however, then the example would
become the new zero point. This effect occurs because multiplying by the conjugate of
the reference before taking the In rotates the examples so that the reference point aligns
with the identity element. Since In(1) = 0 (we use the vector form for the In result), no
blend weight will have an effect on the example — it effectively becomes the origin of the
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coordinate system in which the blend occurs, much in the same way as the mean in the
vector space case.

This effect might be exactly what is desired, however! If there is a known “neutral”
example which could be interpreted as corresponding to the zero weight vector, this could
be used asthereference point. In this case the weight vector would not include acomponent
for the reference since thisis defined as the blend of the 0 point.

Mean Over All Animation Data This argument leads us into a second, much better,
choice of reference quaternion of the examples, the mean over all motion examples of the
joint 2. In some sense, this “average” of the rotation examples is an optimal choice since
the tangent vector descriptions will be as orthogonal as possible. Also, for a blend weight
of zero, the average rotation seems like an intuitively reasonable answer — in the absence
of any variation or any explicitly given neutral pose, return the average.

Finally, since the singularity in the logarithmic map occurs on the great circle orthog-
onal to the map center, choosing the mean as the reference point places the singularity as
far from the data as possihlé\lso, since the approximation is better near the map center,
we should minimize the average error in the approximation. 2

Identity Lastly, as we discussed in Chapter 5, we can force our animator to use a certain
distinguished configuration of the character asthe identity posture. Thisrequirement turned
out to be useful since it gives us a natura choice for a reference pose for blending, the
identity.

What does using the identity as the reference get us? First of all, the blending formula
in Equation 5 immediately is simplified

slime(a; 1, Q) = eZits % n(Q:) (7.3)

since weremove N + 1 quaternion multipliesif /V isthe number of examples.

Furthermore, if the coordinate systems of the bones in the skeleton are chosen such that
the average pose of the character over its animations is itself the identity posewve have
the best of all worlds — we gain the computational efficiency of using the identity as a
reference as well as the robustness of using the mean to separate the examples.

7.2.4 Summary of Slime

Slime chooses a fixed, global tangent space to blend quaternions using the standard Eu-
clidean weighted average. This algorithm is therefore an approximation which is better
around the tangent space quaternion. By choosing the mean over all example orientations
of thejoint, we can place the resulting singularity asfar from the data as possible — in fact,

°Note that since quaternions do not live in a vector space, we cannot use the normal formula for finding
the average of a vector directly. We discussed the average of a quaternion in further depth in Section 6.2.1.

3We have proven this empirically by comparing slime and sasquatch solutions over many randomly
chosen weights, quaternion examples, and choices of reference quaternion and showed that the minimum
average approximation error (difference between the slime and sasquatch solutions) occurs at when the
reference point is the mean, as we expected.
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for internal jointswith aconstraint boundary for joint limitsthis singularity will not outside
the valid probability density for the joint. We can do a*reset transform” on the geometry in
order to make the mean over all data be the identity quaternion 1 by representing the data
in the principal bases of the probability distribution as a preprocessing step.

Slimeis at the core of most of our successful pose-blending results, which we present
in Chapter 10.

Finally, the take-home points about the slime algorithm are:

e Slimeis best for internal joints with local compact ranges, and not for rigid body
blending since it introduces a singular subspace.

e Thesingular subspace can be chosen to be asfar from the data as possible (orthogonal
to the mean over all data) by using the QUTEM mean.

e Slime only approximately extends slerp to more than two quaternions in the sense
that constant speed changes in the parameters only lead to constant angular velocity
curvesif the curve passes through the reference point.

e Simeisfast.

e Sincethe reference isfixed, we can store preprocess the examplesinto their log form
if they do not change over time. Thismeanswe only have to cal cul ate the exponential
map and not the logarithmic map for a speed increase. We use this in practice often.

7.3 Sasquatch: Moving Tangent Space Quaternion Inter-
polation

This section describes an iterative extension to slime called sasquatch 4 which removes
the singular subspace so that it may be used on fully rotating joints like the root. We will
show how a weighted blend on the sphere can be thought of as the steady state solution
of aphysical system of nails and first-order “springs’ pulling a free marble around on the
sphere. We will see that the spring constants (relative to each other) can be used as blend
weights. The system will converge on a weighted blend that respects the spherical metric,
unlike other approaches (including slime).

Slime had some problems with singularities, making it a poor choice for the root joint
(which can travel al over the quaternion sphere rather than being locally contained). This
may not be a problem for many cases where there isa preferred direction that tends to keep
rotation data locally-bunched, asis the case for humanoids that always walk upright or an
“up vector” asin acamera. Indeed, we got alot of mileage from slimeuntil the singularity
finally was manifested when our virtual dog needed aroll-over animation.

4Sasquatch actually stands for Spherical “Aristotelian Springs” for QUATernion blending Constrained to
aHemisphere.

137



Figure 7-5: The system of Aristotelian springs with constants %; connected between the
example points (nails), p;, and the free point (yellow), ¢. All nails must be on the same
local hemisphere.

7.3.1 Spherical Springs Physical Analogy

A fruitful way to think about the problem of spherical weighted averages is as a physical
system of springs on the sphere whose equilibrium point is our desired weighted average.
Imagine that the quaternion examples are nails banged into a unit sphere (again, on the
same local hemisphere). Further imagine that attached to each nail is a “spring.” ° The
ends of each spring are al attached to a tiny marble, which is free to dlide around on
the surface of the sphere. The spring constants can be chosen to be the weights of our
weighted average. For this work, we will assume that the weights must sum to one (they
can be trivialy renormalized such that they do by dividing through by their actual sum).
Figures 7-5 and 7-6) illustrate this system. This physical system obviously will apply
“forces’ to the marble based on the spherical distance between the marble and each nall,
weighted by the spring constant. If we set up the system to some initial marble config-
uration and let it settle to equilibrium, the steady state should be what we desire — the
weighted average of the points, inside the convex hull (based on spherical polygons) of the
examples. Also, it should be obvious from physical considerations that a solution mustex-
istif the example all live within the same local open hemisphere ©. Also, it should be fairly
clear that this solution isunique if the examples all live inside the open local hemisphere.

5The quotes on spring will be explained below. As a spoiler, we note that these will be Aristotelian
(first-order) springs rather than Newtonian springs for simplicity. See below.

6The open hemisphere excludes the thin set of points on the great circle which defines the hemisphere.
Clearly, symmetrical examples here could lead to multiple solutions. For example, three point evenly spaced
around the great circle with identical weights will have a solution on both poles of the sphere, assuming the
grest circleisthe equator.
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Figure 7-6: An orthogonal projection of the system from above the free point, ¢. Note
that thisis notthe exponential mapping since orthographic projection does not preserve the
spring lengths with respect to the spherical distance metric.

7.3.2 Spherical Metric

The first thing we require is a distance metric on the sphere. We aready have one with
quaternions. in particular, the shortest arclength along the geodesic (great circle for the
sphere) between two pointsis a natural measure of distance between points on the sphere.
If al the examples lie on the same hemisphere, we can use the exponential map to simply
calculate this spherical distance by converting it into a Euclidean distance. In particular,

distss (A, B) = || In(B*A)|| = || In(A*B)| (7.4)

where || - || is the familiar Euclidean L, metric. It isimportant to note that this metric is
valid only for unit quaternions on alocal hemisphere which are up to 7 away from each
other on the sphere, as we saw in Chapter 3.

7.3.3 Setting Up the System

Now that we have a spherical metric over the hemisphere, we need to find an Ordinary
Differential Equation (ODE) for the system. It iswell-known that the quaternion derivative
is the product of the location of the derivative on the unit sphere (a unit quaternion) and a
purely imaginary quaternion which has arbitrary magnitude, as we showed in Chapter 3.
Thisimaginary quaternion can be associated with the familiar angular velocity vector, ex-
pressed in either local or inertial coordinates. Formally,

0 = 30 = 5Qu (75



where w is the angular velocity in the global coordinate system and w' is the angular ve-
locity in local (body) coordinates of arotation in SO(3). The angular velocity is a vector
quantity and is purely imaginary — it has no scalar component. Also, it is not a unit
guaternion, but has magnitude equal to the angular speed. The multiplication is the stan-
dard quaternion multiplication. Therefore, it is clear that the quaternion derivative is aso
not unit. Rather than using the angular velocity in terms of the rotation group SO(3), we
will absorb the § term into the velocity term, which then describes angular velocitiesin H
rather than SO(3). Explicitly:

Q=0 =wd=Qu (7.6)
where () is expressed with respect to the inertial frame coordinates.

How do wefind Q? The unit quaternion ) isthelocation of thelocal coordinate system,
which in our case is the location of the marble on the sphere. Therefore, we need to find
the angular velocity in terms of our nails and springs. In Aristotelian physics, the angular
velocity is proportional to the displacement. Rewriting Equation 7.6, we get the tangent
operator[59]:

Q"Q =’ (7.7)

whichisavector quantity. Since each nail and spring will pull independently on the marble,
we can simply sum the contributions to the local angular velocity of the marble from each
of the nails. To formalize this, let:

Wy, = Zw; (7.8)

where w/ isthelocal angular velocity of the marble.

We need to calculate the local angular velocity contribution from each nail. To be
explicit, let the quaternion example points (nails) be labelled as P,. Let the weight for the
ith spring be ;. The distance between Q and (; is simply found by our spherical distance
metric from Equation 7.4. The exponential map gives us tangent vectors anchored at the
center of the map (in this case the point () in thelocal coordinate system whose lengths are
the spherical distance. Therefore, we can simply weight the tangent vector with the spring
gain:

w} = ki In(Q"P) (7.9)
to get the angular velocity contribution from the ith nail. The magnitude of w] is
il = 1k In(Q* Pl = kil In(Q* B)|| = ks dsigt(c?, P) (7.10)

which makes explicit that the magnitude of the force is actually the spherical displacement
of the marble from the nail, weighted by the spring constant.

To get the total local angular velocity, we add up the contributions, giving us:
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N
W =Y _kiIn(Q*P) (7.12)
i=1

Now we can substitute into Equation 7.7 and rearrange to get the final quaternion ODE

N
Q=Q)) kIn(QP)|. (7.12)
i=1

which we need to solve for its steady state solution (ast — c0).

7.3.4 Solving the System for Steady State

To find the steady state solution, we can use two methods:

e Renormalized Euler integrationin R*

e Euler integrate the angular velocity vector using the exponential and logarithmic
maps

Thefirst isthe standard Euler numerical integration formula

X1 = Xt + XtAt

which will always step off the sphere since the derivativeistangent to it. To handlethis, the
guaternion issimply renormalized after each step (see, for example, [62] for more details).

The second approach is to Euler integrate the angular velocity using the exponential
mapping:

Qt + At) = Q(t)e” WAL (7.13)
where the w'(¢) is the local angular velocity, which we can be found from the derivative
with the tangent operator.

We discuss the numerical solution of Quaternion ODE’sin more detail in Appendix C.)
Since the intrinsic solution takes larger steps and stays within the group, we choose to use
it for efficiency and elegance of the algorithm. To solve for steady state, we simply take as
large step sizes (At) as possible until the solution converges.

7.3.5 Sasquatch Algorithm

Let P = {(P,, k;)} bethe set of pairs of quaternion points and their weight. The sasquatch
algorithm then proceeds as follows:
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Sasquatch(P, Qo, €, S, At)
{

1 LetQ = Qo
2. Hemispherize({P;}) to lie nearest to Q
3. Loopwithj =1t0S:
(a) Let wj = Zf\;l k; IH(Q*]'_lpi).
(b) Let R; = e¥i A1,
(© LetQ; = Q;_1R;
(d) If ||w;|| < e then EndLoop.

4. Return (; asthe blend.

}

The algorithm also has severa free parameters — A, S, and ¢, as well as the initia
starting point for the ODE, (). We discuss the choice of each in turn.

Precision Parameters

Both S and ¢ refer to how long the iteration continues. The iteration stopsif it has run too
many iterations (up to a maximum of .S times), or when the magnitude of the update (the
angular speed) on the iteration falls below e. Therefore, € can be used to set the number of
significant digits desired in the answer, or .S can be used to force an explicit maximum on
the number of computations, which isimportant for real-time applications.

Timestep Choice

The parameter At is the Euler integration timestep. Normally, we would want this to be
small to reduce errors in the calculation, particularly in the case where the trgjectory of
the system, denoted in our algorithm by the series of quaternions QJ isdesired. Since we
are only interested in the steady state solution, we want this step to be as large as possible
while still maintaining convergence to the steady stathis fact implies that there exists
for each system there exists some At which will converge as quickly as possible to the
correct answer. The analytic calculation of thisvalueis beyond the scope of this document,
but we can find a good value by testing convergence speeds over many random ensembles
and finding the fastest value on average. We describe this experiment in Section 10.3.1. We
found that a value of about 1.175 gave the best performance.

Choice of Initial Value

Speed of convergence to steady state, as well as potentially convergenceitself, will depend
on where the system is started. If we are close to the steady state already, we should
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take much less iterations to converge within precision than if we start much farther away.
Minimally, since we constrain the spring constants to sum to unity and be non-negative,
the solution obviously must exist inside the convex hull of the examples (where the convex
hull is defined as a spherical polygon). Therefore, our initial choice should lie within this
hull. Since we are seeking the spherical analogue of the Euclidean weighted average, a
fine starting point is simply the Euclidean weighted average of the pointsin the embedding
space, using the spring constants as the weights, renormalized onto the sphere. Formally,
we define

N
~ 1 kip;
Qy = 2zt FiPi_ (7.14)
1> iz kipil

where p; € R* isthe unit quaternion P, interpreted as a vector quantity.

7.3.6 Interpolation and Extrapolation

Since we explicitly force our weight vector to sum to unity, sasquatch can only interpolate
examples and not extrapolate, which is a drawback. One potential way around this might
be to use slime at the mean of the examples to explicitly extrapolate a new set of examples
which can then be passed into sasquatch.

7.3.7 Convergence Results

Sasquatch converges linearly, which should be clear since we use only a first derivative.
Also, sasguatch should always converge for a proper choice of timestep since all weights
are positive and there are no “corners’ to get stuck on.

We will present empirical convergence results of sasquatch in Chapter 10. There we
will demonstrate:

e An optimal choice of timestep based on empirical data collected over many ensem-
bles.

e The property that sasquatch reduces to the same answer as slerp for the case of two
examples.

e Several plots of some attractor trajectories to visualize convergence behavior.

7.3.8 Interpolation Visualization

In order to visualize the output of sasquatch, we created a 2-dimensional orientation field
where each point in a square has a unique orientation associated with it. We used four
examples to create a square interpolation space, with the examples on the corners. Then,
we used the Sasquatch algorithm to interpolate orientations between the examples. The
space of weight vectors for four examples is four-dimensional, but we can reduce it to a
two dimensional field by parameterizing the weights according to a monotonic function of
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the distance to the examples. Specifically, the weight value at a point x = (z,y) in the
sguare maps to the following weight vector:

w; = Clamp(l — (f|z = ¢i]))

where c; isthe 2-D location of the center of the ith example on the square. For our example,
the corners are the corners of a unit square: {(0,0),(1,0),(0,1),(1,1)}. The distance
metric is the standard Euclidean L? norm. Clamp clamps the value of the weight to be
non-negative — negative weights are forced to zero. Finally, we enforce the unity sum on
weights by dividing through by the actual sum. The results of this applied to a game die
are shownin Figure 7-7.

We show how Sasquatch can be used to blend entire postures in Chapter 10.

7.3.9 Summary of Sasquatch

This section described sasquatch, a new algorithm for calculating a weighted blend of NV
unit quaternions. Sasquatch is an iterative agorithm based on the steady state solution of
a differential equation. We showed how to set up the equation and how to solve it. We
presented the algorithm and discussed the choice of the free parameters. We discussed
interpolation and extrapolation behavior and showed that the solution is also rotationally-
invariant. We then visualized the output of sasquatch on arigid body.

To summarize the main points:

e Sasguatch can currently only interpolate data points and needs to be extended to
extrapolate.

e Sasguatch produces a solution that respects the spherical metric since it explicitly
minimizes the weighted distance to each example in the calculation of the steady
state (minimum energy solution).

e Sasguatch isrotationally-invariant.

e Sasguatch can handle joints which vary over al S3 so is suitable for root joints and
rigid bodies.

e Sasquatch isiterative, so isnot asfast asslime.

The next section gives an overview of how to use both slime and sasquatch with a
non-linear function approximator rather than a ssmple fixed weight combination of the
examples.

7.4 QuRBF’s: Quaternion-Valued Radial Basis Functions
Now that we have two ways of performing aweighted blend on the quaternion hypersphere,

we can extend standard linear algorithms using this “pseudo-linear” blending function.
Here we will describe how the standard vector space Radial Basis Function (RBF) function
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Figure 7-7: A 3D orientation field specified asaradial basis function around the examples
(corner locations boxed in red). The weight of each exampleisinversely proportional to its
distance from the sample point in the field as described in text. The center image clearly
has equal weights on all examples, and is therefore the centroid of the four examples with
respect to the spherical metric.
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approximation architecture (see [8] or [24] for an introduction to RBF's) can be simply
extended to quaternion-valued functions, rather than assuming the output space is a vector
space and renormalizing.

Formally, we propose a function approximator f of the form:

f:RY - H

To motivate this discussion, we first quickly show the scalar RBF, then the obvious
Euclidean vector-space extension, followed by our extension to quaternions using our
sasquatch algorithm.

7.4.1 Scalar RBF

The standard formulation of RBF's seeks a function approximator which is aweighted sum
of monotonic functions of the distance to each example, similarly to the method we used
to make 7-7. Each basisfunction is centered on one of K scalar input examples (here x;),
each of which has an associated observation of the true function, y;. Thisgivesus:

K
y=fx)=> a;B(x— ) (7.15)
i=1
where B(r) isthe radial basis kernel function. For our purposes, we usually use a Gaussian
function for B(r):
B(r) = e i
)= e 22
V2mo?
where the characteristic width of the Gaussian (where it falls near to zero) is specified by
o. The width can be chosen in several ways. We use the simple heuristic of finding the
average pair-wise distance between all input examples and using % of this value, which
seems to work well in practice. Using this value, the influence range of the basis function
usually fallsto zero on near other examples, which is the behavior we desire.
Since the basis functions are given parameters of the algorithm, as well as the exam-
ple centers x;, we seek a vector of weights a; which satisfy the interpolation constraints
(observation of the function):

fzi) =y
Plugging each of these constraint equationsinto Equation 7.15 gives us the system of equa-
tions

K
yi =Y a;B(z; — ;)
7=1

which leads to the symmetric matrix equation:

Ba=1y (7.16)



where y is the vector of output observations y;, a is the vector of unknown basis weights
a; and B isa symmetric matrix of pairwise basis functions values between the ith and jth
examples. In other words, B;; = Bj; = B(x; — x;). We invert this system using standard
techniques to solve for a that will interpolate the observations. Notice that in the case of
over- or under-constrained systems, where we choose to have more or less basis functions
than the number of examples (for memory compression, reduction of overfitting, etc), we
get a rectangular system to solve. Standard practice is to use a Singular Value Decom-
position (SVD), or pseudo-inverse, on the system of equations to find the least squares or
minimum norm solutionsfor a.

7.4.2 \ector-Valued RBF

The extension from scalar to vector-valued RBF's is fairly straightforward. Formally, we
seek a vector-valued function f : RY — RM where N is the input dimension and M
the output dimension. Again, we are given a set of K observations of the form {(x;, y;)}
which we must interpolate. Since the bases are radia in input dimension, we assume a
distance metric on the input vectors. Here, we shall assume the standard Euclidean norm,
||x — y||- Notice that any radial distance function on inputs may be used here, aslong as it
IS monotonic.

In order to approximate vector outputs, the system is decomposed (since it is a vector
space) into a weighted sum over a basis for the output space. In other words, a separate
componentunction approximator is learned for eachoutput dimension. In other words,
we assume the vector function f is of the form:

f(x) = fix)e; (7.17)

where e; is the standard basis for R™ where the vector is 1 for the ith component and 0
otherwise. Now we need only learn M scalar RBF's: one for each output basis vector,
designed to interpolate just the sth output component. Hence, we solve M systems of the
form of Equation 7.16 and assembl e the results as a weighted sum over basis elements.

7.4.3 Quaternion-Valued RBF’s with Slime

Most of our early work in posture blending used the exponential mapping at near the mean
or identity pose in order to locally-linearize rotations. The complete algorithm is straight-
forward given the primitives we have:
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1. Hemispherize the data output examples { Q;} to align with the QUTEM mean
representative.

2. Logmap the data into a 3-vector in the tangent space at the mean: 7 <«

3. Learn astandard vector-valued RBF f(x;) = 7; from theinputsinto the trans-
formed, linearized examples {r;}.

4. Usethe RBF to approximate anew 7 = f(x) based on the query x.

5. Exponential map the vector back onto the sphere at the mean: Q(x) " Me”

An advantage of this approach isthat isisfast for internal joints. Another advantageis
that all of our data examples livesin afixed 3-dimensional output space for each joint, and
therefore 3n-dimensional space for a character with n joints. The method does not depend
on the number of examples, k.

Thiswork was first presented at SIGGRAPH 1999 in a Technical Sketch [45] and has
been used in several successful installations which we describe in Chapter 10.

7.4.4 Quaternion-Valued RBF’s with Sasquatch

To smply extend RBF's to work with the more general sasquatch blending operator on
guaternions, we need to learn the weightson the sasquatch blend from the inputs.

We can express a quaternion-valued function as simply a quaternion weighted sum
over these examples using sasquatch. Formally, we seek a function to approximate a set
of examples {(x; € RY,Q; € H)}. We express this function as a quaternion weighted
sum over some set of quaternions which we feel span the output space as the weights in
sasquatch vary.

F(x) = sasquatch(f;, Q;) (7.18)

where we have defined our component-functions as cal culating the weight on the jth out-
put “basis’ quaternion. Each f; is simply another scalar RBF which we calculate in the
standard manner as a weighted sum over the input basis functions:

K

fi(x) =Y ayB(lx —xil))

=1
Putting this all together gives us equations of the form:
K

F(x) = sasquatch(z ai; Bi(x), Q])

=1

Plugging in constraint equations over the K~ examples (x;, Q) gives us the system:
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K
Qr = F(x) = sasquatch(z aj Bir, Q;)
i=1
where we write B;; again for B(d(x;,x;)), and d(x,y) is a monotonic distance function
over the input space, which we have taken to be Euclidean for now.

To solve this non-linear function, we will assume that the output space is covered by
our examples, and hence use al the output examples as a basis for the output space. In this
case, since we are using an RBF to calculate the sasquatch weight for each of these output
examples, we can say that we wish the following hold:

K
Z a;; Bir, = Oi,
=1
where §,; isthe Kronecker deltaand is1if ¢ = k£ and O otherwise. This constraint says that
we want the weight on the kth output exampleto be 1 if theinput isthe kth input example,
xy, and zero for all other output examples. This system can be written in matrix notation
as

AB =1 (7.19)

which states that our weights are the inverse of the example weight matrix B. Since B is
symmetric positive semi-definite, it might be singular. We can invert this matrix using the
standard SVD pseudo-inverse techniques (see Strang [81]).

Algorithm
To summarize the algorithm:
1. Learnastandard RBF mapping from input examples {x;} to real scalar weightsw; on

each of the K quaternion output examples {Q;} such that the weight (contribution)
w; of the jth output quaternion (; on input example x; is d;; (the Kronecker delta).

2. Interpolate a new weight w; for each output example j with the RBF given a query
point x.

3. Blend the examples together using sasquatch with the interpolated weights.

Discussion

An important problem with this formulation of RBFs with Sasquatch is that the problem
scales linearly in the number of examples rather than being constant as in the slime-based
RBF. Unfortunately, we have found thismakesit intractable for reasonably-sized problems.
More research needs to be done here.
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Interpolation Results on Posture

Figure 7-8 illustrates an example of a Sasquatch RBF with two input dimensions applied to
awalk cycle of adog — left/right turning and a happiness value. Six examples define the
convex hull of this space, as is required of sasquatch. These are: happy-left, happy-right,
sad-left, sad-right, happy-straight and sad-straight.

Although we have done these early tests on sasquatch, it has not been used in a produc-
tion system yet.

7.4.5 Quaternion Inputs

It should be clear that the spherical metric from Equation 7.4 isin fact radial and monotonic.
Hence, we can use it as a distance function in our basis function as well! This extension
allows usto approximate functions of the form:

f: H — H

Although we have not used quaternions as inputs in practice, we feel that they will
be useful for an example-based learning approach too inverse kinematics since the current
posture of the character can be used an an input to the approximator.

7.5 Summary of Weighted Quaternion Blending
In thischapter, we described two new algorithmsfor blending NV unit quaternionsaccording
to aweight vector, slime and sasquatch. We demonstrated the following about slime:

e Itisfast (constant time).

e It extrapolates well.

e It hasasingular subspace and therefore should be used for locally compact data.

e It only approximately respects the spherical distance metric, but is much better than
an Euler angle interpolation.

We also discussed the following about sasquatch:
e It convergeslinearly.

e Itisvalid anywhere on the sphere since it does not require a fixed tangent space (i.e.
it has no singularities).

e |t reducesto derp in the case of two examples.

e |t respectsthe spherical distance metric.

We then showed how to implement quaternion Radial Basis Functions (RBF) using
both slime and sasquatch. We present results on using both of these RBF approaches in
Chapter 10. The slime version has proven useful in practice, but the sasquatch version
needs to investigated further.
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Figure 7-8. A Sasquatch RBF of a parameterized walk cycle with two input dimensions,
happiness and turning radius. All images are sampled at the start of the walk cycle and the

RBF issampled evenly in al directions. Theimage was created with six examples, four on
the corners and two for normal-left and normal-right.
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Chapter 8

Eigenpostures: Principal Component
Analysis of Joint Motion Data

This chapter will describe the Principal Component Analysis (PCA) agorithm for find-
ing a subspace for the inherent variations in a set of data. We will call the basis vectors
of this subspace eigenposturesfter Turk’s “eigenfaces’ paper [85] which used PCA on
recognition of face images.

The chapter proceeds as follows:

Section 8.1 will motivate the reasons for desiring such a subspace.
Section 8.2 will present the standard agorithm which assumes Euclidean data.

Section 8.3 describes how to use the QUTEM model and quaternion exponential mapping
to process motion data for use in the standard PCA algorithm.

Section 8.4 presents results from an initial evaluation of the technique on our corpus of
dog animation.

8.1 Motivation for Posture Subspace Analysis

Onelarge problem with computational motion enginesisthat animation can take up alot of
memory as more expressivity, and therefore more examples, are required. Storing all these
examples can be prohibitively expensive, so a means of compression or dimensionality re-
ductionwould be useful for reducing this memory footprint. If we can find an invertible
transformation of our data to some smaller dimension space, we can use it as a lossy com-
pression method. Furthermore, if we want to perform learning on the motion data, having a
smaller dimension learning space will make the learning faster. Additionally (aswe discuss
further in Chapter 9), if we had such a basis we could use it to project a novel posture cre-
ated in some procedural manner (such as inverse kinematics or a learning algorithm) onto
the basisin order to bring it “closer to the data” in order to minimize “unnatural” postures
that these algorithms sometime generate.
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8.2 Principal Component Analysis Overview

Principal component analysi®PCA) is a simple and powerful unsupervised method for
performing dimensionality reduction on a collection of vector data [8, 24, 85]. PCA es-
sentially finds a set of orthonormal basis vectors (called the principal components) which
define a linear subspace of the data space which modelsthe intrinsic variationsin the data.
Once such a basis is found, each data vector is then projectedonto this subspace to create
a corresponding weight vectorwith the dimension of this subspace. The full dimension
data vector can then be reconstructed by a linear combination of the basis vectors using
the weights. Notice that this reconstruction will be exact if the dimension of the data is
the same as the subspace. For PCA to be useful, however, the dimension of this subspace
(number of basis vectors) must be smaller than the dimensionality of the datavectors. This
approach leads leads to a lossy compression of the data, with aresidual error between the
reconstructed vector and original data vector. The goal of PCA isto find the set of basis
vectors which minimizes this reconstruction error (in a least squares sense). In this way,
PCA can be used to approximate the inherent dimensionality in the data and find an en-
coding which consists of asmall set of basis vectors and a (smaller) weight vector for each
example.

It can be shown that the eigenvectors of the sample covariance matrix of the data form
exactly such a basis, with their corresponding eigenvalues giving a measure of the magni-
tude of thevariation in that direction [8]. Therefore, by ordering the eigenvectors according
to their eigenvalues, we can choose a subset of eigenvectors which lead to an acceptable
reconstruction error.

8.2.1 Mathematical Description

Mathematically, let {x;} be aset of NV datavectorsin R”. Let x be the mean of the data
andy; = x; — x bethe zero-mean versions of the datavectors. Let Y = [y, y2 -+ yn| be
the data matrix with the zero-mean data in its columns. Recall that the sample covariance
matrix isthen

1
K=—-YY'
N -1
and will be DxD aswell as symmetric positivedefinite. Let u; be the eigenvector of K with
corresponding eigenvalue \; suchthat A\; > X, (lower indicesare larger eigenvalues).

Projection Now choose some number M < D of eigenvectors to form an orthonormal
basis for the projection subspace. Any new vector x (either in the original dataset or a new
guery point) can be projected onto this subspace using the inner product to find the weight
of the examplein that direction. Thus,

wy = ug(x — X)

givesthe weight w,, of the example z on the eigenvector u,. Finding the weight for each of
the M subspace vectors gives aweight vector w € RM for the examplez. Since M < D,
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this transformed example will take up less memory than the original example z, which has
dimension D.

Reconstruction In order to reconstruct from aweight vector w € RM back into a vector
inthe original space (call it x € RP), asimplelinear combination of the eigenvectors (plus
the stored mean) is used:

M
X=X+ E Wy .
k=1

Reconstruction Error  Finaly, we can check the reconstruction erroof a particular data
vector x by projecting it onto the subspace and then reconstructing it and finding the resid-
ual. Let x’ be the reconstruction of the vector x. Then the residual is simply the Euclidean
norm between the two:

r=lx-x|.

Finding the Basis Dimension Reconstruction error is useful for calculating the number
M of eigenvectorsto use. An average error measure over the entire data set is computed
for increasing valuesof M < D until the error falls below a certain threshold, specified as
a parameter. In practice, this error curve is drops exponentially as M increases, reaching
zerowhen M = D.

8.2.2 Standard PCA Algorithm Summary

To summarize, the standard PCA algorithm proceeds as follows. Again, let {x;} bethe N
example data vectors.

Calculate the samplemean x = + Y x;.

Subtract off the mean from the examplesto gety; = x; — Xx.
Arrange the zero-mean data y; in the columns of amatrix Y.
Create the sample covariance matrix K = ﬁYYT.

Find the eigenvectors u,, and eigenvalues \;, of K suchthat A\, > Ay, .

o o &~ W N B

Choose some number M of eigenvectors to serve as the basis using some
in-sample error metric.

7. Return the sample mean x and the M eigenvectors uy,.

Again, we note that once the basis and sample mean is found, projection and recon-
struction are simple linear operations.
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8.3 PCA on Posture

The last section described the standard PCA algorithm. One issue with PCA isthat it is
a linear algorithm, assuming Euclidean data and trying to find a linear transformation of
the data which best describes the inherent degrees of freedom in the data. As we noted
above, quaternions are not Euclidean, so naive use of the PCA algorithm on quaternion-
valued vectors (such as used to represent posture) can lead to strange behavior, as the
author discovered in practice. This section will describe how to use the quaternion mean
of the data described in Section 6.2.1 and the exponential mapping to perform PCA on
guaternion-valued data.

8.3.1 Eigenposture Algorithm

Say that we have a set of N postures of a character {P,}, each with M joints. Let P;
denote the jth joint of the ith example posture. Our “ quaternion-ized” PCA agorithm then
proceeds as follows:

[EEN

. For each joint j, find the sample quaternion mean M.
2. Hemispherize all examplesto lie on the choice 11;.

3. For each data point i and each joint j, perform the logarithmic map at the
mean to get avector q;; = In(M*,P;;).

4. For each data point 7, collect the linearized joint vectors q;; into a block col-
umn vector x; containing the log-mapped componentsfor all jointsin order.

5. Perform standard PCA on the linearized data x; to get abasis of eigenvectors
ug.

6. Return the linear basis {uy,} and mean posture A (quaternion-valued).

Note that the quaternion mean isfound as specified in Section 6.2.1 and the data hemi spher-
ized to handle double-covering. The algorithm simply transforms the quaternion-valued
posture tuple into a “linearized” posture vectomwhich PCA is then carried out on in the
normal manner.

8.3.2 Projection and Reconstruction

The projection and reconstruction operations follow immediately. In order to project a
new guery posture onto the subspace, the mean is rotated out, the posture linearized into a
vector, then the vector is projected onto the subspace to return the weight vector. Likewise,
reconstruction istheinverse of this, combining the linear basis with the weight vector, then
exponentially mapping the result back to the mean posture. Finally, the reconstruction error
between the resulting postures can be cal culated using the posture metric in Chapter 5.
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8.4 Initial Eigenposture Results

We did severa initial evaluation experiments of PCA on posture data which we describe
briefly in this section. We performed our posture PCA agorithm on a corpus of dog ani-
mations containing 5800 posture samples of the dog performing various motions such as
walking, begging, running, sitting, paw-shaking and looking around. The data contains 53
guaternion-valued joints, meaning there are 4 x 53 = 212 components, or 3 x 53 = 159
possible rotational degrees of freedom in the linearized posture vector.

The results of these evaluations are shown in Figure 8-1 and Figure 8-2. Figure 8-1
shows the root-mean-square (RMS) reconstruction error (in radians) over al posturesin
the training set as the number of basis elgenvectorsisincreased. Aswe noted above, since
the covariance matrix is the outer product of the posture vectors, it will be 159 x 159.
Therefore, the maximal rank of the data is 159. The results show that for an RMS error
of about .01 radians, about 80 eigenvectors are needed, or about a half compression rate.
These results are not as good as we hoped, unfortunately. They seem to show that thereis
some structure in the data, but that the individual joints tend to move independently much
of the time, which limits the usefulness of these techniques for large corpi of motion data.
Another potential issue worth investigating is the addition of angular velocity (the time
derivative of posture) to the posture vector to see if this reveals more structure in the data
(but at the expense of doubling the data dimension).

Thefirst ten principal components are depicted in Figure 8-2. To view the linear basis
eigenvectors, we simply exponentially map them back to the mean for each joint to get
a posture tuple which we can view. One issue in using PCA on posture data is that the
linearization is not as effective on the root joint since it might spin all the way around and
whose basis is effectively chosen arbitrarily by the animator. Also, as is common with
PCA, the eigenvectors tend to look fairly uninformative since PCA is finding a rotation
that makes the data uncorrelated with no regard for local structure such as the fact that the
coupling in the datais hierarchical (joints on the same limb tend to be more coupled).

In general, results were mixed. We feel that thisis an interesting area for more explo-
ration. Since PCA isalinear algorithm, it finds an orthogonal basis for a subspace. If the
dataintrisically actually lives on a curving manifold and not a linear subspace, it is known
that PCA will overestimate the data dimensionaly. Nonlinear techniques might be worth
trying on the data (see [24] for agood overview of these data characterization issues). One
simple thing that can be done is to try a cluster-PCA agorithm. Here, the datais clustered
and then PCA performed within the clusters.

We also performed severd initial visualizations of our data using a recent method for
optimally mapping a curved manifold’sintrinsic dimensions into a Euclidean space called
Isomap [82]. Although thisisbeyond the scope of thisdocument, wefeel that thisagorithm
might be useful for finding a character’s motion manifold.

8.5 Summary of Eigenpostures

We described the standard principal component analysis algorithm for dimensionality re-
duction of vector data. We then showed how to use some of the QUTEM building blocks
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Figure 8-1: Training set RM S reconstruction error (radians) versus number of basis eigen-
Vectors.

Figure 8-2: First ten principal components from 5800 frames of a 53 joint dog.
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(mean and hemispherize) and the quaternion exponental map in order to linearize the data
for use in astandard PCA agorithm. We presented initial results on animation data which
and concluded that the results were inconclusive and more work needs to be done. We sug-
gested the use of some of the newer non-linear dimensionality reduction techniques that

explicitly look for curved manifolds.
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Chapter 9

(Toward) Expressive Inverse Kinematics

This chapter will introduce the difficult problem of Expressive Inverse Kinemati@sxpres-
sive IK). The goal of any IK algorithm is to solve the “put my paw on that spot” problem
which is often encountered in real-time interactive character engines. Unfortunately, most
standard IK algorithms produce robotic-looking solutions, which is not surprising since
they were developed in the robotic community where the style of the motion is not impor-
tant, only the resulting configuration.

A character, on the other hand, must constantly express its internal state through its
motion. Therefore, the problem of Expressive IK can be exemplified as “ put my paw there
but | anreally tired.” Theresulting motion should convey thisinternal statein an expressive
manner. Furthermore, different characters move in different styles, so that the way one dog
putsits paw on aspot in different than another. In our example-based approach, thisimplies
that an Expressive IK angine should find solutions that “look like” that character.

Thischapter will describe our progresstowardsafull ExpressivelK algorithm, although
due to time constraints we were not able to fully realize the entire approach. The chapter
will cover the following building blocks for areal-time quaternion IK engine:

e Fast Joint Limits
e Fast numerical IK solver
e Equilibrium points

We will describe each of these in more detail below.
Finally, we will sketch out two ideas for augmenting this standard “robotic-looking”
numerical solver with amodel of the character’s actual motion subspace:

e A hybrid of pose-blending and CCD

e Using amodel of the character’s motion subspace |earned from a corpus of animation
data (such as Eigenpostures) to augment a CCD approach.

The rest of the chapter will proceed as follow:

Section 9.1 describesthe basic approach we will take to tackling the problem of expressive
K.
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Section 9.2 will describe our fast model of joint motion constraints learnable from exam-
ple data. The model will be based on the QUTEM (Chapter 6).

Section 9.3 will describe how the QUTEM mean (or any other reference posture) can be
used as a heuristic to try and make solutions more “natural” looking.

Section 9.4 will describe our unit quaternion extension to the currently popular Cyclic
Coordinate Descent (CCD) real-time IK algorithm.

Section 9.5discusses how a hybrid of pose-blending and CCD can be used to reduce the
number of examples needed in a purely pose-blending approach. This approach was
used on the physical Anenome robot.

Section 9.6 will sketch out how a statistical analysis of posture from examples (such as
our Eigenpostures, described in Chapter 8) could be used in a similar manner to
heuristically pull or project an unnatural (or unexpressive) algorithmic solution into
the subspace of motion that the character livesin.

Section 9.7 summarizes the contributions of the chapter.

9.1 Approach

To approach the problem of Expressive IK, we chose to start from a recently popular real-
time K solver called Coordinate Cyclic Descent (CCD) [87]. Unfortunately, most standard
IK algorithms (including the original CCD algorithmin [87]) assume an Euler angle rep-
resentation of joint orientation. Since we use a unit quaternion representation of joints, we
need an extension CCD to unit quaternions. We describe our extension — QUCCD — in
Section 9.4.

Furthermore, many standard IK algorithms often exploit the following:

e Joint motion range limits
e Joint equilibrium point (or center) to model muscle tension

e Heuristicsfor choosing a particular solution from an infinite subspace in order to find
the most “natural” posture, such aslowest energy

Range motion range limits are important to avoid unnatural body configurations in the
IK solution, such as an elbow bending backwards or a shoulder bending too far in any
direction.

Equilibrium points are often used to “pull” the IK solver back towards the “ center” of
ajoint’s motion range. This can be useful for avoiding numerical drift and for coaxing the
IK solver to choose a solution nearer the joint’s center than the joint constraint boundary,
which often looks more natural and can sometimes speed up solutions by keeping it from
bouncing aong the constraint boundary.

Other heuristics on the posture can be added to choose between multiple solutions to
find the most “natural” solution. For example, many IK solvers will just find the nearest
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solution in terms of displacement magnitude (smallest rotation). This can still lead to pos-
tures which also look awkward or unnatural. Another common heuristic is to minimize
some energy metric on posture to choose the most natural solution (see, for example, Gras-
sia[30] or Hecker’'s GDC video [38]). Unfortunately, if the character happensto be excited,
this might not be what is desired. We believe that an example-based approach to finding
these heuristics will be better than trying them by hand.

Due to time constraints and the initially mixed results from Eigenpostures (see Chap-
ter 8), we were not able to incorporate the Eigenpostures into our 1K algorithm. We feel,
however, that thisis one of the most exciting areas for future work and will lead towards
much more expressive IK solvers.

9.2 Joint Constraints with the QUTEM

Usually, joints are modeled using an Euler angle parameterization where the joint limits
are explicit intervals over which the Euler angles are allowed to vary. If the joint triesto go
outside of itsrange, the angle can simply be clamped into theinterval. Thisapproach is se-
ductively ssimple, since it involves only scalar comparisons and clamping, and each degree
of freedom can be thought of separately. Essentially, this constraint approach “unwraps’
the Euler angle (whichis S!) into aline and clamps the interval there.

Unit quaternions, however, live on a sphere, which makes this approach problematic.
We could represent the sphere using spherical coordinates, but this factorization can create
“corners’ on the resulting constraint boundary. Such edges, as we argued in Chapter 4, can
cause numerical optimization procedures (such as most IK algorithms) to get “stuck.” Due
to the lack of a good unit quaternion constraint model, other researchers * who use a unit
guaternion representation for joints convert to an Euler angle description, clamp the angles
there, and then convert back to a quaternion. This is expensive if it must be done every
iteration of an IK algorithm, however, since it involves several matrix multiplications and
trigonometric functions.

9.2.1 Approach

We chose to approach the problem geometrically. We model unit quaternion joint con-
straints as an elliptical boundary on S? (see Figure 9-1). We already saw how the loga-
rithmic mapping converts ellipses on the sphere (isodensity contours) into ellipsoidsin the
tangent space at the ellipse center in our discussion of the QUTEM model in Chapter 6.
Also, we saw how we can learn such a boundary from data, which we argued is required
to leverage the animator. For these reasons, the QUTEM will let us implement this model
directly.

9.2.2 Goals

To handle joint constraints, we will need two operations on the QUTEM model:

1Jeff Lander (personal communication,1999).
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Figure 9-1: An abtsract visualization of finding whether the query point ) on the unit
quaternion sphere isinside the constraint ellipse boundary or not and the nearest projected
valid point, ()'.
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Constraint Satisfaction Is () inside the constraint boundary?

Constraint Projection If () isnot inside the constraint boundary, what is the nearest point
to () that is within the boundary?

We describe how to compute each from alearned QUTEM model for ajoint.

9.2.3 Constraint Satisfaction Operator

We define the constraint boundary to be the isodensity contour of the QUTEM with Maha-
lanobis distance of p from the center of the joint (the QUTEM mean /). Since we defined
the density to be zero outside thisregion, thejoint is not allowed to go there. We now show
perform the test.

Recall that our SMT (Scaled Mode Tangent) transformation defined in Equation 6.2
turns a unit quaternion into a unit variance vector in the tangent space at the mode of the
Gaussian, and that its magnitudeis simply the quaternion Mahalanobis distance. Therefore,
an ellipse (and itsinterior) on the sphere maps to a solid ball (filled sphere) of some radius
when transformed using the SMT. The transformed constraint boundary is obvious — it
is simply a sphere with radius p (see Figure 9-2)! We can therefore define our constraint
satisfaction predicate as a simple sphere-point test on the transformed query point using
the QUTEM. If the transformed point isinside the sphere, it isvalid, otherwise not. Simply
put, only quaternions within p standard deviations of the mode (/) are valid.

Thetest isthen defined as follows: First, hemispherize ( to be on the same hemisphere
at the QUTEM mean, M. Then thefollowing formulateststo seeif the query point iswithin
the constraint radius:

~ A

ConstraintSatisfied(Q) = || SMT(Q)|| <= p

This check isfairly efficient, involving several quaternion multiplications and the sinc
call to evaluate thelog, so is suitable for useinside an iterative IK algorithm.

9.2.4 Constraint Projection Operator

We can also use the SMT transformation and its inverse to project an invalid point () into
the valid region. Formally, we define a ProjectOntoConstraintBoundary function which
takes a quaternion and returns the nearest quaternion which on the constraint surface:

ProjectOntoConstraintBoundary (Q) = SMT ! ( SML(?;)H)

TSy

where again need to hemispherize the query first.

This operator simply changes the magnitude of the unit variance to p so that it lieson
the boundary of the sphere, then inverts the SMT transform to put modified unit variance
tangent vector back onto S? at the correct location. Figure 9-2 illustrates this operation.
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Figure 9-2: A visualization of the SMT(( sphere which divides out variance differences
along the principal directions x, y and z. The mode, M is mapped to the origin, and the
constraint boundary p away from the mean is the surface of the sphere (which is radius
p). Therefore, we can perform very fast, smple sphere-point checks and projections on
properly mapped data.

In practice, we often project to aradius of p — ¢, so that the point is just inside the con-
straint boundary to avoid numerical roundoff issues with projected points not satisfying the
constraint satisfaction predicate.

9.2.5 Singular Densities

For joints with only one degree of freedom, the QUTEM density will be singular. In this
case, we must use the pseudoinverse of the covariance matrix. Since the singular directions
will be scaled to zero by the pseudinverse, this will also project points that move off the
great circle that defines the joint’s degrees of freedom back onto it. For example, if an IK
algorithm tries to bend an elbow about a different axis than its fixed axis, the projection
will placeit back on the appropriate great circle around the elbow’s fixed axis.
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9.2.6 Empirical Results

We tested these operations on a QUTEM learned from a the corpus of all dog animations.
First, we generate a uniform rotation for every joint 2. Next, we project all the quater-
nion samples onto the constraint surface (in this case, we also project points that happen
to be already inside the surface as well). In this manner, we can randomly sample the con-
straint boundary. The constrained posture samples can be rendered to see if the resulting
constraints are “reasonable.” Figure 9-3 shows several random such samples on our dog.
In general, the constraints are visualy good — elbows and knees are constrained to one
direction, as desired, and other joints seem equally valid.

One issue that becomes immediately obvious from this method, however, is that this
joint constraint model is local to joints and does not know about posture constraintsA
posture constraint is an invalid posture for the character, such as one that causes a body
penetration. These constraints are much harder to handle since the boundaries are non-
convex and depend on the geometry of the character. Often collision detection routines
are used to handle these constraints. We feel that using a statistical model of pose such as
our Eigenpostures (see Chapter 8) could help with this problem. If we had a model of the
character’s motion subspace |earned from exampl es, we could project a posture that causes
an interpenetration onto this surface since, by definition, the surfaceislearned from positive
examples where no interpentration occurs. More work needs to be done here, however, to
validate this approach.

9.3 Equilibrium Points with the QUTEM

One problem often found in numerical integration or inverse kinematics algorithmsis that
we often want the joint to slowly pull itself back towards its equilibrium point, or center.
For example, some IK algorithms will add in an error terms based on distance from this
joint center in order to constrain the usually under-constrained IK problem.

We can use following simple update rule to “pull” the solution towards the QUTEM
mean M by an amount proportional to distance:

Q + Q(Q* M)
where a isthe “strength” of the pull. For o = 0, the system will not pull at al. For a = 1,
we jump immediately to the mean M. The parameter is currently chosen empirically.

We have not used this building block extensively, but have found it useful for pulling

back numerical drift in numerical integration of the root node, which causes characters to
slowly list to one side as they walk.

2Note that our QUTEM model cannot represent uniform distributions easily without infinite variances.
Uniform rotations are simple to generate in quaternions by rejection sampling a unit cube to get uniform
points inside the unit sphere in R*, then normalizing them to the surface, as discussed by Shoemake [75].
Notice we can’'t sample inside the cube and renormalize as the cube’s corner directionswill get more density,
but rather need to rejection sample to get points uniformly in a sphere of arbitrary size, then normalize the
result.
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Figure 9-3: Several screenshots of random sampled dog postures on the constraint bound-
ary. The shots were created by creating a uniform rotation for each joint in the dog, then
projecting to the nearest point on the constraint surface. Most sampled configurations are
reasonable, though in some the “joint-local” nature of these constraints becomes obvious

by a body interpenetration. We do not handle these postureconstraints yet, but feel the
Eigenpostures might be useful here.
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Another use of the equilibrium point is as a “soft” joint constraint. If the joint begins
to go outside of itsrange, a non-zero o based on the distance from the constraint boundary
can be applied to slowly pull the joint back inside the region. Soft boundaries could be used
to avoid “bouncing” off the boundary as often in the inner loop of aniterative IK algorithm,
but we have not looked into this yet.

9.4 QuCCD: Quaternion Cyclic Coordinate Descent

CCD is arecent heuristic iterative technique for solving smple IK problems in real-time
for articulated characters[87, 9, 38]. It has begun to attract much attention in the computer
game and interactive character communities due to its rel ative speed compared to the more
traditional Jacobian-based methogsee, for example, [79, 3], or Welman’'s excellent the-
sis[87] which compares the two methods.). For these reasons, we chose to use CCD rather
than a Jacobian method. The standard description of CCD, however, assumes an Euler an-
gleand SO(3) representation of joints [87]. This section will describe the basic paradigm
of the algorithm and then present our unit quaternion extension of it.

9.4.1 CCD IK Paradigm

Recall that the basic problem of IK is as follows. Given an open kinematic chain (see
Chapter 5) of bones connected by joints and an end effectofa paw, for example), find a set
of joint displacements from the current posture of the chain that places the effector at some
desired goallocation in space.

CCD proceeds by iteratively solving alocal subproblem at each joint along the chain
(see Figure 9-4). Specifically, it calculatesthe rotation of each joint that will get the effector
as close to the goal as possible while leaving all other joints fixed. It then updates the joint
orientation by a weighted version of this rotation (see Figure 9-5), where the weights are
usually chosen heuristically ® The weights acan be thought of as joint stiffnessconstants,
so that smaller weightsimply stiffer joints.

The agorithm starts at one end of the chain 4, solving locally for arotation of that joint
and performing the weighted update. It then continues performing the local minimizations
at each joint in order down the chain. Since it often takes multiple passes passes down
the entire chain to converge, deals only locally with coordinates, and essentially performs
a heuristic gradient descent on the effector error, the algorithm is called cyclic coordinate
descent.

To summarize the basic CCD paradigm:

SUnfortunately, the weights are a free parameter that must be specified by hand to achieve “good” results
empirically. It is future work to someone estimate appropriate values of these from data.

4Welman starts from the distal end; we usually start from the base. The solution will depend on which
choiceis made.
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Figure 9-4: The geometry of a CCD local update step on athree link kinematic chain. The
algorithm calculates the vector from the current joint being updated (here 2) to both the
effector’s current Cartesian position (c) and the goal’s position (d), expressed in the local
coordinate system of thejoint (B;). These vectors can be used to calcul ate the local angular
displacement of joint 2 (A,) which minimizes the error ||c — d|| between the goal and
effector. Joint 2's orientation is then updated by rotating it in the displacement’s direction
by some percentage, which is expressed as a weight (a;). This completes a single CCD
sub-step on Joint 2. The algorithm would then proceed to Joint 3 and perform the same set
of operations again on the updated chain. This continues cyclically down the chain until
convergence or a stopping criterion is met.

1. Loop until theerror isunder athreshold (convergence) or amaximum number
of iterationsis performed:

(@) For eachjointinthe chainin order from one end to the other:

i. Find arotation of the joint that locally minimizes the distance be-
tween the goal and the current effector position.

ii. Update the joint orientation by a weighted version of this rotation.

We will not describe the Euler angle subproblem minimizations here, but refer the
reader to Welman's thesis.
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Figure 9-5: The CCD algorithm after updating Joint 2 with afull weight of 1.0. Therotation
update (A) must be applied in the parent’s coordinate system since the orientation of the
joint is specified as an update.
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9.4.2 Unconstrained QuCCD Algorithm

This section describes our QUCCD algorithm which extends the CCD paradigm to a unit
guaternion joint description. This section will express the algorithm without regard for
joint constraints, which we will discuss separately in Section 9.4.3.

Assume we have an open kinematic chain consisting of a path through the skeletal tree
(see Chapter 5) containing N bones upon which we want to perform inverse kinematics.
Let Nec denote the (fixed) location of the end-effector in the last frame frame N in which
it is embedded and °d denote the desired location of the effector in frame 0 (asis usually
the case for IK problems). Let | F be the forward kinematic transform that takes a point in
a bone frame j and expresses with respect to bone frame k. Let Qj denote the quaternion
representing the rotation of bone j with respect to its parent in the chain, j — 1.

In order to calculate the subproblem solution, CCD requires ¢ and d both expressed at
the current joint in the update cycle, say i, or 'c and 'd. We can calculate these values using
F using

'c =NFNe

and

'd=1F°.
Figure 9-4 depicts this geometry for an N = 3 threelink chain. Inthiscase, i = 2
Let 'd and '¢ be normalized versions of the vectors. Then the rotation that minimizes

the angle between these vectors follows immediately from the quaternion vector product
we saw in Chapter 3:

Ri _ (Ié* I(Al)%

which is a unit quaternion rotation that will take vector ¢ into d along the shortest path.

Notethat R; isalso expressed inthelocal, rotated coordinate frame i, but the orientation
of i, Q;, is expressed with respect to its parent frame, i — 1. In order to update the joint
quaternion ();, we therefore need to express R; in the parent frame using the transform
| |F. Since the trandlational portion of the transform will have no effect on a rotation, we
can ignore it. Therefore, we can perform a change of basis on the update R by rotating so
the parent and child orientations align, applying the update rotation there, and then rotating
back into the local frame:

Using this rule and scaling the update rotation by exponentiating it to the joint weight a;,
we get an update rule for the joint quaternion:

Note that we left-multiply here since we are rotating in the local frame, as we saw in
Chapter 3. Also notice, however, that similar cancellation occurs on the right, leaving:
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Qi — Qz I%;Ll (91)
which is quite simple and elegant, although we can make this faster computationally by

using the geometric formulafor the square root of a quaternion rather than the exponential
map version:

1+ P

1+ Pl

Plugging all of these pieces together gives us the following simple update rule based on the
current and desired effector positions expressed in the coordinates of the local joint:

R R 1—|—if:*ia )ai
i S | = 9.2
@~ 62

o[

5

P:

QuCCD Subproblem Algorithm Summary

To summarize the QUCCD solution to the local joint (7) subproblem:

1. Calculate the current effector position vector in the local frame:
'& = Normalize (N\F Nc)

2. Calculate the desired effector position vector in the local frame:
'd = Normalize (,F °d)

[1-+eid||

3. Updatethejoint: Q; « Qz( 1+iesid )

The complete unconstrained QUCCD agorithm follows by using the CCD paradigm
and solving the subproblems with this algorithm.

Discussion and Future Work

Joint Weights  The main free parameters of the CCD agorithm are the joint weights. We
use a simple heuristic rule that makes the base joints stiffer since they have to move more
mass. Learning these weightsfrom data or making them functions of time might be a useful
extension for allowing expressivity into the algorithm. For example, if a character gets his
leg hurt, the joint stiffness could be increased so it seemslike he isfavoring it.

Singularities A nice property of such a geometric approach is that there very few coor-
dinate singularities, unlike the standard Jacobian methods which become ill-defined as the
Jacobian becomes singular. The main singularity in the algorithm occurs when ¢ = —d
since there are an infinite number of ways to get from c to d. A simple check can be used
to check for this case and choose and arbitrary path asit gets close.
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Other IK Constraints  Welman also shows how to implement more than just this point
constraint which tries to place one point on another. Another useful constraint is a point-
orientation constraintvhich also specifies the desired orientation the end effector should
have at the point. We leave this extension as future work, but expect a similarly ssimple
solution.

Other Extensionto CCD AsCCD isbecoming more popular, other researchers are find-
ing other extensionsto it aswell. We discuss some of these in Chapter 11, including some
work on waysto get around the convergence problemswith very tight joint constraints, and
ways to handle branching chains.

The next section will discuss adding joint constraints to this unconstrained solution.

9.4.3 QuCCD with Constraints

The unconstrained CCD algorithm can be augmented with our joint constraints in several
ways. The simplest one, which we used for our work, isto simply perform the constraint
satisfaction test after solving each sub-problem. If a constrant is violated, the invalid point
is projected onto the boundary, then the next joint is solved.

Although this approach works much of thetime, it has several problems. Unfortunately,
we discovered that this method tends to produce very slow convergence for 1 DOF joints
which are constantly bumping into a boundary. The problem isthat the CCD step does not
take the constraints into account directly and will step in invalid directions, then get pulled
back, making for slow progress. Both Hecker [38] and Blow [9] note similar issues and
discuss several solutions.

The most direct approach is probably to find a new solution to the subproblem that
takes the constraints into account. We feel that it is possible to set up ajoint-local error
metric which penalizes constraint violations and solve this analytically. The Mahalanobis
distance (see Chapter 6, for example, would be a likely candidate for this approach. Initial
calculations seem to imply an extended eigenvector solution to the problem, but we leave
this extension for future work.

9.5 Mixing Pose Blending and IK

A useful technique for either adding expressivity to an IK algorithm or adding procedural
generalization to a standard pose-blending algorithm is to make a hybrid of the two.

For example, a pose-blending space can be created which gives examples of what the
posture should look like for several goal points. Then adverb parameters can be chosen
to correspond to the goal point’s Cartesian location °. This blend approach, since it must
use the known set of examples, is not procedurally general on its own as we argued in
Chapter 2. Also, the solution will often have a residual error between the desired effector
location (goal) and the resulting effector position from the pose-blending solution. Since

SRose investigates using pose-blending for IK in his PhD, which was influential in our approach here.
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in both cases we get a solution that is in some sense “close” to the answer we desire, we
can use our IK algorithm to “clean up” the solution.
Section 10.5 describes the use of this technique on a physical robot.

9.6 Adding Expressivity with Subspace Models

One problem with the QUCCD algorithm (and most other numerical IK solutions) isthat it
simply is looking at coordinates without regard for any body knowledge of the character.
Solutions often appear “unnatural” since it chooses the nearest solution it finds. To handle
this, many IK systems add in heuristics to the optimization to make the algorithm choose
more natural looking postures. Some of these are energy minimization or the equilibrium
points we discussed above. Most of these are hand-coded and need to be tweaked. Further-
more, they do not explicitly capture what makes one character move like Mickey Mouse
and not Donald Duck.

On the other hand, if we could learn a mathematical model of the manifold of motion-
space that a particular character “lives’ on from data, we could project an unnatural 1K
solution onto this manifold, or pull it towardsit like an equilibrium point. In other words,
we could take a “Mickey Mouse-looking” IK solution and convert it to a“Donald Duck”
solution.

To approach this problem, we did an initial evaluation of one such subspace analysis
technique, Principa Component Analysis (PCA), to find a minimal linear sub-space of
the character’s motion learned from data, which we described in Chapter 8). Due to time
constraints and the mixed results of the linear PCA approach to Eigenpostures, we have
not been able to integrate it with the QUCCD algorithm, and leave thisfor future work. We
predict that these manifold and sub-space techniques will be very useful for augmenting
numerical 1K solutions.

It isworth comparing this“inverse” approach to the more “forward” approach of speci-
fying apose-blending to IK aswe described above. In the pose-blending case, our animator
creates the examples needed to specify the space at particular locations to span the space.
On the other hand, if we just have alarge corpus of animations such as motion capture data,
we cannot use this approach. In this case, learning the subspace is exactly what we want.
For this reason, both approach are potentially useful.

9.7 Summary of Expressive IK

This chapter presented the basic IK problem of putting an end effector on a goal point
subject to joint constraints. In particular, our contributions were:

e A fast joint constraint model using unit quaternions that can be learned from exam-
ples.

e How to implement joint equilibrium points with the QUTEM

e An extension of the basic Euler angle based CCD IK agorithm to a unit quaternion
representation.
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e A description of using a mixture of both pose-blending and CCD in order to reduce
the number of examplesin a pure pose-blending approach to IK.

e A sketch of how a subspace or manifold learned from example data, such as our
Eigenpostures, could be used to make a robotic-looking solution more expressive.
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Chapter 10

Experimental Results and Application
Examples

This chapter will describe several experiments and results on the algorithms and ideas we
presented in thisthesis. The chapter will proceed as follows:

Section 10.1illustrates several QUTEM models learned on dog animation data and dis-
cusses advantages and disadvantages of the model.

Section 10.2describes a smple way to generate new animations “similar” to an example.
Thisisonly an initial evaluation.

Section 10.3describes severa different convergence experiments of the sasquatch algo-
rithm, including choice of timestep, reduction to slerp, and a visualization of the
attractor.

Section 10.4describesthe many projectswhich have successfully used the slime algorithm
for pose-blending.

Section 10.5describes an initial evaluation of mixing pose-blending and CCD on aphysi-
cal robot, the Anenome.

Section 10.6summarizes the chapter.

10.1 QUuTEM Analysis Results

We used the estimation procedures described in Chapter 6 to estimate a QUTEM for each
of 38 jointson an earlier dog model (see Figure 5-1) using 26 animations containing about
1200 points. The animations were created by a skilled animator for a particular installa-
tion. The full set of animations used was: Beg, BegLow, SolicitPlay !, StandToLie, LieTo-
Stand, StandToSit, SitToStand, ChaseTailL eft, ChaseTailRight, TightTurnLeft, TightTurn-
Right, TightTurnLeftToStand, TightTurnRightToStand, Lie, LookUp, Shake, ShakeHigh,
Shakel ow, TurnLeft, TurnRight, WalkL eft, WalkRight, Sit, WalkStraight, CatchTreat, Sniff.

1Crouching down as dogs do when they want to play.
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Figure 10-1: The dog in “mean pose” where al of hisjoints have been set to their mode.

The animations tend to fall into verb/adverb groups, with several variants on particular an-
imations. Some are transitions between cyclic animations.

Figure 10-1 depicts the mean pose graphically, where the dog's joints are all set to the
QUTEM mean. This appears correct, and isin fact close to the canonical pose.

The QUTEM covariances are dlightly harder to visualize, but since the tangent space
description of the quaternion datais three-dimensional, as are the ellipsoids which describe
the covariance of this data, we can plot both of them to visualize the €ellipsoids that com-
prise our model. Figure 10-2 contains plots of several joint QUTEM. The plots were made
by transforming the data into the tangent space at the mean with the logarithmic map and
plotting the resulting points. We aso show the ellipsoid of Mahalanobis distance 1.0 (plot-
ted wireframe so the data is visible). Notice that our constraint radius (p) would scale this
ellipsoid until it just contains our all of the data.

Discussion One clear issue is that the data does not seem Gaussian on initial inspection,
but seems to contain more structure. Since the QUTEM islearned from a set of animations
whose data is concatenated together, the original curves of the animation are visible in the
scatterplot. Each individual animation tends to cluster data more closely together such that
a smaller ellipsoidal model with a different mean would capture each of the animations
better than learning a model of the entire joint from multiple animations. This structure
impliesthat the ranges for ajoint are non-stationaryand depend on some other variable.
For this data, some of the animations are simply adverb variations on the same basic
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Head

Knee

Figure 10-2: Plots of the mode-tangent descriptionslearned from animation datafor several
joints on adog model. The scatterplot is the transformed gquaternion data and the ellipsoid
shows the Mahalanobis distance 1.0 isocontour of the estimated density from the data.
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Figure 10-3: TEM plot of just the elbow joint of our dog. Notice the structure contains
more than one degree of freedom, although it tendsto liein a particular direction.

verb (see Chapter 7, such as walking left or right. In these cases, the motion tends to be
similar in variation, but with a different mean. It is expected that as more animations with
different variations are added, the data will fill the ellipsoidal area more, although more
experiments need to be done.

Another interesting result from these datais that the elbow and knee joints do not seem
to be entirely one degree of freedom, as we expected, but tend to vary alittlein other direc-
tions as well (in particular, see Figure 10-3). In particular, although individual animations
tend to be one degree of freedom (the estimation process finds only one significant variance
direction), when taken together, the different means for each tend to add extra directions.
Our hypothesisis that since the bone animations actually are deforming a mesh skin the
animator used these extra degrees of freedom to get around problems with the skinning
algorithm. We need to investiagte this further.

10.2 Synthesis of New Motion from the QUTEM

To test our pose synthesis algorithm described in Chapter 7, we created a simple method
for generating new animations similar to an example (or multiple example) animation. We
did this using the following approach:

1. Learn aQUTEM from one or more example animations.
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2. Generate two new postures P, and P, with the QUTEM.

3. Generate asquad cubic spline from the current posture P, which goes through P,
then P, then returnsto P,.

4. Choose atime function f(¢) for the squad interpolation parameter to play out the new
animation at some desired speed.

Using this smple approach and a constant interpolation speed, we learned a QUTEM
from awalk cycle and then generated aniamtions from it. The results were as expected —
the dog appeared to be swimming randomly. Thistest was useful for validating the QUTEM
models. We omit the results here.

The time function could also theoretically be learned from data using a temporal fre-
guency analysis of the animation in addition to spatial analysiswe perform in the QUTEM.

10.3 Sasquatch Experiments

This section will describe some simple experiments on the Sasquatch algorithm to investi-
gate its behavior.

First, we ran Monte-Carlo simulations by sampling random systems of springs and
pointsin order to calculate average convergence rates and to calculate an (empirically) op-
timal At. Second, we ran experiments to see statistically how bad of an approximation the
naive renormalized Euclidean weighted average was compared to our Sasquatch solution.
Third, we made sure the system empirically reduces to Shoemake's slerp function in the
boundary case of two examples.

10.3.1 Monte-Carlo Convergence Trials

The first experiment we performed was to get a feeling for the convergence rate of the
algorithm with respect to the timestep choice. This experiment also compared the two
integration techniques. Onetrial of the experiment went as follows:

1. Generate M uniformly distributed random quaternions as the data (nails).
2. Enforce local hemisphere constraint on the examples.
3. Generate M non-negative random spring constants which sum to unity.

4. Runthealgorithm (either intrinsic or embedding) over uniformly sampled At € [0, 2]
and record the stepsto convergeto e for that At.

Uniform Quaternions First, we must generate random quaternion examples. We chose
to do this over the uniform distribution on the unit hypersphere. Thisis done by sampling
from a zero-mean, unit-variance 4-dimensional Gaussian and normalizing the result to the
sphere. Shoemake describes this correct algorithm in [75], along with caveats for other
naive methods.
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Hemispherization Next, we enforce the local hemispherical constraint. We refer the
reader to Section 6.2.2 for details on thisimportant problem.

Spring Gains To generate the spring constants, we simply choose M constants in the
interval [0, 1], then divide each by the sum of all to enforce the unity summation constraint.

Sampling At Next, we select a uniform sampling of timesteps, At, over the interva
(0,2]. If we choose a spacing of v between samples, then we run the system over the
timesteps At = i, where isan integer and goesfrom 1 up to (%1 suchthat 0 < At < 2.0.
Integration Finally, we run each of the integration schemes on the trial for each of the
values of the timestep and record statistics on how many steps were required to converge
for al the various At for each of the integration schemes.

Results In order to get a feeling for how the system behaves, we ran 100 trials of this
experiment on 5 points chosen as above and collected statistics on the number of steps
taken to converge for the samples of At¢. These statistics give us a feeling for how the
system converges on average and how the convergence rate depends on At. Figure 10-4
illustrates the results of these trials for the intrinsice numerical integration techngque given
in Appendix C (resultswere practically identical for the embedding integration, so we omit
them). The middle curve on the graph shows the mean number of steps to convergence for
each At. The curves above and below show one standard deviation away from the mean.
Convergence for At < 0.25 became huge quickly, so we truncat the graph to see the detail
in the minimum.

We can deduce from this graph that the algorithm is robust in its convergence behavior
sincethe standard deviationsare small in the middle area of the graph. Also, we seethat our
guess of atimestep of 1 was actually reasonable, although on average the system converges
dlightly more quickly at At ~ 1.175. The reason for this number is not obvious, but we
expect that it could be found if the system were analyzed in terms of alinear update, where
the eigenvalues of the update matrix define convergence behavior, athough the nonlinearity
of the solution makes this analysis beyond the scope of this paper.

Another dlightly surprising result was that the intrinsic and embedding integration tech-
niques both converged at virtually identical rates, though the actual trajectorieswere slightly
different. Therefore, we can choose either in practice, depending on which runs faster in
real-time, though we have not done these timing experinments yet. We expect that the em-
bedding integration approach will faster since it does not use any trigonometric function
cals.

10.3.2 Reduction taslerp

We al so tested whether the algorithm as described reduces to the same result as Shoemake's
dlerp in the case of two examples since we desire it to be a multiple example extension to
slerp. Inthis case, the slerp blend parameter, call it a, can be considered the weight on the
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Figure 10-4: Convergence statistics for a 5 point system using intrinsic integration over
100 random trials. Here, ¢ = 1.0e — 12. The middle curve isthe mean and those bracketing
it are one standard deviation.

second example, forcing the second weight to be 1 — « due to unity constraint. Therefore,
we must have:

Vo € [0, 1], sasquatch((a, A), (1 — o, B)) = slerp(4, B, 1 — «)

where slerp can be defined exponentially as:

slerp(fl, b, a) = Ge® (A" B) (10.2)

To test this, we a so used a simple Monte-Carlo simulation. We created a random set of
two guaternions chosen uniformly, then sampled sasquatch and slerp for evenly sampled
choices of o and calculated the angular distance between the results. For all trials, we got
only roundoff errors on the order of 1.0e-8. This was the case whether we started from a
purely uniformly chosen initial location or the Euclidean average of the two points, which
also shows the algorithm is robust and will converge properly from many choices of initial
configuration, even for initial choices not on the one-parameter subgroup between the two
examples.

10.3.3 Attractor Trajectories

We can view some of the attractors for our ODE by choosing a fixed system of examples
and weights, then plotting the trgjectories for various choices of initia conditions. This
allows us to illustrate that the attractor is stable over the sphere, even though we will be
choosing initial conditions more intelligently than at random.
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Figure 10-5: An illustration of the stable attractor which is the steady state solution to
Sasquatch. Here we choose 50 random initial points not too close to each other then in-
tegrate the system with dt = .01 and plot the resultant trajectories. Here we choose two
examples, whose attractor (steady state) is the identity quaternion, 1. Since the datalivein
S3, we project out the z component for this plot.

Experimental Design We chose to plot a simple attractor based on two examples. Since
the solution lives in a one-parameter subgroup of the quaternion group, we can see how
solutions arrive at the solution from points off the subgroup. In particular, we chose the
simple system of the quaternions

C?1,2 = 6iaﬁ

with equal weights on each. Hence, the solution will be at the identity, 1. We then choose
random initial Q, for solving the ODE, but making sure that no example started off too
close to another, so the tragjectories could be seen. If a new QO is within some chosen
distance to another example.

Results Theresultsfor o = 1.0 and n = [100]" with equal weightsis shownin Figure 10-
5. Inthisfigure, we project out the z component to makea 3D plot. Morevisually appealing
isaplot of the logspace of the quaternion, whichisin R?*. We choose to use the logmap at
the solution (identity), 1, such that the attractor is at the origin. The results of this plot on
the same trajectories can be seen in Figure 10-6.
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Figure 10-6: A plot of the trgjectories for the atttractor taken as the log at the attractor
location (the identity), which is the tangent space R?. The attractor in the log is located at
the origin.

10.4 Slime Results

We have used the basic slime blending algorithm as the basis for pose blending in severd
successful projects. This section will give a quick synopsis of each project and some basic
lessons we learned for each.

10.4.1 Swamped!

The Swamped!project was the first to use slime posture-blending in 1998 and was based
on the author’'s SCOOT motor system (unpublished), which was based on Perlin's and
Blumberg’'s motor systems.

Overview

The first project to use one of my quaternion blending algorithms was the Swamped!
project [10] shown at the interactive exhibition at SIGGRAPH 1998. The story scenario
issimple: an autonomous raccoon tries to steal the eggs of the semi-autonomous chicken,
controlled by the interactor using awireless sensored plush toy (see Figure 10-7) which we
coined a sympathetic interfacpi6].
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Figure 10-7: The Swamped!project, shown at SIGGRAPH 1998. The interactor directs
the chicken character using natural gestures of the plush toy (sympathetic interfage The
raccoon is autonomous and uses an early slime-based RBF system based on Rose’s Verbs
and Adverbs work.

Technology Used

The raccoon (Figure 10-8) was afully autonomous character with several simple emotional
states — happy, tired, angry — which changed based on interactions with the chicken.
These emotional states were expressed continually in the animation using an early version
of our Slime RBF algorithms based on Rose's Verbs and Adverbs research, asimplemented
in our SCOOT motor system. The RBF's converted the normalized emotional values, such
as happiness, into weights on the animations which were blended with the slime agorithm
around the identity pose. The animator was forced to use a particular basis for the identity
pose.

Lessons Learned

The Swamped! project successfully demonstrated how to blend animations represented
as quaternion efficiently, and how to extend Rose’'s Verbs and Adverbs work into a direct
guaternion representation rather than his Euler angle factorization.

This project taught me about the problems with always using the identity as the refer-
ence pose for the blending and forcing the animator to work from a certain structure rather
than designing their own model. These showed up as “glitches’ in the animation as the
rotations for certain widely varying joints, in particular the shoulders, hit the mathematical
singularity in this global linearization. Also, animators tended to dislike being forced to
keep resetting geometry transforms every time they made a change. This motivated the
need for the meanof the animations and began the investigation into the QUTEM model.
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Figure 10-8: The raccoon character is autonomous. He can blend between several emo-
tional states based on hisinteractions with the chicken. These states are expressed through
the motion with pose-blending.

10.4.2 (void®)

The (void*) project was shown at the interactive installation at SIGGRAPH 1999, as well
as within the Media Lab.

Overview

Another example of a sympathetic interface was used in the (void*) project. Here, a pair
of wireless sensored bread rolls with forks stuck in them were used to make dance move
gesturesasif they werelegs (inspired by Charly Chaplin’sclassic restaurant bitin The Gold
Rusl). Three characters — Earl the beefy trucker, Elliot the nerdy salesman, and Eddy the
dlick dude — meet in adiner. They get possessed by an interactor and made to dance using
the forks and buns as the interface.

Each character had several dance contents based on recognizable gestures on the buns.
Some of these were: split, march, leg twirls, and jump. Each of the dances also had stylistic
variations based on the character’s “feeling” about being forced to dance. For example,
Elliot the nerd was much more inhibited as he started dancing, holding his hands close
to his body (Figure 10-9). If the interactor did dance moves that he seemed to like, he
would get more happy and his dance style more open. Earl the trucker was very stiff and
hated doing certain moves, such as the split, which Eddy the Dude was very proud of (see
Figure 10-10).

The dancing scenario was quite interesting, as it led to a fast interaction and forced
the motor system to blend quickly between the various dance moves flawlessly. Likewise,
while another character performed, the idle characters still had to appear aive and could
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Figure 10-9: Elliot the shy nerd starts off dancing very inhibited. Over time, his dance
styles becomes more open as he enjoys himself.

make reactions to certain moves by the other character, such as giving a thumbs-up if they
liked the move.

Technology Used

(void*) ran on aversion of the SCOOT motor system using similar Slime RBF technol ogy
as Swamped!'but with a few new features. Blends were done in the same way, but we
needed better layeringsupport to handle reaction shots, such as giving the dancer athumbs-
up for a cool move. These blends were layered on top of other basic idling animations
when needed using a temporal transition blend (the weight smoothly changes from one to
the other and then back). Figure 10-11 shows an example of ablend at a particular point in
time of one of the characters. Again, a one-dimensional blend like this could be done with
slerp directly, but we actually had several axesin some of the animations.

Idling characters on the screen aso needed to appear alive, even if they were not danc-
ing. Therefore, we introduced a simple Perlin noise source (see [63] asablend weight be-
tween idling posturedn other words, each character had several idling (“sitting around”)
animations. To avoid obvious repetition created if these were played in aloop, we simply
blended between the examples using arandom walk through the weight-space.

Lessons Learned

The high energy dancing scenario, with all the possible transitions, was interesting from a
motor system standpoint. An early lesson was that we needed to maintain angular veloc-
ity continuity, since velocity glitches were very noticable in dance moves. Therefore, we
switched from slerp to squad for blending our animationsin time.
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Figure 10-10: Eddy the Dude shows off the range of motion of his hip joints with his split
move.

Figure 10-11: Blend of two animations, sampled at the same time ¢ but at different blend
weights, from -0.1 to 1.1. The examples (red boxes) are the original animations, so the
algorithm can extrapolate as well as interpolate.
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Figure 10-12: Rufus, a ssimple articulated robot dog head with a camerain its eye. Rufus
was the first example of using out pose-blending slime algorithm on a physical robot.

As mentioned above, we found that adding layered partial animations (like waves and
other gestures) could add expressivity. Thisworked fairly well.

Finally, the slime based pose blending performing quite well except for afew instances
of widely-varying joint ranges, such as hips and shoulders. These were evidenced as
“glitches’ where the blend would go through the singular shell since we were not using
the mean as areference.

10.4.3 Rufus

Rufus (see Figure 10-12) was a class project by Burke, Eaton, and Stiehl of the Synthetic
CharactersGroupinthefall of 1999. It wasthefirst to hook up our pose-blending system to
arobot output. Rufus had acamerafor tracking objects and could express several emotional
states with just his ears and tongue.

Technology Used

Rufus consisted of simple 1 DOF Futaba airplane servos, which meant animations for Ru-
fus actually lived on a one-parameter subgroup of the quaternions. The fact that physical
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Figure 10-13: Duncan and the Shepherd. This project was one of the first to begin to ook
at clicker training the animal. Both the shepherd and dog used an early slime-based blend.

robots still used several 1 DOF jointsto produce higher DOF joints became clear from this
project.

Rufus ran a version of the SCOOT motor system that was close to the one used for
(void*).

Lessons Learned

The fact that many interactive physical robots still used several 1 DOF joints to produce
higher DOF joints became clear from this project. It is unfortunate that need for such
servos forces the mathematical coordinate singularity to be expressed physically. On the
other hand, these joints are usually built to avoid the singularity in the operating region.

We realized in this project that we could use the same motor system for both physical
and graphical creatures. Theonly difference wasinthe“render” stage when the quaternions
needed to be converted to Euler angles (for a robot) or homogenous matrices (graphics
render).

10.4.4 Duncan the Highland Terrier

The Year of the Dog began in 2000, where the Synthetic Character&roup tried to build a
virtual dog with similar perceptive, cognitive, emotional and learning abilities exhibited by
real dogs. One of thefirst projects from this was Duncan the Highland Terrier.

Technology Used

Duncan was one of the first projects where | did not have an active role in building the
actual motor system. The motor system used was an early port of my SCOOT system by
Marc Downie.
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Figure 10-14: Sheep—Dog used an acoustic pattern recognition system to direct the dog to
herd sheep into a pen using traditional dog-training lingo.

Lessons Learned

Thisbeing one of thefirst projectswith dogs, | quickly noticed a“roll-over” animation was
required. Unfortunately, arollover caused the root joint to perform a complete revolution,
going right through the exponential map singularity in the slime algorithm and causing a
glitch. Thisled meto begin looking for alocal method which would not have this singular-
ity and would allow weighted blends over the entire group. The result was the sasquatch
algorithm.

10.4.5 Sheefpog: Trial by Eire

Sheep|Dog was a project in 2000, shown at the Media Lab Europe opening in Dublin,
Ireland. It was one of the first “Year of the Dog” projects aimed at achieving dog-level
perception, cognition and expression. Figure 10-14 shows the dog herding severa sheep.
Sheep|Dog was also shown at the £ electronics exposition show as part of academic
trendsin videogames.

Technology Used

Sheep|Dog was one of the first systems to stop using an RBF function approximator with
slime to perform blends and to just use direct weights which were calculated by the pro-
grammer. This motor system was a home-grown, simple system developed by Blumberg
and Downie based on my slime agorithm.

Lessons Learned

Again, one of the earliest lessons|earned in this exhibit was the singularitiesintroduced by
the slime algorithm when used on the root joint during aroll-over.

10.4.6 o-Wolf

a-Wolf, Tomlinson’s Phd research project, was presented at SIGGRAPH 2001 and con-
sisted of simplesocial interactions (adominance hierarchy) amongst avirtual wolf pack [90].
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Figure 10-15: A shot of the a-Wolf installation

Figure 10-16: A blend along one of the emotional adverb axes. Picture credit to Bill
Tomlinson.

Tomlinson showed that emotional perception, memory and expressivity are required for
proper socia relationships. «-Wolf had three wolf pups and a mother wolf, which was the
largest number of complex motor systems we had running at once.

Technology Used

a-Wolf was one of the first systems to use Downi€’'s pose-graphmotor system [20]. Pose-
graphs extend the simple verb graph ideas which Perlin, Blumberg, Rose and | used into
a graph structure which explicitly models the motion manifold in terms of animations and
transition animations between them. Transitions became heuristic (A*) searches through
this graph according to some distance metric, such as minimizing acceleration.

The quaternion pose-blending technology used in the pose-graph is essentially slime
on a set of weights inside the convex hull of examples. Thus, no extrapolation is possible
in Downi€’s current pose-graph. Transitions all happened explicitly through the graph
whereas the SCOOT system generated atransition gith squad if one did not exist.

Figure 10-16 shows samples along one of the emotional adverb axes for the wolf pup.
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Lessons Learned

a-Wolf basically hit the current limit on using purely blend-based methods ? Essentially, the
number of transitions required to achieve graph closure, as well as the number of required
examples to parameterize the many different actions the wolves could take, were at about
the limits of an animator’s ability. This project made explicit the need to make the more
genera procedural methods such as IK more expressive.

Another issuethat become clear isthat we needed to handle the problems of “close con-
tact” that showed up in the dominance interactions, such as biting each other and wrestling.
These close, collision-ridden postures of several characters are very difficult to solve with a
purely pose-blend solution, and require the more flexible abilities of and collision response
algorithms. Thisisthe subject of future research.

10.4.7 Slime Results Summary

The basic slime algorithm has proven to be very robust and efficient for performing a
weighted blend of multiple unit quaternions. It has been the core animation blending tech-
nology in all the Synthetic Character&roup motor systems since SwampedIin 1998.

10.5 Expressive IK Results

A variant on this approach was used on the Anenome robot pictured in Figures 10-17
and 10-18 3. The Public Anenome was shown at the SIGGRAPH 2002 interactive exhibit.
The Anenomelived in asmall stage environment with awaterfall and plants. An expressive
IK algorithm was needed to orient the“head” of the Anenome towardsthingsin itsenviron-
ment. For example, a stereo-vision algorithm was used to find people in the environment
and track them as they moved.

In the Anenome, the degrees of freedom near the base were calculated using a slime-
based pose-blending and the degrees of freedom nearer the effector were calculated ex-
clusively using CCD. This allowed the gross movement of the base to be specified by the
animator through examples that get the effector nearest the solution but also look natu-
ral. The top DOFs could then be controlled by the more general CCD algorithm to “finish
the job.” This approach is useful since producing a pose-blending space that spans the
entire possible IK space of the robot is time-consuming since many examples are poten-
tially needed. By combining approaches, we argue that we are better able to leverage the
animator’s ability by reducing the number of examples.

In order to “render” the animation, the quaternions are converted to the Euler angles
which are fed to a feedback motor controller which tries to track the given kinematic tra-
jectory. Thisissimply the analogue of converting the quaternions to a homogenous matrix
which isusually required by graphics hardware to render polygons. By holding off on this
conversion until “just-in-time,” we can maintain the efficiency of the quaternion represen-

2Downie, personal communication.
3Very special thanks to Jesse Gray and Matt Berlin who implemented this approach on the Anenome.
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Figure 10-17: Theinsides of the “Public Anenome” robot by the Robotic Life Group at the
MIT MediaLab that was shown at SIGGRAPH 2002.

tation as long as possible and avoid problems with gimbal lock not associated with the
physical servos on the robot.

Also, we can use the same motor system for both virtual and physical creatures. The
mainissuewith thisapproach isthat the robot is physical and dynamics comeinto play even
with the feedback controllers. Adding dynamics is the subject on ongoing future work on
our group.

10.6 Results Summary

This chapter:

Presented results of joint motion analysis experiments with our QUTEM model and
described how to visualize it.

Described initial experiments at pose and animation synthesis from the QUTEM.
Presented experimental results of the sasquatch agorithm’s convergence behavior.

Described chronologically the many motor systemswhich have used the slime prim-
itive as the core blending technology, lessons learned for each and motivations for
the other building blocks we discovered along the way.

Presented initial results on a hybrid of pose-blending and CCD IK on a physical
robot.

The next chapter will present and discussrelated and influential work.
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Figure 10-18: The Anenome with its skin on.
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Chapter 11
Related Work

This chapter will present and discuss some of the more directly related work than is spread
throughout the thesis. We break it into several separate sections:

Section 11.1describes other research in real-time expressive character motion engines.
Some of these influenced our approach and others were done independently.

Section 11.2describes severa related methods for blending poses either with an Euler
angle description or quaternions.

Section 11.3described several other approaches to using statistical analysis and synthesis
on joint rotation data. We present those which use quaternions or which follow a
related approach.

Section 11.4describes several other approach to quaternion joint limits, none of which
existed when we began our work.

Section 11.5discusses research which is related to our work on expressive IK. In particu-
lar, we look at example-based K methods or those that use a quaternion representa-
tion.

11.1 Animation Engines

There have been several other researchers who have looked into expressive motion engines
for interactive characters. We discuss each of these in this section from a high level, and
discuss particular subsets of the work in more detail below.

11.1.1 Perlin

Perlin’s Improv system served as a primary influence in the beginning of our work [63].
Perlin shows how to use his noise functions for generating organic textures can also be
applied to joint animations. Perlin describes how a programmer can use the blending of
sinusoidals, noise functions and inverse kinematics solutionsto create areal-time character
animation engine with personality. He also gives heuristics for handling the classic “foot
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diding” problem with these methods and introduces the buffered actiormethod of avoid-
ing self-intersection, or a transition point to go through when traversing from one skill to
another. Our motor system uses many of these ideas.

One problem with Perlin’swork isthat the artist must program the textures on each joint
(and correlations between them) by twiddling with parameters and severa constructive
primitives. In order to make this problem intuitive for the programmer, he uses an Euler
angle representation, avoiding the problems with generating band-limited quaternion noise
or multi-dimensional blending. Also, thereisno way to learnthese functions given desired
data.

11.1.2 Blumberg

Blumberg's “ Silas the Dog” character in his PhD research [11] uses an interactive motor
system for controlling the dog motion. Here, he explicitly uses a DOF-locking system
so that different hand-programmed procedural motor skillscan only run simultaneoudly if
they do not touch the same DOFs. Also, he used areal-time inverse kinematics solution for
the placement of the dog's paws in the creation of a procedural walk cycle, although this
used an Euler representation. To handle emotional parameters, motor skills which did not
receive alock could make suggestionsto the winnersfor how they would do the motion, so
that the winning skill could layer or add the expressive skill if it did not overlap with other
DOFs.

Although this system ran in real-time, the orthogonality of motor skillswasalimitation.
Also, expressivity was limited since hand-programmed procedures are difficult to make
expressive, as we discussed earlier. He suggestsinterpolation of these skillsas future work.

11.1.3 Rose

Our pose-blending work is similar to Rose’'s PhD work on Verbs and Adverbs in severd
ways[69, 44]. Rose's motion formalism for combining motor skillsaccording to aresource
prioritized locking mechanism is practically identical to the one in the author’'s SCOOT
motor system which was used in Swampedbnd (void*), which was in turn based on Perlin
and Blumberg's systems.

Rose is one of of the first to look at multi-dimensiona blending of animations. He
chose to use Radial Basis Functions to approximate the blending functions from an adverb
parameter (like happiness) to a weighted blend of Euler angles in the animation. Rose
does agood job of covering the high level issues with using pose-blending practically. For
example, he shows ways to handle the time-warpingproblem of matching up the structure
of examples. He describes what good examples should consist of. He shows how to use
aquick, local IK solver to “fix” the classic foot-sliding problem with blending techniques.
Finally, he shows how to learn inverse kinematics as an RBF from the Cartesian effector
space to the space of joint angles, and looks at errors.

One mgjor problem that Rose discusses is that he found the extrapolation behavior to
be poor, so that animators needed to generate the convex hull of animations, rather than
just a point along each axis. In other words, if there was a happy axis and a drunk axis,
he would need examples of a happy walk, drunk walk, normal walk, and the drunk-happy
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walk. We feel that his poor extrapolation behavior (and perhaps some of the issuesin the
error in his IK learning) is due to his choice of an Euler angle representation as the basis,
which causes these sorts of problems. Rose avoids gimbal lock by a pre-processing step
that puts the gimbal lock point away from the data and reinterprets the data in that Euler
Set.

Rose hints at quaternions, mentioning that he uses squad to transition between two
animations, which leads some readers to believe that he used a quaternion representation
for the blending and IK (such as Grassia), which is not true *.

Rose's work was influential in our implementations of quaternion RBF's for pose-
blending, and we followed his lead on the many issues with creating good example ani-
mations. Our work complements his by extending it to a quaternion representation.

11.1.4 Grassia

Grassia's PhD work [30] is also quite similar to our research as well, although was done
independently. Grassia, like Rose, investigates a clip-based animation authoring system for
transforming animationsto work in new contexts. He also uses example datain the form of
guaternion motion curves and quaternion joint limits. He considers operations for blending
and editing known animationsto work for new situations.

For example, he also describes his own inverse kinematics solver based on a quaternion
representation, but does not discuss hisjoint limit model, if he even uses one. On the other
hand, he focuses on the use of scaleless metricsin the IK algorithm, although rather than
removing the scale of thejoint motion ranges aswe looked into with our QUTEM model and
Mahalanobis distance metric, he uses a notion of energy and mass and removes the scale
caused by these effects. When he discusses pose distances here, he considers a Euclidean
norm between “pose vectors’ but does not discuss the details such as hemispherization.

Grassia discusses many of the issues with transitioningfrom one animation to another
in detail, and how to handle the timings and angular velocities of joints getting there. We
discovered many of the same issues in the implementations of Swampedand (void*) and
refer to Grassia' s work here rather than duplicate it.

Grassia only discusses real-time engines towards the end of his thesis, suggesting that
he IK solver is likely the limiting factor, though not enough had been done. Our work fo-
cuses on real-time performance as the first design principle so we avoided slow algorithms
from the start.

11.1.5 Downie: Pose Graph

The last few projects in the Synthetic Characters Group have used Marc Downi€'s pose
graphformulation of the motion manifold for a character. A pose graph isadirected graph

of animation frames from examples. The graph needs transitive closure in that transition
animations between certain verbs (like walk to sit) need to be added explicitly. They can be

created by hand, or potentially by some algorithmic method such as spacetime optimiza-

tion [25].

1Rose, personal communication
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Blended animations are specified in terms of a motor skill with a set of examples that
can be blended. He assumes that he weights sum to one, therefore he ignores extrapol ation
issues. He uses an Ax search through the graph in order to find shortest paths from the
current motor skill to the desired motor skills, according to a pose distance metric that
also considers velocity information, though not joint ranges. The addition of velocity is
important and our algorithms should be extended to handle it. Since angular velocity is a
vector quantity, this should be fairly straightforward.

The pose graph uses our slime blending algorithm at its heart. Rather than use an RBF
approach like we did in Swamped!and (void*), however, the programmer now needs to
specify the weights on each animation by writing an AdverbConvertefunction. We feel
that this does not leverage the animator’s ability maximally, but for certain types of motor
skillsit has proven to be useful.

11.2 Multi-dimensional Quaternion and Pose Blending

This section will cover related work on multi-dimensional quaternion blending.

11.2.1 Grassia: Nested Slerps

Grassia uses a quaternion representation for hisjoints in his PhD work on example-based
motion transformation [30]. He admits that the weighted blend of n quaternion values
for joint blending is an outstanding research problem and chooses to use nested slerp’s to
construct hisblends for “simplicity.” For example, to throw a ball in a certain direction, he
would blend between the examples of throwing high/low and left/right:

Slerp(Slerp(Qlefta Qrighta wleftright); Qupa wup)

Unfortunately, this process produces different blend results depending on the order the
derps are done in due to the non-commutivity of rotations. For example, if he chose to
blend up/down first, then left/right, he would get a different result. He also admits that
the complexity gets deep quickly as the number of blend axes increases. We feel that
having the animator and programmer have to deal with the non-commutivity directly in
the specification of blendsis a bad idea. Likewise, we do not want our character to have
to learn this non-commutivity by having it choose the slerp values that will produce the
desired behavior or have it have to deal with the ordering of its motions.

Grassia argues that he made this choice since there were no other alternatives at the
time. He suggests that one can instead use a *“ mathematically sophisticated non-Euclidean
blending function” to blend the quaternions “such as the RBF' s used by Rose.” Grassiais
not quite correct here, however, since as we said Rose used an Euler angle representation
for his RBF's and did not handle the many issues with creating a useful quaternion RBF.
Proper use of aradial basis function (or other kernel technique) on quaternions requires
dealing with the group theory of rotations directly. Instead, we argue that our slime and
sasquatch algorithms solve this problem better than nested slerps for two main reasons:

e Nested dlerps do not extrapolate since they blend inside the convex hull of examples.
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e Nested slerps scale poorly as the number of examplesincreases.

Grassia also discusses the quaternion exponential map for joint representation [29]. He
concludes that it is a poor representation to use directly due to singularities and interpola-
tion errors, but does not really go into enough detail here. Therefore, he uses quaternion
joint modelsin histhesis. We argue that the exponential mapping is a useful computational
tool for generating local coordinate systems and invariants and that it can be used properly
in conjunction with a quaternion joint model in the development of algorithms and does
not need to be used as the representation explicitly.

11.2.2 Buss and Filmore: Spherical Weighted Averages

Buss and Filmore sought the same type of pseudo-linear spherical blending function that
extends Shoemake'sslerp to /V pointsand for spheres of arbitrary dimension, arguing that a
proper technique that respects the spherical metric has not been presented before in the lit-
erature [15]. They show how the spherical blend can be used to generate B-splines without
using one of the nested slerp geometric spline constructions.

Like our sasquatch, they also start from a Euclidean analogy, namely the minimization
of aquadratic error function in the spherical distance metric for S¢:

N
(@) = % Z w;distga(Q, P;)?
=1

They show how this can be solved using the exponential mapping of the sphere, which
works for any dimension sphere. To solve the system, they calculate derivatives of the
system and solve for acritical point. To find this point, they describe afirst order and sec-
ond order algorithm which amount to gradient descent without and with a Hessian matrix,
respectively. They argue that the first order algorithm runs faster and therefore linear con-
vergence is on par with quadratic in compute time due to the calculation of the Hessian.
They aso give uniqueness and other proofs.

The first order algorithm they present is practically identical to our sasquatch algo-
rithm, which was derived as a physical system. Their timestep is effectively unity. Thisis
not surprising given that the error function they are minimizing can be considered as the
potential energy in our “springs.” They do not exploit the physical analogy any further,
however, which means their proofs get mathematically technical, whereas we can often ar-
gue from physical analogy directly. We also show that on average a higher time-step than
unity (which they use) leadsto slightly better convergence.

Wefeel that our work, independently discovered at about the same time, is complemen-
tary to theirs, as well as more intuitive since we start from physical systems analogy and
leverage the familiarity most interactive engine designers have with this approach already.
We also show how to use the averaging technique to do multidimensional blends directly,
rather than creating a unidimensional temporal spline as they do.
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11.2.3 Lee: Orientation Filters

Jehee Lee's PhD work is quite similar to ours in that it also uses a pure quaternion joint
model, along with the exponentia mapping, to build useful primitives for analysis and
synthesis of motion. Unlike our work, his statistical analysisis hierarchical in that he com-
putes a Gaussian pyramid of filtered data over time. This gives more power in interpolation
given that similar frequency bands can be blended together, rather than all frequencies at
once as in our non-hierarchical approach. Unfortunately, the power comes at the expense
of complexity in time and space, which is why we focused on simple, fast techniques.

L ee also shows how to build coordinate-invariant temporal filters for orientation data.
These filters are useful for producing his filter pyramids as well cleaning up noisy motion
capture data. Lee's temporal filters can also be used for blending multiple quaternions
together, although Lee does not go into the specifics of real-time blending, arguing that
the formulation of the problem for real-time is often different. He also does not go into
the details of multi-dimensional interpolation and extrapolation issues. On the other hand,
he has some good quaternion algebra proofs on showing that the filters are rotationally-
invariant and time-invariant.

11.3 Joint Rotation Statistical Synthesis

Statistical analysis and synthesis has become popular for animation recently, though many
use an Euler angle representation do use the standard linear algorithms. This section will
describe

11.3.1 Brand: Style Machines

Matt Brand describes how to synthesize new animation content consistent with the style
found in examples using a purely statistical method called Hidden Markov Models [12].
His results are mixed — oneissue is that this method needs a lot of data.

One problem with thiswork is that the representation of rotation and how he generates
new samples is not clear in the paper. For example, one difficulty with using HMM’s is
that synthesis is not easy to do, so thisis important 2. We expect he used an Euler angle
representation since he was not explicit.

11.3.2 Pullen and Bregler

Katherine Pullen and Christoph Bregler describe how to use statistical analysisacross poses
encoded in terms of Euler anglesto “texture” a sketch of an animation [66]. They rely on
the fact that joint motions are correlated, and that by specifying some of the joint values,
others can be generated from motion capture examples. This method is similar to our work
on encoding body knowledge in terms of eigenposesin that both will consider the statistics
across al joints. Pullen’s method uses tiny clips from the motion capture data and joins

2Andy Wilson, personal communication
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them together in order to preserve the original data. They also have the same problem with
blending techniquesin that the foot slippage problem shows up here as well.

11.3.3 Lee: Hierarchical Analysis and Synthesis

L ee also shows how to use his orientation filters to perform a hierarchical, multi-resolution
analysis of quaternion-represented animation data and how to use this for synthesis. His
approach is theoretically more powerful than ours sinceit can blend animations at different
frequency bands. We considered using a quaternion wavel et approach for this same reason
(see [17]), but we decided that a multi-resolution approach would be too expensive for a
real-time engine.

11.4 Quaternion Joint Limits

This section will give an overview of related work on joint constraints with quaternions.

11.4.1 Grassia

Grassia discusses separating out the swing and twist components of ball-and-socket joints
in his paper on the exponential map [29]. He shows how this simple model can be used to
handle constraintsin terms of an ellipse for swing and another constraint for twist, but does
not discuss how to learn these from data, as we do. He argues that quaternion angular joint
limits are difficult, but goes no further.

Our work goes into more depth with gleaning joint limit constraints directly from data
in terms of our QUTEM model. This allows constraints to be learned from data. We do
not explicitly factor out the twist/swing components for efficiency and ssmplicity — we
have found reasonable performance for joint limits using this technique. Neither of these
techniques directly handles the fact that the twist constraint often depends on the swing
value in humanoid joints, like the shoulder.

11.4.2 Lee

Jehee Lee's PhD work [54, 55] describes how to model several common types of joint
[imit models on the quaternion sphere. He describes three: conic axial and sphericaland
shows how to do inclusion tests in the quaternion algebra. He argues that more complex
constraintslike a shoulder can be made up from intersections of these; for example, aconic
plus an axia limit the swing and twist or a shoulder. He does not show how these can be
learned from data, so we assume that they must be generated by hand algorithmically by
the programmer and not the animator. Also, it isnot clear that an intersection of three axial
constraints will givesrise to the same ellipsoid boundary on the sphere which we use.
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11.4.3 Wilhelms and Van Gelder

Recently, Wilhelms and Van Gelder [89] show how to use joint sinus conesA sinus cone
is aregion on S? which limits the range of motion of the swing component of a joint to
being within the region. This allows the twist component to be limited separately so it can
be made a function of the swing, which is the case for humanoid joints such as shoulders.
Wilhelms and Van Gelder describe how these ranges can be created by having the animator
specify the ranges by examples. They show how to quickly perform inclusion/exclusion
methods on this structure. Finally, they describe how to smooth out the spherical polygons
so they appear more like €ellipses on the surface of the sphere by using the stereographic
projection of the sphere. The stereographic projection is very related to the exponential
map of S2.

11.4.4 Herda, Urtason, Fua and Hanson

Recently, Herda et al[39, 40] have shown how to learn joint limits from data automatically
using implicit surfaces on quaternion field$lere, joint data for a human shoulder is an-
alyzed using a quaternion representation. By ignoring the scalar component 3, they get a
cloud of pointsin 3D which describe avalid rotation. Given this data cloud, they can find
an implicit surface which contains all the joint animation frames for the joint. The problem
of constraining a joint then amounts to finding the nearest point on the implicit surface.
One advantage of their approach allows them to find the relationship between swing and
twist limits, which is why they focus on the shoulder joint. Unfortunately, they notice the
problem of holesin the data and discuss some early waysto handle this.

One issue is that athough more genera, their primitives are not as computationally
efficient as ours, since we focused on real-time performance inside an inverse kinematics
algorithm. Also, our work has not looked into the holes in the data directly — some of the
holes depend on the configuration of other body parts (in order to avoid self-penetration,
for example), so in some sense alocal joint constraint model will not be able to understand
these holes. Thisis an interesting area for future work.

11.5 Expressive IK

Much of the work on motion retargettinguses an inverse kinematic solver to warp (or dis-
placement map) existing animations to meet certain kinematic constraints, such as keeping
asupport foot fixed on the ground. Almost al of these are designed for “interactive editing”
of motion capture data. In general, we focus on those that use a quaternion representation
or are designed for real-time performance by multiple interactive characters, rather than as
an animation creation tool.

3] believe the direct use of the exponential mapping is probably equivalent to this, though they do not
describe that here.
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11.5.1 Blow: Quaternion CCD IK with Joint Limits

Jonathan Blow’s recent work presents some insights with using a quaternion joint model
with CCD and adding joint limits [9]. He also is one of the few developers who focuses
on speed, and even argues that an arcosine and a sine are expensive. He never mentions
the exponential mapping, but it seems clear that he is referring to it here, since Grassia's
decomposition is basically the same asthis[29].

He encountered the same problem we did with adding joint constraints as a separate
computation between each CCD step — very poor convergence, or lack of convergence,
for certain starting configurations. To deal with this, he selects several poses which seem
to converge to a large set of solutions. When he gets stuck, he can then choose a different
poseto iterate from. He shows how these can be chosen by hand with visual inspection, or
by calculating clusters experimentally. It is not clear which solution thiswill find, however
— usually, we expect to iterate from the current pose forward in time by a little bit. In
general, however, this seems like a very good idea.

Blow also describes a joint model with quaternions which is similar to Grassia's. It
factors the rotation into two terms: a factor & which rotates the bone to align its axis in
the correct direction and afactor S next which then twists around that axis, resulting in the
composite rotation SR. In thisway, swing and twist ranges can be limited separately. He
shows how this can be done by using a similar 2D polygon inclusion test that Wilhelms
uses.

11.5.2 Lee: Quaternion IK with Constraints Using Conjugate Gradi-
ent

L ee presents a quaternion-based 1K algorithm which uses hisjoint limitsin his Phd work
(also SIGGRAPH 99) [54, 55]. He uses a quaternion representation of rotation and shows
how the inverse kinematics problem amounts to a minimization which respects the con-
straint functions. He shows how to use the exponential mapping to do this minimization
without adding an explicit unity constraint and resulting Lagrange multiplier. He solves
the minimization problem with a conjugate gradient solver, which effectively chooses the
directions to take steps in, rather than being forced to take steps in each decoupled joint
direction asin CCD. Ideally, this should increase convergence rates for the case of an axia
constraint. Unfortunately, use of a conjugate gradient technigue increases the computa-
tional burden quite a bit, especially since a matrix representation of quaternions is almost
unavoidable here. Lee's experiments showed that the IK algorithm is slow in practice. To
help this, he reduces some of the IK chains to fewer coordinates by encoding humanoid
heuristics (in particular the elbow circlg into his representation. Effectively, this reduces
some of the 1 DOF jointsto a 1 DOF search in the optimization rather than 4. One problem
isthat the elbow circle is a known redundancy in the human arm (and legs), but might not
be the case for some arbitrary alien creature which a videogame animator might create.
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11.5.3 Grassia: Quaternion IK for Motion Transformation

Grassia's PhD research [30] also considers a quaternion version of an IK algorithm similar
to Lee's for transforming motion capture data with a displacement map. The most inter-
esting part of this work is that he describes how to make the IK agorithm scale-invariant
with respect to a description of mass and energy. A problem with this approach is that
some notion of dynamics is needed, which can get expensive. He admits that he expects
the IK algorithm to be the slowest part of his motion transformation algorithm, which Lee
seems to agree with. In our case, the IK agorithm is the most expensive as well since it
isiterative. Since we avoid the full conjugate gradient matrix approach, however, and use
geometric methods, we expect that we should ultimately be able to get better performance
than these methods although more experiments need to be done.

11.5.4 Hecker: Advanced CCD Extensions

ChrisHecker describes hisinvestigation of using CCD on ahuman figurein arock-climbing
simulation at the GDC 2002 [38]. He uses an Euler angle representation. He describes
ways to add constraints at each iteration by clamping the joint angle ranges and describes
how this slows the solution and produces different results than are expected often. He also
describes how to handle multiple branching points in the IK chain, which Welman only
hints at and no one else addresses. He suggests performing the CCD on each chain a a
branch point separately, then blending the resulting answers. For the case of more than two
branches, this amounts to blending more than two poses. He does not discuss interpolation
much here, but we expect he will have the classic Euler angle problems. Our blending
primitiveswill allow this CCD extension to be incorporated directly into out QUCCD algo-
rithm.

Finally, he touches on the fundamental problem of expressive IK: CCD chooses a pose
which is not the pose the character (according to an animator) would have chosen. He men-
tions early uses of physicsto “relax” these poses under gravity and other effects, but does
not present further. He describes future work of a “Body Knowledge” engine that would
encode valid poses by looking at all animated poses and “ somehow” push the answer near
there. Aswe argued, we expect that a statistical analysis of posture such as our Eigenpos-
tureswill be a useful approach to creating such a body knowledge engine and handling this
problem.

11.5.5 Fod, Mataric and Jenkins: Eigen-movements

Recently, Fod et al[22] used a Principal Component Analysis (PCA) on movement exam-
plesin order to find useful “movement primitives” The goal is to use these primitivesas a
lower-dimensional subspace to help the recognition of movement. They use an IK solver
to convert their 3D point positions of jointstracked on a performer into an Euler angle rep-
resentation. They then perform PCA and K-means clustering to find a lower dimensiona
set of “eigen-movements.” They compare reconstruction results and use a simple servo to
move a robot with combinations of these primitives.
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One issue they have is that the IK solver needs to handle gimbal lock since they are
using Euler angles. It is not clear how they handle this since they do not go into the details
of the IK agorithm. An advantage of their work isthat by looking at full movements some
of the dynamics might be captured by the PCA. We have begun to look at PCA on posture
plusits derivative to hopefully discover more structure in the data.

11.5.6 D’Souza, Vijayakumar, Schaal and Atkeson: Locally Weighted
Projection Regression for Learning Inverse Kinematics

D’ Souza et al describe a method for learning inverse kinematics solutions a humanoid
robot [21]. They uselocally weighted projection regression (LWPR) algorithm to learn the
nonlinear inverse kinematics solution. In order to make the algorithm local to the posture,
they must include it into the learning input. Therefore, they learn a mapping from:

(6,%) — 0

where 6 is the vector of Euler angles that describes the current posture, x is the desired
velocity at the end effector (for the next timestep) and  is the required angular velocity of
the posture.

They use Gaussian “receptivefields’ (RF) asasource of local blending functions. They
use these local RF's as the source of blend weights on locally-linear models, with each
kernel calculating how far it is from the query. The output is ssimply the weighted mean of
the local models, using the Gaussians as the weight.

Finally, they create a cost function to provide a learning update. To help resolve kine-
matic redundancies, they add a cost for the posture from some “optimal” posture, which
essentially allowsthe chain to movein the null space towards this optimal once it has found
asolution. Thisisthe equilibrium point that resolved rate IK systems use and we described
in Chapter 9.

One interesting method they use to train the system is called “motor babbling.” Here,
the robot choosesamean for each joint, then “wiggles’” around it to learn thelocal behavior.

Theselocally-weighted mixtures of linear models are becoming popular these days (see
Gershenfeld's book for a good overview of these mixture model techniques, including his
own Cluster-Weighted Modeling [24]. One issue is that they implicitly assume a vector
space, but since the model islocal, thisis often closeto true. We considered using Cluster-
Weighted Modeling to approach this problem, but decided to try a geometric approach
(CCD) first.

The equations they use should be fairly simply to convert into a quaternion represen-
tation. The Gaussian receptive fields simply require a proper distance metric on postures,
which we have discussed, and should be able to be implemented with our QUTEM model.
The unity sumweight blend of local models on quaternions can be done using our spherical
blending primitives. Furthermore, our QUTEM can be used to perform “motor babbling”
by sampling new orientations.

This work is quite promising, and we feel that a quaternion version should perform
even better for a virtual character. Minimally, we expect that less linear models will be
necessary and the system will perform better with |ess data since the quaternion metrics are
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more appropriate, but this needs to be tested empirically.

11.6 Summary and Recommended Reading

We recommend that the reader interested in the problems of example-based expressive
interactive character animation read Rose's PhD on using Radial Basis Functions for ani-
mation blending [44], Grassia's PhD on motion transformation for editing motion capture
data[30], and Jehee Lee's PhD on multi-resolution statistical analysis and synthesis of mo-
tion [54]. Their work is complementary to ours and to each other and between our work
and theirs much of the problems with creating expressive animation from examples are
addressed.
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Chapter 12

Discussion, Future Work and
Conclusions

We have come along way, from ahigh level description of expressiveinteractive characters,
down to some most likely unfamiliar quaternion mathematics, and back out to a set of new
algorithms for solving the problems encountered in designing a real-time motion engine.
So what |essons can we take away?

Section 12.1discusses several points about using quaternions in a real-time, expressive
interactive character engine and evaluates the success of the approach.

Section 12.2describes future directions we think will be fruitful.
Section 12.3collects the conclusions drawn throughout the work.

Section 12.4summarizes the main contributions of this research.

12.1 Discussion

Both myself and others have successfully used the algorithms and ideas in this dissertation
in the design of real-time animation engines and motor systems for expressive interactive
characters. Along the way, we learned quite a bit about the theory and application of
guaternionsfor usein real-time skeletal character animation. This section will try to collect
some of the more useful ideas and intuitions for readers who need to implement their own
such system. We break the section into the main related work areas.

12.1.1 Pose Metrics

We use the geodesic metric based on the exponential map throughout this work. We made
this choice for two reasons:

e It is closely related to Euler’s theorem and therefore models the magnitude of the
physical action of rotation mathematically as directly as possible.
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e Itisvalid over points“far” apart on S?

One point that should be madeisthat for two points P, Q) € S? that are“close” together,
the length of the chordin the embedding space R* (denoted ¢ and p) between the points

d=la-p|

isagood approximation to the geodesic metric since the local structure of the sphereis
flat.

Metrics are often used to estimate the angular speed between the two rotati ons described
by the pointsif they are samples At apart in time. On the other hand, the geodesic metric
will give amuch better approximation to the angular speed for points that are farther away
(with respect to the spherical metric) since it respects the group metric. Explicitly,
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as the samples get farther apart since the geodesic metric respects the rotation group metric
of Euler's theorem. In other words, for uniformly sampled points in time, estimates of
the derivative will be better behaved as the sample period (At) isincreased or the angular
velocity of the curves is larger. In these cases, the distance between two sample points
(on the sphere) will be larger. Explicitly, an estimate using the chord-length between two
quaternionswill asymptotically under-estimate the true angular vel ocity as compared to the
spherical metric.

12.1.2 Multi-variate Unit Quaternion Blending

We described two new algorithms based on the invertible exponential mapping of the unit
guaternions to and from a tangent space, slime and sasquatch. We argued for the use of
the faster, approximate slime algorithm with the mean over the corpus of animation data as
the reference. This both puts the singular shell as far from where the data lives as possible
as well as giving the best approximation behavior there most of the data lives. We also
suggested that slime be used on internal character joints and sasquatch on the root node.

These are not the only possibilities for blending quaternions, however. We discuss
several other briefly.

Renormalized Embedding Space Blending

If the exampl es are hemi spherized, then the renormalized Euclidean blend will also produce
reasonabl e solutions, as we showed when we used it as the initial value for our sasquatch
algorithm. The problem with this method is that the embedding renormalization does not
respect the group metric, so a constant change of the weights will not necessarily produce
a constant angular velocity curve. This parametric variation is undesirable and was the
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motivation for Shoemake's slerp in the first place. We aso require it in the case of more
than two examples. We have not done the actual analytic derivatives of neither slime nor
sasquatch, but expect the desired behavior from sasquatch and approximate behavior for
slime (when exampleslie on a great circle through the reference).

Nested slerps

Grassia used nested derp’s which he calculated the weights of by hand for each of his
problems. Thisisundesirableif we wish to just use the blending primitive as a“black box”
like that shown in Figure 7-1. Furthermore, the order the erps are applied in matters due
to the non-commutivity of rotation. For example, if we have three examples with weights
on each, applying aslerp from A to B first then aslerp of theresult to C', we will in general
get adifferent blend result for the same weight veafowe perform the slerpsin adifferent
order, such as from B to C' and then slerp the result to A. Additionally, the extrapolation
behavior, which we argued leverages the animator’s skill, is not clear using this method.

Barycentric Coordinates

Barycentric coordinategsee Hanson's Gem [35]) allow interpolation of points inside a
simplex in terms of affine transformations between the simplex vertices. Since we can use
aspherical triangle on S as asimplex and the geodesic interpol ator slerp to perform affine
combinations on them, we could use barycentric coordinates to describe a point inside the
spherical triangle. We did not consider this approach in our work and leave it to future
work to compute the barycentric coordinates on S? of an interpolated point. One issue
with using this method, however, is that it defines points insidethe simplex, and therefore
will not extrapolate which as we argued leverages the animator through the requirement
of less examples and the ability to make caricatures of an animation. On the other hand,
our sasquatch algorithm also only interpolates. It would be interesting to work out the
rel ationship between these approaches.

12.1.3 Quaternion Statistics

Our approach to quaternion statistics was to use the logarithmic mapping at the largest
value eigenvector of the sample covariance matrix of the data as embedded in R* to map
from the non-Euclidean surface of S? into atangent space R?* where we could use standard
vector-space Gaussian densities. This approach was motivated to be an analogue of the
vector Gaussian density — subtract of the mean, create the sample covariance matrix, find
its principal axeswith an eigenvector or SV D a gorithm, and use the resulting Mahalanobis
distance formulain a scalar Gaussian function to find the unnormalized density value.

The Bingham distribution, on the other hand, estimates a singular Gaussian in the em-
bedding space R*. It is singular since the data lie on a sphere, removing a degree of free-
dom. In practice, thisimplies a constraint on the eigenvalues and therefore a convention is
used to choose the actual parameters used. These parameters do not have a direct physica
interpretation in terms of the rotations we are modeling, however, which this convention
just underscores. On the other hand, the Binghame distribution really is just a Gaussian
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density in R*, which means that sampling from it would not involve the exponential map
and its resulting trigonometric functions. Since the QUTEM distribution and Bingham
distribution seem very related mathematically by the exponential mapping, and especially
since they both cal cul ate the eigenvectors of the sample covariance matrix asthe Maximum
Likelihood Estimate of the covariance rotational factor, we feel that it could be possible to
estimate the Bingham parameters as a function of our estimated variances. The paper by
Prentice [64] also seemsto imply this, but more investigation is required.

12.2 Future Work

This section offers some future work directions we feel are promising.

12.2.1 Dynamics

This work assumed only a first order approach — kinematics. Many systems these days
require dynamics, such as physical robotic systems, so these issues need to be addressed.
Grimesin our group has begun on implementing non-linear force fields using the QUTEM
model for solving some inverse dynamics (joint torque cal culation) problems.

12.2.2 Joint Limits

We use an isoprobability contour of the QUTEM density to model a hard joint limit model
learnable from data. The main problem with this model is its simplicity. In redlity, a
human shoulder joint, for example, has different ranges for the twist around the upper
arm depending on which way it is facing due to the internal organic joint structure. Other
methods such as Herda et alallow for more general joint constraintsand will therefore have
better results. We plan to implement their method and investigate its properties on our dog
data.

12.2.3 QuCCD

Our extension to CCD isfast, but still has problemswhen ajoint constraint model is applied
after each step in the case of a1 DOF joint. Thisis because the algorithm is unaware of the
constraints when it takes its step. It should be possible to compute an analytic solution to
the joint subproblem using the Mahalanobis distance to “make the algorithm aware of the
limits.”

Chris Hecker showed an advanced CCD IK system at the GDC ' 02, showing how to
handle branching chains and more complex constraints. He uses an Euler approach, but
again, we can drop our primitives into his general framework and should gain immediate
benefits.
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12.2.4 Orientation Statistics

As we argued above, the Bingham distribution can a'so model unit quaternion densities.
Although we chose not to use it for our work, the recent PhD by Antone [1] shows its
efficacy for application to a computer vision problem. It would be interesting to test this
approach on our data as well. One main advantage of the Bingham approach is that it
stays in the embedding space, where standard familiar vector calculus techniques can be
used. In certain casesthismay simplify the mathematics, but moreinvestigationisrequired.
Also, the mathematical link between our QUTEM tangent-space approach and the Bingham
distribution should prove elucidating.

12.2.5 Posture Statistics

Since Principal Component Analysis (PCA) finds alinear subspace of the posture, it cannot
capture curved manifolds. If the motion-space of a particular character lives on a curved
manifold, then PCA will miss this structure. Recently, global manifold unfolding methods
have begun to be used in computer vision to solve this problem of PCA and should be ap-
plicable here. In particular, we did an initial characterization of some of our animation data
with the new, successful 1somap algorithm [82], which finds agloba Euclidean coordinate
system of minimum dimension that tries to capture the intrinsic degrees of freedom of a
manifold given only a pair-wise distance metric between examples. We used the geodesic
metric for this. When applied to awalk cycle of adog, the algorithm found a 2D Euclidean
space that mapped the points on the walk cycleinto acircle, which is not surprising.

We think it would be interesting to try Isomap on the entire corpus of animation data
and then perform Euclidean blends on the resulting Euclidean mapping of the data to see
what the inherent degrees of freedom of the motion manifold correspond to. Much more
investigation needs to be done here.

12.2.6 Expressive IK

We made it only part of the way in our approach to expressive IK, but the early results
seem promising. Even though the Eigenpostures did not give as good results as we expect,
it would still be interesting to try and use them to keep a procedural IK solution from
drifting too far away from the character’s motion subspace as expressed by the examples.
Future work by the Robotic Life group led by Breazeal will attempt to apply some of the
algorithms and ideas to the more complex humanoid robot from Stan Winston Studios
shown on theright in Figure 1-1.

12.2.7 Translational Joints

Sometime trandational joints are desired by an animator to create expressive animation.
For example, cartoons characters sometime have their eyes “pop out” of their head to show
surprise. Since we ignore translational effects in joints, we cannot handle these types of
prismatic joints yet.
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The exciting field of Geometric(or Clifford) Algebra (see for example [17, 31, 68]),
however, models the entire Euclidean transformation group (rotation and trandation) in
terms of the algebra generated by formal sums of a vector and a scalar rather than starting
from a hypercomplex viewpoint. It generalizes the notion of the vector cross product to
N dimensions by introducing the geometric producbf two vectors as a sum of an inner
and outer product of these elements, similarly to the quaternions. This create a multilin-
ear algebra which can describe rotations in NV dimensions in a unified, principled frame-
work. The geometric algebra for R® can be factored into a dual quaterniorrepresentation
(see [59]). One of the unit quaternions represents the rotation effect and the other quater-
nion of arbitrarily-large radius ! can represent translation since rotations of a large sphere
look like trandations up close. McCarthy uses dual quaternions in some of his robotics
work [59, 17]. J uttler aso shows how to create rational splines (Bezier and B-spline)
using proportional dual quaternionsin [48] usesthemin [49].

We also have attempted to use the geometric algebra to calculate a Bayesian solution
to Inverse Kinematics problem using the QUTEM model as a prior on the joint’s mobility,
but got stuck in the derivation. The problem seems to lead to a generalized eigenvector
problem, but more work needs to be done.

12.3 Conclusions

Thisthesis presented several new mathematical and computational building blocks for the
design of real-time expressive interactive quaternions by exploiting the quaternion repre-
sentation of spatial rotation for modeling joint rotation of a skeletal articulated figure.

Our goal wasto create a set of building blocks that:

e Are computationally efficient
e Are mathematically robust

e Leveragethe animator’s skill in the form of examples

We now present conclusions from using quaternions and their exponential mappingsto
design these computational building blocks.

Pose metrics The pose metrics we provide are far superior to a Euclidean norm on Euler
angle triples as examples are farther apart. We conclude that they are more mathe-
matically robust.

slime The slime agorithm was the first algorithm we developed and therefore has gotten
the most use. Its successful usein our early motor system for Swampedbnd (void*)
as well as the subsequent successful incorporation into Downie’'s pose-graph algo-
rithm [20] demonstrate its robustness. The fact that we can use it to blend multiple
characters on the screen at one time in a subset of CPU cycles demonstrates its effi-
ciency. On the other hand, it can only be used on internal joints without modification.

1Hanson calls thisthe “ Giant Beach Ball ”
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Since the majority of jointsin a character are interna, thisis not a limitation for its
use in figure animation blending. We conclude that it is a good building block for
pseudo-linear unit quaternion blending. Since it affords excellent extrapolation be-
havior due to its use of the Lie algebra of quaternions, it also allows us to leverage
the animator by requiring fewer examples and allowing us to generate caricatures of
example animations.

sasquatch The iterative sasquatch algorithm has not been used in a full engine yet, but
trial experiments have shown that it produces desirable results, aswe depicted in Fig-
ure 7-7 and Figure 7-8. Although it isiterative, it islinear and robust in convergence.
This taken with the fact that it need only be used on root nodes impliesthat it can be
used efficiently in an engine.

QURBF We used our quaternion extension to Radial Basis Functions using theslime prim-
tive to implement Rose’s Verbs and Adverbs [44] seminal work in real-time anima-
tion blending. Thisimplementation was used successfully in Swampedand (void*).
This demonstrates both the usefulness of the slime blending algorithm as well asthe
usefulness of being able to approximate unit quaternion-valued functions. Rose’'s
work was also motivated by a need to leverage an animator’s skill, but he found poor
extrapolation behavior, which we did not. We argue that the quaternion group affords
this behavior as we argued above since our slime algorithm has much better extrap-
olation as well as interpolation properties than the Euler angle representation which
Rose used. Our work complements his in that we show how to increase both per-
formance and behavior of hisframework by using quaternions while still being able
to use many of his techniques and design recommendations for creating appropriate
pose-blending examples.

QUTEM The QUTEM statistical model for learning a model of joint motion from ex-
ample data was shown to be useful for choosing an appropriate tangent space for
slime, calculating fast joint limitsfor QUCCD and quickly mapping large amounts of
quaternion data to a local hemisphere of S? for handling antipodal symmetry when
required. Furthermore, it can be used as a quaternion kernel function in other ma-
chine learning algorithms. Furthermore, early results at using it to synthesize new
animations similar to another animation suggest that it will be useful for leveraging
the animator’s skill. We conclude that it isavery useful building block for designing
many expressive interactive character algorithms.

QuCCD Our quaternion extension to CCD demonstrates that by exploiting a quaternion
representation of joints, we can not only simplify the mathematics of an IK algo-
rithm, we can also increase its computational efficiency. On the other hand, the use
of ajoint constraint model as a projection operation slows or stops convergence of
the CCD algorithm. On the positive side, we have described how it should be pos-
sible to extend this to take constraints into account in a more principled way. The
CCD algorithm also does not need to deal with ill-conditiong caused by coordinate
singularities (singular Jacobian matrix) and is much, much faster in general. Full
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optimization techniques or Jacobian methods are still in general too slow to be vi-
able for multiple characters with multiple IK chains. We therefore conclude that the
QuCCD is auseful building block.

Joint Limits Our model of joint limitsis|earnable from data, so allows usto leverage the
animator’s ability. In addition, it is convex, which affords mathematical robustness
by keeping an IK solver from getting stuck on a corner and requiring the need for a
complicated non-linear programming algorithm such as described in Badler [3]. Fur-
thermore, we describe how the limits can be computed simply with an exponential
mapping, rotation and non-uniform scale, followed by a vector magnitude compar-
ison. These operations are fairly efficient and therefore we conclude that the joint
limit model is computationally efficient.

Eigenpostures Our early experiments with eigenpostures suggests that they offer some
computational efficiency advantage by potentially allowing for animation compres-
sion. We cannot make claims about the robustness until more work is done. Since
they potentially offer the ability to directly learn a model of the subspace of motion
of a character from a corpus of animation data, they should allow us to leverage the
animator. Our results to date do not support nor invalidate this claim. More work
needs to be done.

Expressive IK Our initial results in combining our building blocks to approach the prob-
lem of Expressive IK have shown that a hybrid example-based pose-blending algo-
rithm coupled with anumerical IK procedure can leverage the animator by reducing
the number of example animations required. The fact that pose-blending can be used
to “get the solution close” before an IK algorithm is applied demonstrated that a
hybrid can also speed up the calculation of an appropriate IK solution, which is of-
ten the slowest building block in any character engine. We cannot make robustness
clamsyet asthere are still several issueswith CCD in general. Hecker’s recent find-
ings might help alleviate some of these problems, however, as he demonstrated that
it can be made fairly robust with afew extensions.

Exponential Map In our work, we discovered that the exponential mapping of the quater-
nions is an extremely useful primitive for performing a robust local-linearization of
the quaternion group. We used thisfact in the design of all of our algorithms, which
shows that it is an important primitive that is often ignored. By coupling it with a
unit quaternion representation instead of using it as a parameterization of rotation
itself, we can avoid some of the problems encountered by Grassiain his work [29].
By using a unit quaternion joint representation, we gain the benefit of a straightfor-
ward calculus and an algebra of pose. Specifically, we avoid the need to calculate the
exponential and logarithmic mapsin order to compose two rotations, which isavery
common operation in forward kinematics as we showed in Chapter 5. Since these
maps use trigonometric functions, they can be expensive computational on some
platforms. The quaternion composition of rotations involves only multiplications
and additions, making it much more efficient.
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Physical Robots Our quaternion pose-blending primitiveswere also applied to the motion
of the Public Anenome robot (Figures 10-17 and 10-18) along with aCCD algorithm.

From these conclusions we make the final conclusion:

The quaternion representation of joint rotation, along with its exponential
mapping and Lie algebra, allow us to create building blocks for real-time
expressive interactive character engines that are computationally efficient,
mathematically robust and leverage the ability of an animator.

12.4 Summary of Contributions
We summarize the main contributions of this research:

e Appropriate posture metricsfor usein example-based al gorithmsthat require domain-
specific metrics for robustness and performance

e The fast slime algorithm to give the optimal average approximate blending perfor-
mance and good extrapolation performance for internal (non-root) joints.

e Theiterative sasquatch algorithm for an exact weighted blend of n quaternions for
handling root nodes and other joints where slime is not enough.

e How to use these two blend primitivesfor non-linear blending and a specific descrip-
tion of using them with Radial Basis Functions.

e The QUTEM dtatistical model for learning a model of joint motion from example
data, synthesizing new joint orientations similar to example data, choosing an appro-
priate tangent space for slime, calculating fast joint limits for QUCCD and quickly
mapping large amounts of quaternion data to alocal hemisphere of S? for handling
antipodal symmetry when required.

e QUCCD : aquaternion version of the heuristic Cyclic Coordinate Descent (CCD) IK
algorithm.

e A simple, intuitive and fast way to estimate joint rotation limits and inherent degrees
of freedom using the QUTEM for use in blending and IK.

e Eigenpostures: How to use Principa Component Analysis (PCA) on pose data for
finding an “ expressive” subspace of the full motion-space.

¢ Aninitia investigation of Expressive Inverse Kinematics using al of the primitives
in conjunction.
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Appendix A

Hermitian, Skew-Hermitian and Unitary
Matrices

This appendix gives a quick mathematical background in unitary matrices. When we refer
to the group SU(2), we refer to the group of specia (determinant one) unitary (rotation) 2
by 2 matrices consisting of complex entries.

For complex matrices, we introduce the hermitian transposeperator on complex ma-
trices as the analog of the transpose for real matrices.

Definition 6 Thehermitian transpose A of a matrixA with complex entries is theonju-
gate transposeof the matrix,(A*)”, or the matrix with each entry replaced by its complex
conguate { — z*) and then transposedi(; — A;;):

AT = (A"
Immediately we seethat if A hasreal entries, the hermitian transpose is the same asthe

real transpose.
Using this definition, we extend the inner product of vectorsin R™ to vectorsin C".

Definition 7 Theinner product ofx,y € C" is

xty = zn:x;"yi

Definition 8 The magnitude of length of a complex vector € C" is the sum of the
squared moduli of the components:

13
9

The analog of the symmetric real matrices are the complex Hermitian matrices.

Definition 9 A complex matribA is calledHermitian if it equals its Hermitian transpose:

If A = AfthenA is Hermitian
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The analog of an orthogonal real matrix is the complex unitary matrix.
Definition 10 A complex matrix isinitary if
ATA =1

Clearly for unitary A, A = A !, aswas the case with orthogonal matrices.
Finally, we present the complex analog of area skew-symmetric matrix.

Definition 11 A complex matriXA is skew-Hermitian if
Af=-A
Corollary 1 If complexA is Hermitian, theniA) is skew-Hermitian.

Likewise, the complex matrix exponential work similarly, though we will not go into
much detail (the interested reader should see the wonderful introduction to theoretical a-
gebraby Artin [2]).

Property 3 The exponential of a skew-Hermitian matrix of trace zero is unitary.

Thisisthe complex analog of the fact that the matrix exponential of a skew-symmetric
trace-zero matrix in the real 3x3 matricesis specia orthogonal, or SO(3). It can be shown
with the power series form of the exponential.

These skew-symmetric (hermitian) matrices are very similar to each other and form the
Lie algebra elements of the Lie groups SO(3) and SU(2). In fact, it can be shown that
the Lie algebras of SO(3) and SU(2) are in fact isomorphic to a proportionality constant
(since the group SU(2) double-covers SO(3) and we get half-angles). In other words,
infinitesmally (or locally) the groups SU(2) and SO(3) are isomorphic since they have
the sameinfinitessmal generators — these skew-symmetric matrices which in effect encode
the axis and angle of the two rotation groups (the classical rotation group SO(3) and the
quantum spin group Spin(2) = SU(2). Globally, however, we know the structures are
different since one double-coversthe other.
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Appendix B

Multi-variate (Vector) Gaussian
Distributions

This appendix gives a brief introduction to vector Gaussian probability distributions.

B.1 Definitions

The multi-variate (vector) Gaussian probability density function (p.d.f.) for a vector x €
R™ has the form

1
(2m) 2 K]}

where the scalar factor in front of the exponential is the normalizing constant (so the p.d.f.
integrates to one over its domain), K is called the covariance matrixand m is the mean
(see, for example, [83] for an introduction to multi-variate Gaussian densities). We use a
subscript on the density to make it clear which variable it is the density of, as we will use
more than one at atime often.

Compare this to the scalar version of the normal distribution, which is likely more
familiar:

() = e

1 _@-m)?
palr) = e

The covariance matrix is usually decomposed into a principal axisdescription as:

K =UDU’

where U is an orthogonal (rotation) matrix and D is diagonal. This is sometimes called
an eigenvector decomposition since the columns of U are the set of eigenvectors of the
covariance matrix and the corresponding eigenvalues are on the diagonal of D. Specifically,
recall that an eigenvector of amatrix A satisfies the equation:

Ax = \x
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where x is a vector of appropriate dimension called an eigenvectoiof A and ) isascalar
associated withk called the eigenvalueof the eigenvector x. An eigenvector is merely
scaled by some value when the matrix is applied to it, so the eigenvectors describe the
invariant directionsor principal axesof the matrix. In general, areal matrix A can have
complexeigenvectors and eigenvalues! Luckily, we state without proof here that symmetric
real matrices which are positive semi-definite (having determinant greater than or equal to
zero) will aways have real, non-negative eigenvalues and rea eigenvectors. Covariance
matrices fall into this class, so we need only handle real eigenvectors and eigenvalues.
A numerical algorithm (which we use extensively) for finding all the eigenvectors and
eigenvalues of amatrix can be found in Numerical Recipefgs5].

The reasoning for the decomposition is that the eigenvector matrix U of the covariance
can be used to diagonalizethe covariance matrix. In our case, the eigenvectorsin U will
form a new basis in which the components are uncorrelated. Using the eigenvector matrix
to change basis:

UKU=D

we see explicitly that the matrix U can turn the covariance matrix into a diagona ma-
trix. Mathematically, this is showing how any covariance matrix (which we use to model
Gaussians) can be diagonalized by finding its eigenvectors.

Using this decomposition, the inverse of K can aso then be found using the simpler
inverse formulas for these decomposition factors:

K'=(UDU")'=UD"'U

since the inverse of arotation matrix is its transpose

Ut=0U"

and, the inverse of the diagonal matrix is just the diagonal matrix with the reciprocals in
place of the original entry. Notice that the inverse will only exist if the diagonal matrix
is non-singular (has all positive entries). If any variances are zero, the density is singular.
We are forced to handle this by either using the pseudoinverse or by forcing a lower bound
on the variance (we shall use both ideas in our work, depending on what we need to do).
In general, practitioners force the variances to a small lower value to avoid singular data
issues.

B.2 Isoprobability Contours and Ellipsoids

In order to simplify the use and discussion of Gaussian densities, wewill usually write them
in amore compact form which will make the comparison between the QUTEM density and
the vector space Gaussian more clear, aswell as show how Gaussians relate to ellipsoids.

First, consider the isocontours of the Gaussian p.d.f. found by setting the density to
some constant value, call it ¢:

222



1 6—%(x—m)TK'1(x—m)
1/2
(2m)"/? K]
Since the value is constant, we can take the logarithm of both sidesto get

px(X) = =cC

(x — m)'K*(x — m) = r? (B.1)

where we have collected the constant scalar terms into anew scalar, r? in the obvious way.
Writing the new constant as 2 is suggestive; in fact, it can be considered as the radius of
an ellipsoid. Thisis made explicit by using the diagonalization technique described above
to change the basis of x — m into the principal axes of the covariance matrix:

x'—m'=U"(x — m)
where the prime (/) denotes that the vector is represented in the principal basis. This gives
us the ssmpler formulafor the log of the density in the principal basis:
(x' —m')'D*(x' —m') = r? (B.2)
which immediately can be multiplied out (since D isdiagonal) in order to give

& A

which should be familiar as the equation of an ellipsoid in n-dimensions with a“radius’ r
(the two dimensional case is simple to visualize). The principal axes are the eigenvectors,
aswe have said, and have length 2r+/d;. We call thisr the radiusto be consistent with the
spherical case, where al thed; = 1.

The other thing to notice about Equation B.3isthat itisalog density. If we exponentiate
it back into ap.d.f., we notice that we have a sum of scalarsin the exponent. Therefore, we
can factor thisinto a product of separate, uncorrelated scalar Gaussians, each one aligned
along one of the principal directions and with variance the same as the variance in that
principal direction:

(= mh)? | (o = mh)? (= 63

(23=mp)?  (zp=—mp)? (e =mp)?

X =ce e B e (B.4)

This factoring capability is another reason why Gaussians are often used in practice. This
factored form is mostly useful in our case for generating samples, as we describe below.

B.3 Mahalanobis distance
Noticethat the original logdensity equation (Equation B.1) isasimple quadratic expression
in the input vector with respect to the mean. In general, quadratic vector functions of the
form:

y My
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can be considered as a distance functioron the vector x with the metric tensofM if M
is symmetric positive definite. Notice that if M is diagonal, this just weights different
dimensions (components) differently. If M istheinverse of the covariance matrix, asin the
logdensity (M = K 1), the distance function is known as the Mahalanobis distance

Specifically, we can use Equation B.3 asadistance metric. It effectively dividesthrough
the principal variance directions (eigenvectors) by their variance (eigenvalues), therefore
“gphere-izing” the space by making the variance “units’ the same for all components. The
Mahalanobis distance can therefore correctly be thought of as the distance of a point from
the mean taking into account unequal variances, and isin units of “standard deviations.” In
the scalar Gaussian case, most students are familiar with their grades defined in terms of
standard deviations from the mean — this is just the Mahalanobis distance of their grade
from the mean.

We have also shown how this quadratic form encodes the equation of an ellipsoid, where
the particular ellipsoid is defined by the radius, » and particular variances a. Thisfact lets
us say that the locus of all points at a constant Mahalanobis distance from the mean
ellipsoid centered around the medfor example, the ellipsoid with Mahalanobis distance
(radius) 1.0 isthe set of all points one “standard deviation” from the mean.

Computationally, we define the Mahalanobis distance of a vector x from the mean m
to be

d?nahal(mobis (X) = (X - m)TK-l(X - m) (85)

We can use the M ahalanobi s distance to simplify the appearance of the Gaussian density
function:
d)

mahalanobis (X)

Px(X) = ce”?

where we have now made the mean and covariance implicit parameters of the Mahalanobis
distance function and labelled our normalization constant as c¢. Given the mean and covari-
ance, we can simply find the distance of any point by using the quadratic form above.

Following in this vein, we can write the Mahalanobis distance simply as the magni-
tude of the vector transformed into the principal basis, which will prove useful for other
purposes:

dznahalanobis (X) = (X - m)TK_I(X - m)
— TUD_1/2 D—l/QUT :|
[y } [ Y (8.6)
=5s's
= [|s]|?

where we have noticed that the quadratic product is just the magnitude squared of the
input vector translated to the mean, rotated into the principal axes of the Gaussian, and
then sphere-ized by dividing through the standard deviations (square root of the variance).
Specificaly,

s =D Uk (B.7)
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where we use the s to stand for the vector scaled to unit variance, and y to represent x in
the coordinate system with the origin translated to the mean m. Thisis the form of the
Mahalanobis distance, and therefore the Gaussian density, that we shall use computation-
aly. Thetransformation from an arbitrary point into a point aligned with the principal axes
and scaled to have unit variance is a simple rotation followed by a non-uniform scale. The
magnitude of this vector, again, is our Mahalanobis distance:

dmahal(mobis = ||S|| = ||D_1/2UTy||

B.4 Sampling a Multi-Variate Gaussian Density

To generate random vectors according to a multi-variate Gaussian density, we use the stan-
dard technique of generating the vector in the principal (uncorrelated, diagonalized) ba-
sis of the covariance matrix by using Box-Muller scalar sampling algorithm in Numerical
Recipegd65] to generate the uncorrelated components, then rotating the uncorrelated sam-
ple into the basis of the actual vector. This section details how this is done and can be
skipped by those familiar with the technique.

Recall that we can diagonalize the covariance into principal axes using an eigenvector
decomposition. In thisbasis, the density factors, aswe saw, and can be considered asn sep-
arate scalar Gaussian densities, one for each component. Put another way, each component
of the random vector in this basis can be thought of as a separate scalar Gaussian density.
Therefore, to generate a vectorsample, we need only generate a sample in the principal
basis using and then rotate it into the basis of our actual random vector. If we have factored
the covariance matrix K into UAUT, then our component densities will ssimply be zero
mean densities with variances «;, the diagonal entries of A, or entries in our QUTEM’s
variance vector a.

Mathematically, in the principal basis (denoted by the 7) our random vector’s compo-
nents are distributed according to the uncorrelated scalar densities:

z; + N(0,a;)

where we denote sampling from a density with an arrow and the scalar Gaussian (Normal)
density iswritten in the compact N (m, v) form with mean m and variance v.

To generate the scalar samples, we use the Box-Muller algorithm (as described in Nu-
merical Recipe$65] to generate a sample according to a zero-mean scalar Gaussian with
variance a; 1. This gives us a sample vector, x’, in the principal basis with components ..
Next we rotate this vector back into our standard basis in the tangent space by rotating by
the U matrix:

x = Ux’

Asasidenote, in our case of a 3-dimensional density, we mention that we actually will
use the quaternion representation of U, u, to perform thisrotation for efficiency:

1Box-Muller cannot handle zero variances, but sampling from a zero variance density is simple — return
the mean itself for that component, which isjust zero for our zero-mean data.
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x = ux'u* .

B.5 Recommended Reading

The treatment in this section was compiled from several sources. The author recommends
[8, 65, 83] for a more in-depth treatment of probability theory from an engineering and

computational stand-point.
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Appendix C

Quaternion Numerical Calculus

This appendix introduces quaternion ordinary differential equations (ODE’s) and how to
solve them numerically using both the embedding space or intrinsically in the group using
the exponential map. Since unit quaternions live on a sphere, care must be taken when
integrating. We refer to the problem of finding the steady state for the sasquatch quater-
nion blending algorithm in Chapter 7 which motivated the need for solving unit quaternion
ODFE's.

We will change notation for unit quaternions slightly in this appendix for readability of
some of the differential equations. We will be explicit about what group each of the terms
belongsto if it isnot clear from context.

C.1 Solving Quaternion ODE’s

The quaternion ODE in Equation 7.12 is non-linear since it lives on the sphere, so an
analytic closed-form solutions seems unlikely, even for steady state. Several numerical
integration techniques can be used, however. We will discuss two of these, both versions
of the first order forward Euler integration scheme, which is the most simple and common,
and its flaws are well-known. These methods are:

e Renormalized Embedding Space Euler Integration

e Intrinsic Euler Integration

We argue that the last of these, whichis by far the least familiar, isthe best for solving such
systems. It is also the most elegant in that it does integration intrinsically within the group
rather than relying on the calculusin the embedding space, R*, and renormalization. Since
we are solving for asteady state solution where speed (number of iterations) is an issue, we
would like the largest timesteps possible for convergence. We mention that both methods
will assume that the angular velocity over atimestep isconstant. Thisfact isnot true, asthe
exponential map is|ocation-dependent on the sphere, but for reasonable steps and asimple
system like that we are trying to solve for steady-state, thisisless of aworry.
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C.2 Embedding Euler Integration with Renormalization

The standard practice for solving a ssmple ODE in a vector space is to use forward Euler
integration which is based on afirst order Taylor series expansion. Specifically, given the
derivative at a point, Euler integration takes a step in the derivative direction scaled by the
timestep:

x(t + At) = x(t) + At x(t) (C.1)

Thistype of integration has many issues with error accumulation, but for our purposes
it will be sufficient and fast.! Most importantly, it is simple.

If we apply thisformulato the quaternion derivative, we alwayswill step off the sphere,
since all derivatives are tangent to the sphere. Worse, the larger the timestep, the further we
step away from the group. In order to solve this, standard practiceis simply to renormalize
the quaternion, essentially projecting it back onto the sphere. The fact that we can use em-
bedding space integration is a consequence of spheres looking flat locally, or like a vector
space. If the steps are small enough, we get close to the actual solution, but otherwise we
only get an approximation of the true integral. Formally, if we desire to integrate forward
by afinite step it

t+At 2

. t+ At

/ Ods~ L TALE (C2)
: [t + At Q|

This formula leads to similar warping of the space as a standard Euclidean weighted
average caused by stepping in the tangent plane and then renormalizing. A step of magni-
tude s in the tangent space does not lead to a step of magnitude s on the sphere. For larger
timesteps, we get worse behavior of the integration step because the step moves further
from the sphere. Therefore, this method usually requires small timesteps to be effective.
We offer an alternative below.

C.3 Intrinsic Euler Integration

We can aso integrate Equation 7.12 intrinsically — that is, by staying on the surface of the
sphere. Since

Q=wqg=qu (C3)

we can choose to integrate the local or intertial (global) angular velocities, even though we
formulated the derivativelocally.

To ssimplify the calculation, we will use the isomorphism between the quaternions and
SU(2), the group of complex unitary 2x2 matrices with determinant 1, called Special Uni-
tary. These matrices are the complex analog of the special orthogonal real matrices. For-
mally, we have a mapping from a unit quaternion represented as a unit 4-vector (q € S?)
to amatrix in SU(2).

For agreat discussion of numerical integration techniques and problems, see Gershendfeld's book [24].
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It isimportant to note that since the w actually represent vectorsin R?, or pure quater-
nions that are not unit, these are also mapped into complex 2x2 matrices, though they will
not have determinant 1. In fact, it can be shown that w will transform to a skew-hermitian
matrix (that is, 2 = —Q*, where -* denotes complex conjugation of the matrix. Further-
more, ¢! € SU(2) if Q is skew-Hermitian with trace 0. The multiplication of the complex
matricesis equivalent to the quaternion product due to the isomorphism. Therefore, we can
map all our quaternionsinto 2x2 complex matrices and calcul ate the derivativesthere using
the familiar calculus of complex matrices. We will not prove this isomorphism, though the
reader isreferred to Artin [2] for more details or can work it out themselves as an exercise.

Formally, the isomorphism of Equation C.3 results in the complex matrix differential
eguation:

Q(t) = Q1) (C.4)

which we must solve for Q(¢). This equation can be solved formally with the matrix
exponentialwhich converges absolutely for all complex matrices ( [2]). To prove thisfact,
we will assume an ansatzsolution, or guess, and then show that thisis truly a solution by
plugging it back in and solving for unknowns that make it true. Since we wish to solve the
systemin local coordinates, we assume the ansatzsolution

Q = AeS (C.5)

where A is a constant matrix in SU(2) which effectively defines the initial condition in
terms of the inertial frame. Also, S is an unknown constant matrix which we know must
be skew-Hermitian, since Q, A and €5 al must lie in SU(2). This fact implies that S
must be skew-Hermitian, or eguivalently, must lie in the Lie algebra of su(2), denotes as
su(2) 2. It iswell-known in differential equation theory that if we find any solution to the
differential equation, it must be unique (given conditions which hold in our case, but we
ignore the details). Therefore, we must plug our ansatzinto Equation C.4 and seeif itisa
valid solution. If so, we have found the solution. Differentiating Equation C.5 gives us

Q = AS¢S (C.6)

since the derivative of the matrix exponential is

Bl = BeB! .
Thisfollows from the formal power series for the exponential:

2 A3
A _ i -
et =I+A+ o + al +

and can be worked out by the reader. Plugging our ansatzand its derivative back into the
original equation gives us

2The reader does not need the details of Lie theory here, but many of these calculations can be expressed
in terms of Lie group theory. We refer the reader to Artin [2] for an introduction to Lie theory, or [71] for an
introduction focusing on physics calculations.
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ASeS = AS'QY . (C.7)
We must solve this equation for A and S. First, we use the fact that S and e5 commute
(since S can be thought of as an infinitesimal rotation, which commutes). Explicitly,

SeS = €58 (C.8)
which can be found directly from the power series expansion of the exponential. This
property lets us write the equation as

AeS'S = ASIQY (C.9)
which we can obviously simplify. First, we cancel A since its inverse exists. Also, the
inverse of the matrix exponential exists, and we can left-cancel it as well, leading to the
simple characteristic polynomiabf the equation

S=¢q (C.10)

which makes sense since both matrices are known to be skew-Hermitian. Now we need to
solve for the unknown constant matrix coefficient A using the constraint that we know the
boundary condition at the beginning of the timestep. Assuming without loss of generality
that ¢ = 0 at the start of the timestep (we can change the time variable if not), let the value
of Q att =0 be Q. Plugging thisinto our solution at ¢t = 0 gives us.

Q(0) = Qo = Ae™" (C.11)

which immediately impliesthat A = Q,. Therefore, our solution for ome timestep, as-
suming ¢t = 0 at the start

of timestep and that S is constant over the integration interval (which is true for small
At), we get the following forward Euler integration formulafor the timestep:

Q(t + At) =~ Q(t)eF AL (C.12)

Due to our isomorphism, we can convert this directly back into the quaternion algebra,
giving us the quaternion equation

q(t + At) = q(t)e” DAL (C.13)

By integrating each timestep assuming the angular velocity is constant at each position,
we get atrgectory of the system of the form:

Q(NAt) — q(o) 6w’(O)At 6w’(At) 6w’(2At) . 6w’(NAt) ) (C14)

We note here that we can also solve the differential equation in terms of the global
angular velocity, which leads to a solution of the form

q(t + At) ~ e*Otg(t) (C.15)
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which is clearly of similar form but with all multiplication orders reversed and the global
angular velocity used. We also mention here that thistype of trajectory isgiven for describ-
ing quaternion curves with simple higher derivativesin [52].

An intuitive way to think about this numerical integral is that transform the quaternion
derivative to a vector quantity (either the local or global angular velocity vector), take a
step in this direction, then transform the answer back onto the sphere using the exponential
map. Note that thisis an approximate answer to the integral, but for our simple first order
system we have found this to be valid. Also, since we seek the steady state solution, the
approximate answer and actual answer should be identical if the system converges.
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Appendix D

Quaternions: Group Theory, Algebra,
Topology, Lie Algebra

This appendix is a more formal agebraic treatment of quaternions and will serve as a
reference for the more mathematically inclined, such as those who already known quantum
physics, or who would like to learn it. The interested reader is also directed to the recent
book by Gallier [23] or the edited collection on geometric algebra [17].

D.1 Vector Space

Most algorithms are designed to work in a vector space rather than on a curved manifold
such as a sphere. We will see below that unit quaternions do not form avector space. What
isavector space?

Definition 12 Areal vector space is a set) together with the two composition laws of:
Addition V xV — V, writtenx +y =z
Scalar multiplication R x V — V, writtenax.
Furthermore, the following axioms must hold for all elements:
1. Addition withY forms an abelian (commutative) group.
2. Scalar multiplication is associative with multiplication by real numbers.
3. Scalar multiplication by the real number 1 is the identity operation.

4. Two distributive laws hold:

(a+b)x = ax + bxa(x +y) = ax + ay
Specifically, the unit quaternions are not a vector space since addition is not closed.
Put simply, adding two unit vectors does not produce another unit vector. Therefore, all
Euclidean operations or algorithms on unit quaternions must take this into account.
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D.2 The Rotation Group in R?

Much of this dissertation discusses the rotation group of R?, three-dimensional Euclidean
space, and various ways to parameterize, represent and compute within it. This group of
rotationsis called SO(3), which stands for special orthogona$ x 3 matrices. Recall that
an orthogonal matrix consists of orthogonal column vectors which are of unit magnitude
— in other words, the columns for an orthonormal basigor the space. Of these matrices,
called O(3), there are two subsets: those with det = +1 and det = —1, where det is the
matrix determinant. The subset of O(3) with det = +1 are called the specialorthogonal
matrices.

A rotation transformation must preserve magnitude of vectors and must preserve orien-
tation of coordinate systems in the space. In other words, R € SO(3) must preserve the
inner product of two vectors:

(Rx)"(Ry) = x"y.
It follows that
x'RTRy = xTy
which isonly true for the constraint
R'R=1
whereI isthe identity matrix. Clearly
RT — Rfl

which describes the set of orthogonal matrices as defined above. Unfortunately, the con-
straint holds for det R = +1. We need to chose the matrices with det R = 1 since to
preserve the orientation of space, i.e.:

">
X
<>
Il
N>

we must have

(Rx) x (Ry) =Rz
where x denotes the cross product of two vectors. Consider the matrix —I which clearly
has det = —1 and is orthogonal. Plugging into the constraint gives
(%) % (~§) =% x§ = —2

which is a contradiction. The negative determinant matrices change the orientation of
space, and therefore are inversionsof the space rather than rotations.
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Axis-Angle Representation

According to a famous theorem of Euler, every rotation in R* can be parameterized by
some axis and some angle. This representation is called axis-anglenotation.

Theorem 1 (Euler) Every rotatiorR € R? can be represented as a rotation around some
axisn by some), which we denote aR.(f, nn).

We do not prove the theorem here, but offer afew corollarieswhich follow immediately.

Corollary 2 Every composition of rotationR; o R, can be written as a single rotation
around some axis and angle.

This result follows immediately from the closure of rotations.

Another way to visualize axis-angle notation is as a point in the solid ball in R? of
radius 7 (notice 7 is enough since arotation of more than 7 can be represented as arotation
less than m around —n). Then we can represent the vector 6n in the ball as the rotation
R (0, n) by separating the magnitude and direction of the point. Clearly the center of the
ball isthe identity rotation. Also, notice that opposite points on the surfaceof the ball are
identified since

D.3 Quaternion Theory

A quaternionis a hypercomplex number with one real and three imaginary components
discovered by Sir William Rowan Hamilton in 1866 [ 33].

D.3.1 Hypercomplex Representation

This section describes the original quaternion formulation as described by Hamilton as
an extension of the complex numbers C to four dimensions (there does not exist a three-
dimensional, or any odd-dimension, extension to complex numbers).

Definition 13 A quaternion is a hypercomplex number which can be written in the form
q=w+xt+yj+ zk
wherew, x,y, z € R andi, j, k are each distinct imaginary numbers such that
=2 =k =ijk=—1

and pairs multiply similarly to a cross product in a right-handed manner

ij=—ji=k
jk=—kj =i
ki=—ik = j
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Hamilton called the real part a scalar and the 3-component imaginary part a vector,
which are the precursors of the modern definitions of vector analysis which were derived
from quaternions. In a strange quirk of fate, quaternions, which spawned vector analysis,
were then reinterpreted in terms of vector analysis which (in the author’s opinion) obscures
the beauty of the original description. We describe the vector representation in Chapter 3.

We will denote the set of all quaternions as H after Hamilton. A few special subsets of
H deserve mention. First, the set of quaternions of the form (w + 0i + 05 + 0k) with only
ascalar term are called pure scalars It should be obvious that this subset isin one-to-one
correspondence with the real numbers R. The subset of quaternionswith 0 scalar (0 + zi +
yj + zk) are called pure quaternion®r pure vectors Those familiar with vector analysis
will notice that the set of pure vectors can be represented as a vector in R*. We discussthis
further below. Finally, we denote the set of unit-magnitude quaternions (magnitude will be
defined formally below) as the set H.

Perhaps more elegantly, the properties of quaternions can be derived similarly to com-
plex numbers by interpreting addition and multiplication as quadronomials and reducing
combinations of imaginary terms according to the rules above.

Definition 14 Letq,, ¢ € H. Theaddition operator + is defined as

@+ @ = (w1 + x4+ y1J + 21k) + (wa + x2i + Yo + 22k)
= (w1 +w2) + (21 + 22)i + (Y1 +12)j + (21 + 22)k)

Quaternions add component-wise like complex numbers.
Theorem 2 Quaternions form an abelian (commutative) grduid +} under addition.
PROOF We need to show the four group properties plus commutivity hold:

1. Closure If p,q € Hthenp+ ¢ € H.

2. Associativity (p+¢q) +r=p+(¢+7r) Vp,qreH

w

. Identity,. 30 € Hsuchthatp +0=0+p=p VpeH

N

. Inverse Forany p € H, 3 (—p) € Hsuchthatp + (—p) = (—p) +p =

5. Commutivityp+q=q+p Vp,q € H.

All these properties can be proven trivialy by using the group properties of the realsfor
each real component of the quaternion 4-tuple and the definition of quaternion addition. &

We can also define a multiplication operator on the quaternions by using normal poly-
nomial multiplication with ¢, j, k as the variables. Combinations of i, j, k are then reduced
using the quaternion rules.
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Definition 15 Letq, ¢» € H. Then theguaternion product is defined as:

012 = (wiwe — 19 — Y1Yo — 2122)+
(ylzz — Y221 + W1T2 + ngl)i—i—
( )i+

Tzl — T2 + WiYe + Wayr)J
(X1Y2 — Tayy + w22 + wazy ) k)

Before we explore the properties of multiplication, we offer a few more definitions to
help the discussion.

Definition 16 Theconjugateq* of a quaterniony is created by negating the vector part:

*

¢ = (w—wzi—yj—zk)

The quaternion conjugate has similar properties to the complex conjugate:

(@) =q (D.1)

(pg)" = q"p" (D.2)
P+a)" =p"+¢ (D.3)
qq¢" = w? + 2t P+ 22 (D.4)

These properties can be proven by some algebra on the definition of multiplication and
conjugate. Notice that multiplying a quaternion by its conjugate results in a real number,
just as with complex numbers. Analogously, we can define the absolute value, or modulus,
of aquaternion.

Definition 17 Themodulus (also called absolute value or magnitude) of a quaternion is
gl = Vo + 22+ + 22 = Var©

Several properties of the quaternion subsets described above can be found directly using
these properties.

Theorem 3 Lets = (s) be a pure scalar quaternion. Let= (w + =i + yj + zk) be an
arbitrary quaternion. Then the product commutes:

sq = qs = (sw + sxi + syj + szk) .

Multiplication of a quaternion by a scalar is commutative and involves scaling each compo-
nent by the scalar. The proof istrivial from the definition of multiplication. It also follows
that

|sq| = slq

where s isascalar and ¢ is a quaternion. These properties can ssmplify calculations. We
can also show that
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l¢"| = |q| (D.5)
Ipal = Ipl |q| (D.6)

through application of the definition of modulus and multiplication.
Theorem 4 Quaternion multiplication oveH forms a non-commutative group.
PrROOF Again, we need to show the group properties for quaternion multiplication:

1. Closure If p,g € Hthenpg € H
2. Associativity (pq)r = p(qr) V p,q,r, € H
3. IdentityThere existsan element 1 € Hsuchthat 1lp=pl =p Vpe€ H

4. Inverse For any p € H, there existsan element p~! such that pp=! = p~!p = 1.

Closure follows immediately from the definition of multiplication. Associativity in-
volves lengthy algebraic manipulation of the equation gotten by substituting the definition
of multiplication into the definition of associativity. We omit it here.

The identity quaternion for multiplication, 1, is obviously the pure real quaternion (1)
since

(D)(w+xi+yj + zk) = (w + xi + yj + zk)
when the definition of scalar multiplication is applied.
Theinverseisabit harder. Let ¢ be an arbitrary quaternion in H. We seek a quaternion
¢ ' suchthat gq¢=' = ¢ '¢ = 1. Assume ¢~! isdefined as
1
w+xi+yj + 2k

where 1 is the identity quaternion. We can then multiply the numerator and denominator
by the complex conjugate of the denominator to make the denominator real:

1q¢* 1 w—xi—yj — zk
qq¢* wHzi+yj+zk \w—zi—yj—zk

w—zt—yj) — zk

w? + 2?2 + y? + 22

*

_ 1
|q|?
]' *

= —q
|q|?
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First, we check left-multiplication:

1.1 - S
Wqq:W(w—xz—yj—zk)(w+:m+yj+zk)

(w?+ 2 +y* + 2°)+

(
1 (~yz+yz+wr — wr)i+
Cgl? (—xz + 2z 4+ wy — wy)j+
(—zy + 2y + wz — w2)k)
1
= W(W)

=1.

We get the identity element, 1, as we chose to prove. A similar calculation or symmetry
argument can confirm that it also holds true for right multiplication by the inverse. )

A useful property of theinverse follows:
(pa)~ =q¢"'p™"
Finally, the the quaternion product and addition operators with H constitute aring.

Definition 18 Aring is a setR over which there are defined two binary operatiofsand
x, which satisfy the following properties:

1. {R,+} is a commutative group.
2. {R, x} has closure, associativity and identity properties.

3. Distributive (bilinear): For all a,b,c € R,

ax(b+c)=(axb)+ (axc) (D.7)
(a+b) xc=(axc)+ (bxec) (D.8)
(D.9)

Taking (x) to be the quaternion product (we will usually suppress the x symbol and
denote a x b = ab as above), and (+) as the quaternion summation, we can show that
{H, +, x} isaring.

Theorem 5 {H, +, x } forms aring.

PROOF We have aready proven that {H, +} is a commutative group and that {H, x }
is a group, which satisfy the first two ring properties. We must show that it is distribu-
tive as well. Again, this involves substituting the operator definitions into the two prop-
erties and showing they are true. We omit the details here, but intuitively we know that
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component-wise the elements are reals and that reals with real multiplication and addition
are distributive. By applying the real distributive rules to each component and noticing that
the products stay on the left or right sides (since multiplication is non-cummutative), the
guaternion distributive property holds. [

D.3.2 Vector Space Interpretation of Quaternions

Some readers may have noticed the similarity of the definition of a quaternion to a vector
in R* with the component directions being the real axis and the three imaginary axes. A
guaternion can be represented as such a 4-vector for convenience (as we shall do later),
but we still use the symbol H rather than R* to represent the set of quaternions to avoid
confusion. Another useful representation of a quaternion is as a sum of a real number and
avector in R?:

¢=w+v) = (w,v)

where v isthe column vector of reas

T

Y
z

interpreted in the basis defined by the imaginary components i, j, k. In other words, we
could also define the vector part as a pure quaternion as

T .
H L ———

B

where, j, k are the imaginary numbers described above the transpose gives theinner prod-
uct of the components with the imaginary basis. We will aternate between the sum and
pair notation for a quaternion as needed.

Given this description, we can consider any real number w € R to be interpreted as
a quaternion (w,0) as well as areal scalar. The distinction will be obvious in context.
Also, avector v € R? will be simultaneously interpreted as a true vector and also as the
pure quaternion (0,v), depending on context. We can reinterpret some of the previous
definitions and theorems using this new notation. We simply present them without proof
for the interested reader.

Definition 19 Given two quaterniong, = (wq,v1), ¢2 = (we, v3), the product
pg = (Wiwy — V1 - Vg, Vi X Vo + w1 Vy + waVy)
where(-) represents the dot product arfet) the cross product of vectors IR?.

Consider the pure quaternions v, and v,. The product is

ViVy = (—V1 -V, V1 X V2)
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So pure vectors multiply with a simultaneous cross product and a dot product term. The
definitions of these productsin vector analysis came out of Hamilton's quaternion multipli-
cation originally. Given thisdefinition, we can easily find the set of commutative subgroups
of H.

Theorem 6 Given two quaterniong,, ¢; € H, q1q2 = ¢q2q1 < v = Vvos.
PROOF Consider the vector representation of thequaternionsq, = (wy, vy), g2 = (w2, va).
Using the multiplication formulawe need to prove
0192 = G2q1 = (Wiwe — Vy + Vo, Vi X Vo + W Vy + WaVy)
= (U)le — V2 -V, Vo X V| + W3V + W V2

Since scalar multiplication and the dot product are commutative, the constraint is

Vi X Vg = Vo XV

but thisis only true for v; = vy, when the cross product is zero. &

Commutative subgroups of H will be useful later in the discussion.
Since ¢ € H can be represented as avector g € R*, it inherits the dot product operator.
Specifically,

Definition 20
Forqi,q2 € H, q1 - go = wiws + 2129 + Y1y + 2122
For p = ¢, we get
9" = q'q = |qf’
as with the familiar dot product.

We also extend the functions which return the real and imaginary part of a complex
number to quaternions.

Definition 21 Thereal part (or scalar part) ofg = (w + zi + yj + zk) can be calculated
with

It can aso be shown that



Another useful identity for pure quaternions can be used to extract the cross product:

xxy = X

Unit Quaternions and Polar Form

A very important (as we shall seelater) subset of H isthe set of unit magnitudejuaternions,
which we shall denote as H to distinguish it from the arbitrary magnitude quaternions H.
Formally,

H= {geH : ¢ =1}.
Clearly H is not a subgroup of H with respect to addition. It can be shown that it is a
subgroup with respect to quaternion multiplication, however.

Theorem 7 The subsefl ¢ H is a subgroup off with respect to quaternion multiplica-
tion.

PROOF The identity element is inherited from H directly. Associativity also follows di-
rectly. We need to prove closure and that the inverse existsin H. Closure follows from the
property that |pg| = |p| |¢|. Assume the inverse is the same as the inverse inherited from
H, #q*. Since |¢|? = 1, theinverse of ¢ is simply its conjugate ¢*. Conjugation clearly
does not change the magnitude of a quaternion, soif |¢| = 1 then|¢*| = 1. &

If we interpret unit quaternionsin vector notation, we can extend some useful theorems
of the complex numbers. First, consider the pure unit quaternion n, where the hat denotes
aunit vector. We choose n rather than v to reinforce thisdistinction. It is easy to show that

n’>=-1

by using the definition of multiplication. This result implies that the pure imaginary unit
vector n has acorrespondencwith the pureimaginary complex number i, sincei? = —1 as
well. Using thisresult, we can extend Euler’s theorem and DeMoivre's theorem of powers
of complex numbersto quaternions.

Theorem 8

e’ = (cos B, isin 6).

PROOF Expand the exponential in a power series:

(08)' , (0ay

oa _ . (0n)*  (0n)°
e =1+6n+ 51 + al + m = +...
Notice that we can reduce the powers of 1 using the replacement n? = —1 in order to get

oo gy 0 _ 0 0 0°n
e =1+ H—E—?—i‘ﬁ‘i‘?—i‘
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Grouping real terms together and imaginary terms together produces the suggestive

g PO
] 62 9t
_a_'_g_'_-..

The even powers form the power series of cos(#). Factoring out the n from the odd powers
leaves the power series of sin(#). In other words,
e’ = cos(f) + sin(6)n = (cos @, nsin 0)
aswe choseto prove. A simple check shows that
e =1,

[ )

It follows that any unit quaternion ¢ € H can be written in the form (cos 6, iisin #) for
some 6 and some n. Additionally, as with complex numbers, this theorem implies that an
arbitrary quaternion ¢ € H can be represented in polar form

q = |qle™

by pulling out the magnitude and representing the unit quaternion in exponential form.

One must be very careful about applying the familiar rules of products of exponentials.
These rules apply only to commutative subgroups of H, which were defined above. For
example, consider unit quaternions p, ¢ € H. Then we have

0110 692ﬁ2

pg=e
It isvery tempting to collect the exponents to
el iy _ 0101 +020 Wrong!
but thisis not true. Since it follows that
efiitbzne _ 0202+010)
by commutivity of addition, which then leads to

602ﬁ2+01ﬁ1 _ 692ﬁ2691ﬁ1 = qp

which isacontradiction since in general pq # ¢p for arbitrary quaternions.

The polar form is useful for many calculations, as we will demonstrate. We can aso
define the inverse of exponentiation, the natural logarithm of a unit quaternion.
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Definition 22 Thenatural logarithm of a unit quaternion is defined as

Ing = In(cosf,nsinf) = 6n

As with exponentials, familiar rules for reducing sums of logarithms can only be used
if theinvolved quaternions commute. In general, Inp + In ¢ # In pq.

Notice that exponentiation only works on pure quaternions. Cornversely, In g always
produces a pure quaternion. These functions lead to several useful identities:

Ml=q Vg =1 (D.10)
ed =1 (D.11)
(Igle”™)" = lqle~" (D.12)

L. 1 .
(") ™ = e YaeHa#0. (D.13)
(D.14)

In addition we can now raise unit quaternionsto arbitrary real powerst € R by

t
qt — 6lnq — etlnq )

We can use the power rule for logarithmssince ¢ isareal scalar, which commutes with any
guaternion. We can also raise an arbitrary quaternion to a power with

¢ = |q|t€tln(Q/|q|)

which followsimmediately.

For the remainder of the discussion, we will mostly concern ourselves with the sub-
group of unit quaternions, H. The reason for this will become clear in the next section
as we show that a unit quaternion represents a rotation of R? in the same way that a unit
complex number represents a rotation of the plane R?, a quite beautiful result.

Rotations in R?

The previous description of the properties of quaternions can be used to discover a useful
property of quaternions — they can represent arotation in R3. Thisresult is beatiful since
the complex numbers can be used to represent rotations in the plane (so(2)). We show
that using quaternions to parameterize rotations leads to some useful properties and avoids
the problems of an Euler angle representation, such as singularities and lack of rotational
invariance.

Euler proved that any arbitrary rotation (or composition of rotations) in R? can be writ-
ten asasinglerotation by some angle # around some axis n. This parameterization iscalled
axis-anglenotation. We now show that a quaternion ¢ = |¢|e’® can be used to rotate a pure
vector x by 26 degrees around the axis n.
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Theorem 9 Letq € H andx be a pure quaternion (zero scalar component). The transfor-
mationT,(x) = ¢gxq~" rotatesx around axisn by 26.

ProoF Clearly for the transformation to be a rotation it must preserve the magnitude of
the vector, which it does.

1
laxq lalx]lq |Q||X|m = |x|.
We also need to show that the transformation does not affect the scalar component, which

must remain O for a pure vector. Recall

Fordlp e H,2R(p) =p+p*.

First, we will assume that |¢| = 1 so that we can replace the inverse with the conjugate.

We will show that thisis areasonable thing later. For now, we motivate by considering the

polar form of ¢ = |g|e?®. Since scalar multiplication commutes, we see that the magnitude
1

of ¢ = |¢| and the magnitude of ¢! = g can be pulled out, cancelling each other and

leaving unit quaternions  and ¢! = ¢*.
The effect of T, on the scalar part of p (assuming |¢| = 1 as motivated above) is

2R(Ty(p)) = 2R(qpq”)
= qpq + (qpq*)”

= qpq +qp*q"

=q(p+p*)¢* (by bilinearity)

= q(2R(p))q*

= 2R(p)qq* (scalar multiplication commutes)
= 2R(p)

So R(p) isinvariant with respect to T ,.

Since T, preserves magnitude and the scalar component, it must describe a rotation
(notice that it cannot be a reflection since this would affect the scalar part of an arbitrary
quaternion).

Sinceitisarotation, it must have at least one fixed point f € R? such that

gfqg ' =1

Using polar form,

.1 .
|’ f—e 00 = f

lq|

The magnitudes of ¢ and ¢! cancel for any ¢ € H. Therefore, we can consider only
unit quaternions without loss of generality. This simplification lets us replace ¢ ~* with ¢*.
Expanding f into polar form gives
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69ﬁ|f|6w\7679ﬁ _ |f|6w\7

Cancelling the magnitudes again

Premultiplying by e~ gives

6wveféPn _ 670n6wv

sinceit theinverse. This equation saysthat to be afixed point, the two quaternionse —* and
e“V must commute. Clearly e~ commutes with e?®. This property only holdsif n = v,
as we saw above. Commuitivity allows us to collect exponents which |eaves

eﬂﬁ—l—wﬁ—@ﬁ — wi wv

So the set of fixed points under this transformation is the set of vectors aong the axis n,
asis expected of arotation. We have shown that the transformation preserves length and
leaves points along n fixed, which is sufficient to prove that the transformation is arotation
around axis n. We now need to show that the rotation is by 26.

Since pointsin the n direction are fixed, we can remove the component from x inthe n
direction since it passes through unchanged. In other words, write x as

x = (x-n)d+ (x — (x-0)n)

which breaksit into components parallel to n and perpendicular to n. Making this explicit,

X =X,+X|

By the bilinearity of quaternions,

Tq(x) = qxq"
- q(xn + XJ_)(]*
= qxllq* + qXLq*

Since T, leaves points parallel to n fixed

unq* + QXLCI* =X, + QXLCI* =X, + Tq(xi)

So we need only look at the action of T, on the components in the plane perpendicular to
n, or x,. We will do thisin halves. First, we look at the action of left-multiplication by ¢,
then we look at the action of right-multiplication by ¢*. Since |¢| = 1, we use the vector
form ¢ = (cos #, nsin #) Then we have

gx, = (cosf,nsinf)x,

= (—sinfn-x,,sinfn x x, + cosfx, )
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by applying the vector form of the quaternion product. But since n - x, = 0, this reduces
to

gx, = (0,cosfx, +sinfn x x,)

Noticethat n x x, isorthogonal toboth n and x, . Thereforeit also liesin the plane perpen-
dicular to n. Since it aso orthogonal to x ,, we can write any vector in the perpendicular
planein terms of the orthogonal basis defined by x, and n x x,. We make this explicit by
introducing the unit vectors

Xy

N

o>

and

R nxx,
V="
nx x|

Clearly in this coordinate systemx, = ||x_||a. Thischange of variablesresultsin

gx. = qllx. o
= [Ix.[lgn

= ||x_||(cos 0x + sin Ov)

which should be familiar as arotation of a point in the plane defined by G and v clockwise
by 6. We define this action as the linear transformation R(6, n) which rotates vectorsin the
plane perpendicular to n by 6. Left-multiplication of a vector in the plane perpendicular
to the axis by a unit quaternion ¢ therefore results in that vector rotating by 6 around the
plane. Explicity,

gx, = R(0,n)x,.

Now we find the action of right-multiplication by ¢*. Similarly to left multiplication,
we can find that

0,x, X (—sinfn) + cosfx, )
0,cosfx, —sinfx, x n)

=
= (0,
= (0,cosf0x, —sinf(—n x x,))
= (0,cosfx, +sinfn x x, )

which is the same as left-multiplying by ¢! So we get

x,q" = [|x.]|(0, cos f + sin Hv)
=R(#,n)x,

=qx,
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We now write

R, n)x, =y, =x,q"
which leads to

(]* = XIIYL

Now we can substitute thisinto form of T, above

T,(x) =%, +gx.¢"
=X, + qxgczlyl
=X, +qy.
=x,+R(6,n)y,
= x, +R(0,8)(R(0, A)x,)

So we see that T, rotates the perpendicular part by ¢ around n, then rotates the newly
rotated vector around n by # again. Since rotations in the same plane commute, we have

R(Gl, fl) 0] R(eg, fl) = R(91 + 92, fl)

where o denotes composition of functions. It follows that

T,(x) =x, + R(20,n)x,

which is clearly arotation of x around axis n by 26, as we were to prove. [

The interested reader can also consider the inverse of T, (x) = ¢*xq. It can be shown
that left multiplication by ¢* results in a rotation by # and then reflection through v. The
triple product, since it reflects twice, isagain arotation by 26.

Finally, we can show that T, = T_,. In other words, ¢ and —¢q represent the same
rotation in R®. —q represents the action R(—6, —n) which is clearly the same as R(, n).
Thus, the unit quaternion group H has a 2-1 correspondence with the rotation group in R3.
Explicitly,

6

R(#,n) = (cos g, nsin 5)

where R(6, 1) isthe rotation transformation in R?* by 6 around i. To make thisexplicit, we
will usually write a unit quaternion in terms of the half-angle as

7 7

q = (cos §,ﬁsin 5)
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Unit Quaternion Group Manifold

The multiplicative subgroup of unit quaternions H lies on the surface of the three-dimensional
hypersphere in 4-space: S® C R*. This geometry can be easily verified by considering the
components of a quaternion ¢ as apoint (vector) g € R*. The constraint |q| = 1 keepsthe
vector on the surface of the unit sphere. As we mentioned above, —q and ¢ both represent
the same rotation. So antipodal points on S? refer to the same rotation. This double map-
ping can be tricky when we use quaternions to represent rotations, and we must constantly
be careful when defining metrics and functions.

Using the hyperspherical description of a quaternion, we can easily find a quaternion
which will rotate one pure quaternion (vector in R?) into another pure quaternion, which
results in a change of coordinate system. Consider two pure quaternions x, y represented
as vectorsin R*. From linear algebra, we know that the dot product of two unit vectorsis
the angle o between the two vectors:

x-y = |z|ly[cosa

We are looking for a unit quaternion » = (cos #, nsin ) such that

rxrt =y

From above, we know that unit quaternion will rotate a vector by 26 around the axis
n. From the geometry, we see that we desire arotation of o around the axis formed by the
perpendicular to both vectors (in other words, the two vectors form a plane of rotation).
This axisis perpendicular to both x and y, so clearly must be x x y. It follows that the
desired quaternion r is
(0% (6

r = (cos 5 (x X y)sin 5)

Notice that the axis vanishesas x — y. The limit clearly exists, however, since we know
that the identity quaternion 1 would leave the vector fixed.

Since they lie on S?, we can talk about quaternion curves, or paths, that lie on the
hypersphere. Representing quaternions geometrically as points on a hypersphere allows us
to use the results of spherical geometry to simplify proofs and to visualize results, as we
did above.

D.3.3 Quaternion Curves

We now consider the set of curves on the hypersphere, ¢(¢) € S3. In vector form a curve
can be expressed as

0 .0

q(t) = (cos 5 (1), a(t) sin 5 (1))

or exponentialy as



First, we look at the set of curveswith afixed axis, n(¢) = n. We get

q(t) = (cos Q(t), nsin Q(t))
2 2
By the geometry of the manifold, it is clear that the curve lies in the subgroup of S?
consisting of the great circle with axis n. Recall that agreat circle of asphereisacircleon
the sphere whose embedding plane passes through the center of the sphere. On the Earth,
for example, the lines of longitude and the equator are all great circles, but the other lines
of latitude are not.

We will soon consider the constant speed curve with fixed axis n. We have not yet
defined the speed of a point on a curve, however, since we have not yet introduced quater-
nion calculus. Since the quaternions lie on a non-Euclidean manifold, the normal rules
of Euclidean calculus do not hold. For the one-parameter subgroup of H we have de-
scribed here, however, we canuse the familiar vector calculus formulae. Specifically, for
the single-parameter set of curveswith fixed axis ¢, (¢), which we denote

d d 6 .. . . 0
%Qﬁ(t) = d—?(cos §(t),n.sm 5(1&))

g .0 .6 0

= (< —sin -, n— cos =)
2 2" 2 2
g .0 . 0

= —(—sin -, ncos )
2 2 2
0., .60 _ 0

= in (sin 5 —hcos 5)
... 0 . 0
—nn(sin -, —n cos )
2 2 2
0. . 0. . R

= (in)(—(n- (—ncos 5)),n X (—n) + sin —n)
6. 6. .0

= (én)(cos 5 sin 5)

_ 9 e

—2 ain
6
§(t)ﬁe%<t>n

We could also get to this result by using the exponential form and the familiar rules for
single parameter exponential derivation:

d oo dO,. e
%62(” = (%§(t)n)62(t)
= g(t)ﬁe%@n



The form of the derivative should be suggestive. We have only derived it for the one-
parameter subgroup, but it appears to be of the form

d dln(q) 1

2= = 5w(t)a(t)

where w is a pure vector function in R?* (or equivalently a pure quaternion). We prove this
formally later. For now, thisis enough to explore some other properties of the quaternions.

Finally, notice that

d | 0

%q ‘ = |§|
since n and ¢ are both unit length. Thisfact impliesan important property — the derivative
of a unit quaternion is not a unit quaternion. It is a genera quaternion in H. Such a
derivativequaternion ¢ = wq can, aswewill also proveformally later, be used to represent
the derivativeat ¢ asan instantaneous rotation around axis & with angular speed  |w|. Thus,
the vector w describes (locally) an instantaneous rotation around w with speed | %w|.

Now we can consider the set of fixed axis curves of constant speed. The derivative for
aconstant speed 6 curve around n is

0
_ —1n
q 5 q
which we will write as
. 1
= —W
q 9 q

Assuming we can separate variables normally for this case

1
dg ¢ ' = -wdt
q q 200
whose solution is

1 tw+
ng = — C
177

where ¢ is a constant of integration. Exponentiating, we get

c isobviously In ¢(0) since

q(0) = ¢
and so the constant speed curves are those of the form

Q(t) — 6%"-Hn q(0)

Of course, thisis not rigourous, but we can aso use the antiderivative of the derivative
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we described above since

o1
¢ = 5wq
= In(q)q
Then the antiderivative must have
q= etlnq
since In ¢ is constant. This gives us
tw
q —= € 2

which can clearly be augmented for ¢(0) by adding the same term as above.
For now, we will just consider the curves which start at the identity, in other words ¢(t)
such that ¢(0) = 1. Thisreduces the form to

o el e

q(t) = ez = (cos 5 wsin = )

which by the geometry of the manifold also describes a constant speed rotation around n,

as we desired. So the one-parameter derivative described above isvalid. We use it to look
at the tangent space of the quaternion group.

Tangent Space ofil

We will find is useful to consider the tangent space of the unit quaternion group H. First,
we define the tangent space.

Definition 23 The tangent space anchored at the idenlitin a continuous grougs is
defined as the space of tangent vectors of all cume$ passing throught att = 0
evaluated at = 0. In other words,

d
Tan G = %g(t) =¢g(0) Vg(t) € G such thaty(0) = 1.
t=0

For the quaternion group (we will now only consider unit quaternions and will only
be explicit if we use a non-unit quaternion), H, we consider the curves ¢(¢) through the
quaternion identity 1 such that ¢(0) = 1. Aswe saw above,

6

q=mmm«w=;mwmw-

Evaluating thisat ¢ = 0, we get



which clearly describes some arbitrary vector in R3. Therefore, the tangent space (set of
tangent vectors) of H can be considered as In H (we will see thisis called the Lie algebra
of the H Lie group).

This result is important. R? is a Euclidean vector space, whereas H is not. Therefore
the (locally invertible) mapping

p:]I:]I—>]R3:lnq

takes our non-Euclidean quaternion ¢ into a three-dimensional vector space, whichislikely
more familiar to us. The inverse of this mapping existslocaly:

)
[EIES

n

p(5n) = e

For g < 27 theinverseis unique (single-valued) and therefore p is one-to-one.

D.4 SU(2)

Another classical group investigated by physicists and mathematiciansis the group of Spe-
cia Unitary 2 x 2 matrices, SU(2) (see Artin [2] for an excellent introduction). Special
unitary matrices are the extension of special orthogonal matrices (with real entries) to those
matrices with complex entries. The unfamiliar reader can review complex matricesin Ap-
pendix A.

An element U € SU(2) isusualy written in terms of two complex entries:

U:{_Oé* 5*], a,BeC, |a*+ |8 =1

Since an SU(2) element has four real components, we can also express it as a vector
in R*. Additionally, the magnitude constraint implies that the magnitude of the 4-vector
is also unity. Therefore, the group manifold of SU(2) is the hypersphere S3 € R*. This
manifold is the same as the unit quaternion group H! This similarity suggests that there
exists an isomorphism between H and SU(2), and therefore a 2-1 mapping of SU(2) into

SO(3). Indeed, such a mapping exists, as we now prove.

D.4.1 Isomorphism

Consider the representation of a unit quaternion as a unit vector q € S ¢ R*. Leta =
qo + iq; and B = g, + iq3. Let h(q) be the bijection from a unit quaternion into a matrix in
SU(2) by plugging these two complex values into the components of the SU(2). We now
show that H isisomorphic to SU(2) (which wewriteas H ~ SU(2)).

Theorem 10 The group of unit quaterniorid is isomorphic to the group of special unitary
2 x 2 matricesSU(2).

PrROOF To prove group isomorphism, we must show that the bijection (invertible one-
to-one mapping) we defined above respects the multiplication operator in both groups.
Formally,
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h(pg) =h(p)h(q)  Vp,qe M

The proof simply involves multiplying out the matrices on the RHS of the above equation
and showing that it is the same as the LHS.

o = | % 2] [ 7

:{ ay — 0% ad + Bv* }

The matrix is clearly also an element of SU(2). Therefore, we can pull out the two
complex degrees of freedom from the matrix (written in acomplex vector for convenience):

Al |ay — Bo*

p] o lad+ By
Now we calculate A and p using Hamilton's multiplication rules. Let p = (po, p1, P2, P3)
andq: (q07q17q27q3)-

A= (po +ip1)(qo + iqi) — (p2 + ip3) (g2 — ig3)
= (Pogo — P1¢1 — P2q2 — P3q3) + (Poq1 + P1go + P2G3 — P3q2)

and

1= (po + ip1) (g2 + iqs) + (P2 + ip3)(q0 — iq1)
= (pog2 — P1q3 + P2qo + P3¢i) + i(Pogs + P3go + P1G2 — P2q1)

The equality follows from the definition of the quaternion product in Definition 15 since
h(pq) clearly produces the SU(2) matrix with the two complex degrees of freedom A and
1 above. Clearly, the real components of A and ;. map directly to the components of the
product of p and q. Therefore, H ~ SU(2). &

Given thisisomorphism, we can now convert any SU(2) element into a quaternion and
then into a rotation, so the group SU(2) also maps 2-1 onto the rotationsin R3.

D.4.2 Pauli Spin Matrices

Consider the following set of matrices (we break our normal style convention here of using
capital bold for matrices and use lower case bold to agree more closely with the physics

literature):
o 1 fo —i 1o
=0 o0 2T ol BT lo -1
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These Hermitian matrices are called the Pauli spin matricesand can be used to generate
elements of SU(2) [71, 60].

First, we notice the Pauli spin matrices form a basis for some the set of traceless (trace
zero) Hermitian matrices (see Appendix A for a refresher on Hermitian matrices). Now
consider the mapping from a vector x € R? into a complex 2 x 2 matrix spanned by the
Pauli spin basis:

3
X=x-0= E $j0j.
j=1

In other words, we project areal unit vector in R? into the space defined by the basis of the
Pauli spin matrices. We can also invert this transformation easily using the relation

1

where z; isthe ith component of x and X isthe matrix formx - 7.
It is useful to note that the Pauli spin matrices square to unity:

2 _
aj—I

which is useful since they form an orthonormal basis, and multiply cyclicaly

00 = (SjkI + €ikl0]

or equivaently

00k + 0,0 = 20, . (D.15)
Next consider the matrix

0
U(0, 1) = exp(—%ﬁ ¥

This matrix isvery similar to the polar form of the quaternions. It can be shown that itisa
unitary matrix by carrying out the normal power series expansion of the exponential.

Theorem 11 The matrix

can be written as
Icos§ —i(n-a) sin§

PROOF The proof proceeds by expanding the matrix exponential formally. Letaw = —6/2
and N = n - 5. Then we have

2a®N?  PaPN? ifa'N?
+ +

iaN __ .
e =1+ :1alN + 5] 3 m
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First we note that:

N2 =1

which follows by writing out N as a multinomial with the components of n as components
in terms of the Pauli basis:

].\I2 = (TL10'1 + NoOT9 + n303)2

and using the skew-symmetric properties of the algebra as shown in Equation D.15 to
remove the zero cross-terms

2 2 2

2 2, 2 9
(n101 + neoy + n303)” = nio] + nyo; + n3o;

since al the ooy, + o,0; termsvanish for j # k. Noting that each of the 0]2- terms isthe
identity, we get simply:
N? = (n? +n2 +n3)l

which issmply the identity I since n is aunit vector.

After this ssimplification, collecting the even and odd terms and reducing powers of the
imaginary unit ¢ gives the standard formula for the complex exponential in terms of the
Pauli matrices:

Icosa+i(n-d)sina

which reduces to:

0
Icos§ —i(n-a) sin§
by replacing o with —g and using trigonometric rules
cos —0 = cos 6
sin —f = —sinf
as we desired to prove. [

This theorem implies that the matrix U(#, i) rotates the space spanned by the Pauli
matrices by ¢ around n - &. (Again, the haf-angle isimplicit in the transformation, as we
are about to see).

Theorem 12 The transformation
X s X! = o—il0/2)h5x ,i(0/2)0-F
rotates the vectok represented aX = x - ¢ by # aroundn. In other words,
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X' =x' -G = (R(6,2)x) - &

We can extract the real components from the resulting matrix with the inverse of the
change of basis as described above. We will not prove this theorem, but note that the proof
is very similar to the other rotation proofs due to the trigonemetric representation of the
exponential.

Thus, we can create the unitary matrix U as above from the axis and angle description
in terms of the exponential matrices and use the similar quadratic product to rotate a vector
expressed in the Pauli matrix basis much like a quaternion representation:

Y = UXU"

D.5 Lie Groups and Lie Algebras

This section provides a quick introduction to the theory and application of Lie groups and
Lie algebras, which are important for theoretical physics. They can be used to simplfy
calculus on manifolds. We will not give a formal definition of a Lie group just yet, but
instead offer the simple description given by Sattinger and Weaver [71]. A Lie group is
a continous group which is also a topological manifold (concepts such as connectedness
and continuity apply) on which the group operations are analytic. We have already seen
several examples of Lie groups — the unit quaternions H and the special orthogonal 3 x 3
matrices. We now offer a set of definitions and explanations about Lie groups and how to
get to the Lie algebra of agroup. The theory of Lie algebras will lead to some other proofs
about quaternions leading to rotations.

Definition 24 ThelLie algebra of a Lie group is the tangent space at the group identity el-
ement, which can be found for a linear group by differentiating all curves that pass through
the identity elemertt at¢ = 0 and evaluating at = 0.

We have already seen that for the unit quaternion group H the tangent space is R?.
We will denote the Lie algebra of a arbitrary group & or G as the lowercase g, following
Sattinger.

A Lieagebrais avector space over somefield F' (usually R or C), which impliesitis
linear:

aX+Y)=aX+aY

It also has a product operator called the Lie bracket denoted as [ , |, with the following
properties:

1. Closure X,Y € gimplies[X,Y] € g.
2. Distributive [X,aY + Z] = o[X, Y|+ B[X,Z] Va,B€F, X, Y, Z€Eg.

3. Skew symmetryX, Y| = —[Y, X].
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4. Jacobi identity [X, [Y, Z)] + [Y, [Z,X]] + [Z, [X, Y]] =0

For a matrix Lie algebra (elements are represented as matrices), the Lie product can
be chosen to be the commutatorof the two matrices, which gives an idea of how “non-
commutative” two elements are. The commutator of X and Y = XY — YX = [X,Y].

If weimagine vectorsin R? to be pure quaternions, then as the commutator (in terms of
quaternion multiplication) of two elementsisxy — yx. Aswe saw above, thisis2(x x y).
Therefore, we can use the cross product operator in R? asthe Lie bracket of the quaternion
algebra without using a matrix representation! It is easily shown that the cross product
satisfies the four properties of a Lie bracket as defined above.

We define the structure constantsf the Lie algebra as the set of constants C;;;, such
that

[Ei,Ej] =Y CijrEy
k

where the {E;} form abasisfor the algebra

Again using our quaternion example, we use the normal basisfor R* of {e;}, consisting
of the unit vectors (1,0, 0), (0,1,0) and (0,0, 1). Then the structure constants must have
the property that

e Xe = E Cijkek
k

Then clearly C;;, must be 1 if (i, j, k) is acyclic permutation of (1,2, 3), -1if (7,7, k) is
an anti-cyclic permutation of (1, 2, 3) and 0 otherwise. In physicsthisis often described by
the completely antisymmetric tensor ¢, ;;, defined as

1 if ijk areacyclic permutation of 123
eijr =  —1 if ¢jk isan anticyclic permutation of 123
0  otherwise

The structure constants for the cross product are therefore defined by <; ;..

Definition 25 Theadjoint operator of an elemenX € & (denoted aad X) is the matrix
which mapsy into [X, Y].

For our vector space R* and the cross product Lie bracket, the adjoint representation
needs to define a matrix X based on the vector x such that Xy = x x y. The following
mapping of x into a3 x 3 skew-symmetric matrix accomplishesthis:

0 —T3 i)
o def
x— X = T3 0 —Z1
—XT9 T 0

We will sometimesusethe™ character over matrices which we have created in thisway for
clarity.

S0 the skew-symmetric matrix made from x is the adjoint representation of x. In other
words, ad x = X.
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D.6 Recommended Reading

The treatment in this section has been derived from several sources. A good introduction
to vector spaces, linear transformations and group theory can be found in Artin [2] and also
the less theoretical book by Strang [81]. The quaternion hypercomplex algebra extension
to complex numbers was re-derived from the origina Hamilton equations by the author,
but afairly good introduction can befound in [32] although it gets dense very quickly. The
section on group theory and the group manifold was mostly collected from McCarthy’s
kinematics book [59] and portions of Sattinger and Weaver’'s book on Lie groups [71],
which unfortunately uses mostly examples from quantum theory. Recently, the book by
Gallier [23] collects many of these concepts into afairly comprehensive book with a com-
putational focus.
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