
State Discovery for Autonomous
Learning

by
Yuri A. Ivanov

M.S., Computer Science and Electrical Engineering
State Academy of Air and Space Instrumentation, St. Petersburg, Russia

February 1992

M.S., Media Arts and Sciences
Massachusetts Institute of Technology,

February 1998

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2002

c© Massachusetts Institute of Technology, 2002. All Rights Reserved

Signature of Author
Yuri A. Ivanov

Program in Media Arts and Sciences
October 17, 2001

Certified by
Bruce M. Blumberg

Asahi Broadcasting Corporation Career Development
Associate Professor of Media Arts and Sciences

Thesis Supervisor

Certified by
Alex P. Pentland

Toshiba Professor of Media Arts and Sciences
Thesis Supervisor

Accepted by
Andrew B. Lippman

Chairperson
Departmental Committee on Graduate Students

Program in Media Arts and Sciences

2

State Discovery for Autonomous Learning

by
Yuri A. Ivanov

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

on October 17, 2001
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract

This thesis is devoted to the study of algorithms for early perceptual learning for
an autonomous agent in the presence of feedback. In the framework of associative
perceptual learning with indirect supervision, three learning techniques are examined
in detail:

• short-term on-line memory-based model learning;

• long-term on-line distribution-based statistical estimation;

• mixed on- and off-line continuous learning of gesture models.

The three methods proceed within essentially the same framework, consisting of
a perceptual sub-system and a sub-system that implements the associative mapping
from perceptual categories to actions.

The thesis contributes in several areas – it formulates the framework for solving
incremental associative learning tasks; introduces the idea of incremental classification
with utility, margin and boundary compression rules; develops a technique of sequence
classification with Support Vector Machines; introduces an idea of weak transduction
and offers an EM-based algorithm for solving it; proposes a mixed on- and off-line
algorithm for learning continuous gesture with reward-based decomposition of the
state space.

The proposed framework facilitates the development of agents and human-computer
interfaces that can be trained by a näıve user. The work presented in this dissertation
focuses on making these incremental learning algorithms practical.

Thesis Supervisor: Bruce M. Blumberg
Title: Asahi Broadcasting Corporation Career Development Associate Professor of
Media Arts and Sciences

Thesis Supervisor: Alex P. Pentland
Title: Toshiba Professor of Media Arts and Sciences

3

4

Doctoral Dissertation Committee

Thesis Supervisor:
Bruce M. Blumberg

Asahi Broadcasting Corporation Career Development
Associate Professor of Media Arts and Sciences,

Massachusetts Institute of Technology

Thesis Supervisor:
Alex P. Pentland

Toshiba Professor of Media Arts and Sciences,
Massachusetts Institute of Technology

Reader:
Aaron F. Bobick

Associate Professor, College of Computing,
Georgia Institute of Technology

Reader:
Leslie Pack Kaelbling

Professor of Computer Science and Engineering,
Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology

5

6

To Sarah and Sasha

7

8

Acknowledgments

First and foremost, I would like to thank my committee who spent so much more

time thinking about my thesis than they had to.

Bruce Blumberg has been a great advisor and collaborator. Bruce always had a

difficult question in his pocket whenever I would become too certain about how things

should work. I am really grateful to him for building such a great group and giving

me the freedom to come to my own conclusions in my own ways.

Thanks to Alex Pentland, my co-advisor, for maintaining such a high degree of

academic excellence in the Vision and Modeling group that kept me on my toes all

these years.

My deepest gratitude goes to Aaron Bobick, my first advisor at the lab, for opening

the doors for me into the world of academia. On both personal and professional level

Aaron’s contribution to my life can only be measured in megatons.

Many many thanks to Leslie Pack Kaelbling who was the only person on my

committee who has not been my advisor at one point or another, but I really wished

she could have been one too. Well, she really was, just not on paper, going far beyond

the call of duty of a committee member.

I think the best thing that I got after 5 years at MIT are my true friends -

Drew Wilson who never discarded any of my ideas, however silly they were, Chris

“Papa” Wren with his generous support and fearless thinking, and Bill Butera with

his limitless enthusiasm and constant reminders for me to be true to myself.

I learned so much from all the people at the Media Lab - I would like to thank

them all. In no particular order:

Characters: Mike Johnson, Marc Downie, Rob Burke, Damian Isla, Bill Tomlinson,

Aileen Kawabe, Scott Eaton, Ben Resner, , Matt Berlin, Lily Shirvanee, Matt Grimes,

Chris Kline, Michal Hlavac, Ken Russel.

VisModlians: Tony Jebara, Ali Azayerbaejani, Baback Moghaddam, Irfan Essa, Kris

Popat, Teresa Marrin, Lee Campbell, Martin Szummer, Dave Becker, Nuria Oliver,

Ali Rahimi, Steve Schwartz, Deb Roy, Stephen Intille, Jim Davis, Rich DeVaul,

9

Thad Starner, Jen Healey, Claudio Pinhanez, Tom Minka, Raul Fernandez, Carson

Reynolds, Ashish Kapoor, Jocelyn Shierer, Karen Navarro, Sumit Basu, Tanzeem

Choudhury, Brian Clarkson, Flavia Sparacino, Roz Picard.

I’d like to thank the people who I have been aspiring to one day call colleagues

and who taught me so much, sometimes without even knowing it: Oliver Faugeras,

Federico Girosi, Eric Grimson, Berthold Horn. Special thanks to Tomaso Poggio for

his insightful encouragement and guidance.

Thank you everyone, it has been a blast!

On a more personal note, thanks to Marjorie for making me so welcome in her life,

to Steve for showing me the grace and honor of a true Marine, to M’Liz for showing

me the silly side of life, to Larry and Marie and the rest of the Jersey gang for being

so cool. Thanks to Mom for her gift of poetry and music, her love and support and to

Dad for showing me how gentle and caring a true father can be. Thanks to Sasha for

giving me the right perspective on life and for being such a good kid and for coming

to give me a hug in the middle of the defense.

And, finally, my love and infinite amount of gratitude go to Sarah, my wife and

best friend. You know what? I love you more than ever!

10

Contents

1 Introduction 21

1.1 Learning perception . 21

1.2 Scope of the document . 24

1.3 Document structure . 25

1.4 Related Work . 26

1.4.1 Models of learning in biological organisms 26

1.4.2 Pattern recognition . 27

1.4.3 Speech and Gesture Recognition 28

1.4.4 Reinforcement learning . 29

2 Framing the Problem 31

2.1 Overview . 31

2.2 Earlier Work . 31

2.2.1 Applications . 32

2.2.2 Lessons . 34

2.3 Biological Inspiration . 37

2.3.1 What Do We Call Perception? 37

2.3.2 Perceptual Learning . 38

2.3.3 Semantic Grounding of Perception 40

2.4 Technological Motivations . 42

2.5 Problem Setting . 45

2.6 Notation . 49

11

3 Learning Memory Based Models 51

3.1 The Goal . 51

3.2 Overview . 51

3.2.1 Two Approaches to Solving the Problem 52

3.2.2 What Is Here . 53

3.3 Sampled Classification Rules . 53

3.3.1 Incremental Learning Algorithm 54

3.3.2 Classification with Compression Sets 59

3.4 Experimental Results . 69

3.4.1 Trial by Eire . 69

3.4.2 The Iris Set . 71

3.4.3 The Wine Set . 72

3.4.4 The Vowel Set . 73

3.4.5 Discussion . 74

4 Support Vector Classification of Sequences 77

4.1 Dimensionality Normalization . 79

4.1.1 Time alignment . 79

4.1.2 Batch Time-Normalization . 80

4.2 Support Sequence Machine . 81

5 EM for Weak Transduction 85

5.1 The Goal . 85

5.2 Overview . 86

5.3 Introduction . 87

5.3.1 Long Term Perceptual Learning 87

5.3.2 Related Work . 89

5.4 Estimation of the Associative Policy 90

5.4.1 Multi-State Bandit Problem 90

5.4.2 Solutions with Known State 91

5.4.3 Solutions with Hidden State 92

12

5.5 Clustering Under Reward . 93

5.5.1 Weak Transduction . 93

5.5.2 Reward-driven variational bound 95

5.6 Reward-Driven Expectation Maximization 100

5.7 Experiments . 101

5.7.1 EM for state estimation . 101

5.7.2 Multi-State Bandit with Hidden State 104

5.8 Discussion . 110

6 Learning Markov Models 113

6.1 The Goal . 113

6.2 Overview . 114

6.3 Introduction . 116

6.3.1 Tricks of Animal Trainers . 116

6.3.2 On-line Gesture Learning . 117

6.3.3 Graphical Models . 117

6.3.4 Previous Work . 120

6.4 Multi-Model Gesture Representation 121

6.4.1 Probabilistic Models of Gesture 122

6.4.2 State Space Model . 124

6.4.3 Inference and Testing . 126

6.4.4 Multi-Model Viterbi Approximation 128

6.4.5 Reward distribution . 132

6.4.6 State Sharing . 132

6.5 Model Extraction . 134

6.6 Algorithm Summary . 136

6.7 Experiments . 137

6.7.1 Mouse Gesture . 137

6.7.2 Vision System . 140

6.8 Discussion . 142

13

7 Conclusions 143

7.1 Contributions . 144

7.2 Further Work . 148

A Nearest Neighbor Performance Bounds 153

A.1 Asymptotic Bound . 153

A.2 Finite Sample Bound . 155

A.3 VC Bound on a Condensed Classifier 155

B Divergence for Gaussian Densities 159

14

List of Figures

1-1 Duncan in his habitat. 23

2-1 Recognition of structured sequences 32

2-2 Recognition of conducting gesture . 33

2-3 Semi-hidden representation in surveillance task 33

2-4 Parking lot monitoring system . 35

2-5 Consistent application of rewards and punishments reinforces the as-

sociation between a behavior and its context. 40

2-6 Duncan and his master . 46

2-7 Models of the environment for associative search tasks 47

3-1 Problems of greedy action selection 54

3-2 Sampled labelling procedure . 58

3-3 Margin and Boundary Compression Sets 62

3-4 The sheep . 69

3-6 Training Duncan . 70

3-5 Sheep|dog . 70

3-7 Results of running the algorithms on the Iris dataset. The average

accuracy attained by the algorithm is plotted against the number of

observations seen so far. 71

3-8 Results of running the algorithms on the UCI Wine dataset. The aver-

age accuracy attained by the algorithm is plotted against the number

of observations seen so far. 72

15

3-9 Results of running algorithms on the Japanese Vowel dataset. The av-

erage accuracy attained by the algorithm is plotted against the number

of observations seen so far. 73

4-1 Utterances for classification . 78

5-1 N -armed bandit model . 90

5-2 Multi-state bandit model . 91

5-3 Strong and weak transduction . 94

5-4 EM bound . 96

5-5 Augmented reward bound . 99

5-6 REM algorithm . 101

5-7 Comparison of EM and REM . 103

5-8 Effect of β on cluster assignment . 103

5-9 Likelihood maximization with binary bandit 106

5-10 Likelihood maximization with full bandit 107

5-11 Source for the reward maximization task 108

5-12 Reward maximization with full bandit 109

5-13 REM and EM after a single run . 109

6-1 Macro- and micro-states . 114

6-2 Learning gesture models with reward 115

6-3 Canonical graphs . 118

6-4 Independence structure of the full model 119

6-5 Reward-driven decomposition . 120

6-6 Probabilistic Models of Gesture . 122

6-7 Cut-set conditioning . 124

6-8 Cut-set tree search . 124

6-9 Problem of sequence length . 127

6-10 Viterbi parse . 128

6-11 State sharing model . 133

16

6-12 Sampling scheme . 135

6-13 Learning mouse gesture . 138

6-14 State space factorization . 139

6-15 Mouse gesture - extracted models . 139

6-16 Learning hand gesture . 141

6-17 Full and factorized transition matrices 141

6-18 Hand gesture - extracted models . 142

17

18

List of Tables

3.1 Summary of compression rules and sampling strategy 67

3.2 Results on the Iris Set . 71

3.3 Results on the Wine Set . 72

3.4 Results on the Japanese Vowel Set 73

4.1 Performance of SVM with the DynA kernel on batch classification

problem . 83

19

20

Chapter 1

Introduction

1.1 Learning perception

This thesis is devoted to the study of algorithms for early perceptual learning for an

autonomous agent in the presence of feedback.

Perceptual learning is an important aspect in building a complete autonomous

system. Imagine an agent that needs to function well in an unfamiliar environment.

The agent can observe the environment with a set of sensors and affect it with a

set of actuators that it controls. Learning how to control the actuator for any given

set of sensor readings can be a difficult problem and is the primary focus of many

reinforcement learning algorithms. A problem that is not as frequently addressed is

how to learn the perceptual organization of the sensory field such that it delivers the

highest utility to the agent.

During my stay at MIT I have been fortunate to belong to two distinct groups:

one primarily dealing with machine perception – sight and sound; and the other,

with building artificial creatures capable of having a mind of their own. Naturally,

my interests developed in such a way as to span both of these areas. As a consequence,

in this work I am attempting to join the two interests in a mutually beneficial fashion

– this document is devoted to a study of algorithms that use perceptual information

to facilitate autonomy, while using the autonomy and the information available to the

agent as a result of its direct manipulation of its environment to refine its perception.

21

The thesis is inspired by the existing knowledge about early human and animal

learning. One key topic that it examines in detail is the role of experiences in form-

ing perception. It is empirically evident that animals and humans are very good at

adapting their perception in accordance with their experiences. As will be discussed

later, certain aspects of speech acquisition, color perception and spatial object recog-

nition provide good examples of such processes taking place. The work presented in

this document takes a look at several algorithms for learning perceptual organization

under indirect supervision, attempting to make them practical.

Within the framework of this thesis it is useful to think about types of agents –

robots or animated creatures – that a teacher, or a trainer, can train to respond to

certain stimuli. The presence of the teacher and the autonomy of the agent afford

certain advantages and impose limitations on approaches one may consider taking

while building such agents. The presence of the teacher makes it easier to speed up

perceptual learning, directing the agent when necessary, while autonomy makes it

impossible to use training examples directly, but only via some evaluative techniques.

Indeed, in the task of the perceptual learning, the direct supervision would need to

indicate to the agent’s perceptual system the exact category to which the observa-

tion should be attributed. However, in the autonomous system such information is

only manifested in the agent’s behavior and may be unavailable, or sometimes even

detrimental to the learning process (see section 2.4). In other words, the perceptual

organization is subject to learning in the agent but remains hidden from the teacher.

Up until recently the emphasis in the agent’s adaptation has been that the agent

passively observes its environment, or, as it is often the case in reinforcement learning,

actively samples its environment to find a better policy of its action selection. In my

work I look at algorithms that allow the agent to be “taught”. The agent possesses a

set of primitive skills and a set of primitive sensors. The goal of the agent’s adaptation

is to acquire new skills, based on the demonstrated examples, to learn an organization

of its perceptual system from the context in which the skills are typically applied,

and develop the mapping that connects the learned perception with the acquired

actions. I derive my inspiration from animal training, presenting algorithms and

22

Figure 1-1: Duncan in his habitat.

agent architectures, which allow for making the first step towards training agents in

much the same way as animals are trained.

To give a concrete example, imagine that we would like to train a personal agent

to respond to a set of voice commands. It is possible to build a system that can

quickly learn a small set of such commands. In this thesis I show an example of an

agent that does just that. Duncan (fig. 1-11) is an animated synthetic dog, that can

be taught to sit and roll over and perform a variety of other tasks in response to a

spoken command in a matter of minutes2, regardless of the language in which the

commands are given. The algorithm used in Duncan’s perceptual system provides an

illustration of the general range of problems that I find especially interesting, as the

influence of the agent’s experiences on the formation of its perception is particularly

explicit.

While the whole of Duncan’s brain is a complex system, which allows it to act

autonomously and includes a behavior system, a motor system, a navigation system

etc., the approach to the design of its auditory perception discussed here allows us

to view it in isolation. In this respect, the algorithm is simple. Viewed separately,

Duncan’s auditory perception is based on the following procedure: the input samples

that result in a treat are stored, while the ones that do not are thrown away. After a

1Sketches and artwork courtesy of Scott Eaton.
2The auditory perceptual system of Duncan was used in several installations – “Isle of Man’s best
friend”, “sheep|dog – Trial by Eire” and “Clicker by Eire”. A scene from “sheep|dog” is shown in
figure 1-1.

23

while, Duncan collects a large repertoire of distinct patterns that have caused delivery

of a reward in context of different actions. This essentially results in memorizing all

past observations, which is not extremely satisfying. A number of questions arise:

How much does one need to memorize? How should one deal with large amounts of

data after some amount of time passes? How does one learn efficiently? How does

one learn only what is important? These are the questions that this thesis tries to

answer while offering some practical solutions.

1.2 Scope of the document

The goal of this document is to present algorithms for on-line learning of state space for

an autonomous learning agent. By state, I mean some sort of a cluster in the input

space, or in the space of observations, of the agent, which might have a temporal

component. The notion of a state here is perhaps a bit different from that frequently

used in reinforcement learning literature. The internal representation of the state

remains largely statistical, while it is used in a context of a simple reinforcement

learning task.

The extent to which I look into problems of reinforcement learning is extremely

limited and I am not claiming to cover any new territory in reinforcement learning

per se. I will be using and modifying some fairly well explored algorithms, making

them suitable for the framework of statistical learning. One distinctive feature of the

approach that I take with respect to perceptual learning is that I try not to rely on a

known but uncertain set of states to be used for action selection, as is frequently done.

Instead, I focus on the advantage for the agent of having its perceptual space organized

in a particular way. This entails re-estimation of the state space simultaneously with

learning to react to new observations, which can be called a state space discovery

under reward.

The thesis is devoted to the exploration of learning perceptual categories under

reward. In this context, the thesis is exploring the algorithms that allow the agent to

learn quickly, while finding perhaps not optimal but adequate representations, that

24

can further be refined when more data become available.

The most important message of this document is that while solving practical

problems of giving autonomous agents situated and grounded intelligence one needs

to consider the learning problem in its entirety. The setting in which this document

proceeds does not fit nicely into any of the established taxonomies of computer learn-

ing. In this thesis I introduce the new notion of weak transduction that allows us to

formulate problems of impoverished supervision as described later in the text.

1.3 Document structure

The document is organized around three main technical chapters, chapters 3, 5 and

6. In each of them I focus on a specific subproblem of the perceptual learning under

reward.

Chapter 3 is devoted to very early stages of learning, where the amount of data

that has been observed so far makes it nearly impossible to compute the necessary

statistics, that are typically required for distribution-based techniques. This condition

calls for memory-based learning methods to be used in their stead. The chapter

formulates an incremental learning algorithm for memory-based representations and

explores several approaches to reducing its computational and memory requirements.

Chapter 4 serves as an addendum to the previous chapter, demonstrating one of

the techniques of sequence classification used in chapter 3 in more detail. It deserves

to be placed in a separate chapter because, while being used for sample compression,

it presents a technique that is interesting for a number of other applications. This is

shown in a batch classification test on one of the standard data sets with results that

are superior to the best reported in the literature.

The next chapter, chapter 5, looks at consequences of reward for statistical es-

timation of perceptual state. Compared to the previous, this chapter presents a

longer-term model that becomes effective as the amounts of data and interactions

with the environment grow. This chapter introduces the notion of weak transduction,

that properly frames the problem of perceptual learning in the context of machine

25

learning paradigms. In this framework, the connection between observations and

their labels is made via feedback to the action selection of the autonomous agent.

The resulting perceptual organization is induced by interactions of the agent with its

environment to derive a measure of utility of the perceptual representation.

Chapter 6 targets perception of sequential input with relatively low dimension,

but, again, in the face of short supply of training data. It presents an algorithm that

is useful for vision-based gesture training of the autonomous agent. It attempts to

combine the advantages gained in the previous two chapters. While the bias of the

chapter 3 is expressly towards learning auditory perception, chapter 6 concentrates

its attention on visual learning.

The thesis will conclude with a discussion of all presented methods, noting their

advantages and shortcomings and identifying directions of further research.

1.4 Related Work

The work of this thesis would not be possible without the efforts of many people

contributing to the fields of animal learning, robotics and machine intelligence. In this

section, the most relevant work is only briefly mentioned. Further in the exposition,

each chapter will be put in the context of relevant work more thoroughly, discussing

the work in more detail to maintain proper grounding and the context of the relations.

1.4.1 Models of learning in biological organisms

There exists a large body of research in animal learning, as well as in building models

of these learning processes that take place in animals and humans. The two main

areas of special interest to this thesis are theory of conditioning, and categorical

perception.

The initial work on animal learning is due to Thorndike [77], who formulated

the law of effect. Pavlov [57], studied the formation of reflexes, or learned responses

to presented stimuli. Rescorla and Wagner [63] developed a model of conditioning

showing that it accounts for a number of phenomena encountered in animal learning.

26

Despite its popularity, the model is limited. Attempts to develop a more general

model resulted in temporal difference model by Sutton and Barto [73], mixture based

representations by Dayan and Long [15], differential model by Mignault and Marley

[52], timing model by Gallistel [30], neural models by Schmajuk [67] and many others.

However, it still remains difficult to find a simple model that explains all known

phenomena in a satisfactory way.

In perceptual learning, many models were proposed by researchers studying bi-

ological systems (eg. [51, 47, 20]). Perceptual learning happens on both large and

small scales, eg. [26]. Dror [22] Howard et al. [35], present experimental stud-

ies of high level skill-related perception concluding that the quality of perception is

highly correlated with the learned skill in which it is used. Spelke [68], Zollinger

[91], Uchikawa and Bointon [78], Birnham et al. [8] and many others examine the

issue of differentiation between innate and learned perceptual abilities. In addition,

experiments in three-dimensional object recognition, ([75, 24]) conclusively show that

representational learning in the perceptual system is taking place as well.

These two areas are of central interest to this thesis. This work attempts to ex-

amine algorithms that embody the idea that the two types of learning in autonomous

agents should occur simultaneously.

1.4.2 Pattern recognition

The thesis builds on many techniques of pattern recognition. Fukunaga in [29], as

well as Duda and Hart [23], include a review of nearest neighbor classification rules

and their incremental realizations. The enduringly popular kNN classifiers, used

in a chapter of this thesis, are based on work by Hart and Cover ,[13], analyzing

the asymptotic performance of the nearest neighbor strategy. Hart [33], formulated

the condensed neighborhood rule, which in this thesis is applied incrementally and

reexamined in light of later developments in support vector classification.

One of the techniques used in chapter 5 is based on the latent variable models, eg.

[3, 4], and the Expectation-Maximization (EM) algorithm first reported by Dempster

and Rubin [16]. Neal and Hinton [54], give an iterpretation of EM that makes the

27

development of the algorithm for weak transduction possible, as shown in subsequent

chapters. This interpretation was pointed out in the tutorial notes by Minka [53].

Cherkassky and Mulier [12], present a concise and systematic overview of the field

of machine learning, which includes the connections of the more traditional methods

with the methods of statistical learning theory [80], now gaining popularity. Devroye

et al. [18], and Lugosi [48], provide analysis of distribution-free methods for classifi-

cation on a finite sample from the point of view of statistical learning theory, which

led to the development of the compression set techniques in this thesis. Osuna et al.

[56], as well as Cauwenberghs and Poggio [10], developed some practical methods for

training Support Vector Machines, which were instrumental to the formulation of the

ideas for the algorithms of the chapter 3. The bound compression set is based on the

work by Ben Hur et al. [2].

And, of course, I am indebted to the organizers and maintainers of the UCI

repository of Machine Learning Databases [5], for providing the data sets used in

this thesis.

1.4.3 Speech and Gesture Recognition

Finding semantic grounding for perception in action selection is the main thread that

unites algorithms presented in this thesis. Earlier Roy and Pentland [64], addressed

extraction of semantic content of a spoken language in early language acquisition. Se-

mantics form a much broader and general “Superlanguage” that is universally under-

stood. The authors focused on cross-modal perceptual evidence, whereas this work

addresses the search for semantics in outcomes of the interaction with the outside

world.

Chapter 6 is devoted to a classification of sequences. It draws on research in

such inherently sequential domains as speech and gesture recognition. Rabiner and

Juang [61], as well as Jelinek [39] provide an exploration in the fundamentals of

speech recognition introducing some of the methods used in the chapter. Viterbi

[81], developed a dynamic programming algorithm which is the basis of the inference

mechanism of the algorithm, shown in chapter 6 and includes the modifications first

28

introduced by Darrell and Pentland in [14].

Wilson [86], developed a system which is very close in spirit to the algorithm for

gesture learning presented here, albeit with static structure. Hong et al. learned a fi-

nite state machine - based representation of gesture from a batch of gesture data [34],

while Pavlovič and Rehg [58], experimented with Dynamic Bayes Nets to solve the

problem of learning the discrimination between gate types from visual data. The ges-

ture learning algorithm of this thesis performs incremental structure learning within

the setting of on-line training.

1.4.4 Reinforcement learning

To a large extent the topic of this thesis was influenced by the ideas borrowed from

reinforcement learning literature, with an introductory text by Sutton and Barto

[74]. Kaelbling et al. gives an excellent survey of ideas and methods of the field

[43]. Perhaps the most prominent examples of algorithms from reinforcement learn-

ing are Q-learning [82], temporal difference learning, due to Sutton [73], and more

modern and formal techniques based on partially observable Markov decision pro-

cesses [42, 50]. Thathachar [76], studied learning automata and developed a number

of algorithms, in particular reinforcement pursuit, appropriate for associative tasks,

addressed in the thesis. The work, perhaps the most relevant to the topic of the

chapter 5, is the reinforcement driven algorithm for learning Vector Quantization by

Likas [45].

Further references situating the work of this thesis within the context of the related

research will be given in the course of the exposition in each chapter separately to

maintain proper context.

29

30

Chapter 2

Framing the Problem

2.1 Overview

This chapter is dedicated to establishing the motivation for the work of this thesis.

It describes some earlier work that motivated the development of learning algorithms

presented here. It then presents a discussion of biological aspects of perceptual learn-

ing and deriving semantics from interactions with the environment. It then concludes

with setting up the goals for the rest of the thesis and formulating the general problem,

which this work addresses.

2.2 Earlier Work

Earlier in my work [6, 37, 36], I was interested in building large hierarchical recogni-

tion systems for detecting complex gestures and surveillance events. The essence of

the system was realizing the expert knowledge in a set of grammatical descriptions

of events of interest. The input signal to the grammatical analyzer was produced

by a set of independent hidden Markov models (HMMs). Each HMM in the bank

was independently trained on a set of training data corresponding to the “primitives”

of interest. The primitives were selected by the expert on the basis of his or her

subjective knowledge of the typical vocabulary of a larger scale structure, present in

a gesture or a surveillance event. The grammatical structure was hand-coded in a

31

a)

�������
� ���
	
���� ����� µ � � Σ ����� ����� � ���	��� �! "� µ � � Σ ����� ���#� � ������� ��$�� µ � � Σ � � � ����� � � �

b)

%
&(')'+*
,.-0/21 * 3 4 56 7

8
Figure 2-1: For the grammar in a) the underlying structured input sequence, shown by
the curve on the bottom of b), is parsed with a set of hidden Markov models. HMMs are
trained independently on some supervisor-selected subsequences forming the alphabet of
the context-free grammar, and are combined into sentences parsed by the SCFG parser into
sentences of the grammar.

stochastic context-free grammar (SCFG), while underlying primitives were difficult

to decompose further into meaningful components. This resulted in a two-level repre-

sentation of the time-series signal where the lower level encoded the statistics about

the raw signal, and the higher level manipulated events.

The solution that was proposed in that work is illustrated in figure 2-1. In figure

2-1 b) the underlying input sequence is represented by the curve on the bottom, with

a set of HMMs trained independently on some supervisor-selected subsequences. The

HMMs form a vocabulary of primitive components, and are combined into sentences

described by the grammar.

2.2.1 Applications

One application of this approach was embodied in the the system built for recognition

of conducting gestures [6] (see fig. 2-2). The set of 5 Hidden Markov Models was

trained on primitive hand gestures captured from a conductor with the STIVE vision

system [88](fig. 2-2 a)). The input space consisted of hand velocities in X, Y , and

Z coordinates. The primitive gestures were picked by an expert conductor from the

knowledge about the vocabulary of conducting gestures and the structure of overall

gesture was encoded by a Stochastic Context-Free Grammar, based on the set of

conducting forms [65].

32

a) b)

PIECE -> BAR PIECE [0.7]
| BAR [0.3]

BAR -> TWO [0.5]
| THREE [0.5]

THREE -> down3 right3 up3 [1.0]
TWO -> down2 up2 [1.0]

Figure 2-2: The gestures captured by the STIVE vision system shown in a) are parsed
by the SCFG parser [70], as given by the grammar in b). The non-terminals, representing
semantic divisions of the input are shown in capitals, while lower case terminals correspond
to the primitive HMMs.

a) b)

A9 Bc

B9 ab

C9 cD

D9 de
a = {Ea, {xi, yi}i=1..K}
b = {Eb, {xi, yi}i=1..L}
c = {Ec, {xi, yi}i=1..M}
d = {Ed, {xi, yi}i=1..N}
e = {Ee, {xi, yi}i=1..P} c)

Object tracks

A X

B Y

a
s x p b q y r c z

Structural
synchronization

Substitution error Insertion errors

Figure 2-3: The task in the surveillance system is to detect activities in the parking lot
(a). The task is complicated by the presence of multiple objects, interactions between
objects and tracking mistakes. It is solved within the same hidden/overt formalism, where
the vocabulary is formed from a set of tracker events. Each terminal in the grammar
(b) carries along the event tag, Ex, and the complete object track, consisting of x and y

positions at each frame. Object identity is recovered along with completing the parse of the
chain of corresponding events. Interactions are interpreted via the presence of structural

synchronization between independent parses (c). In this framework, the error recovery is of
paramount importance, since terminals that belong to one parse tree have to be ignored in
others.

33

Another embodiment of the representation shown above was a complete surveil-

lance system [36], the task of which was parking lot monitoring (see fig. 2-3). The

system connected a multi-object tracker [32], with the parsing engine, using the SCFG

formalism. The tracker produced pieces of object tracks, which were probabilisti-

cally labelled with an object class – a person or a car; and tracker state events –

object-lost, object-found, etc.. The higher level expert constraints, expressed via

a grammar (structured as in fig. 2-3 b)), allowed the system to (a) collect pieces

of tracks, coming from the tracker, into complete tracks, that would take an object

through the scene; (b) detect interactions between objects via structural synchro-

nization (fig. 2-3 c)); and (c) arrive at the most likely object labelling that would

integrate spatial and temporal constraints in the maximally likely explanation. Each

terminal in the grammar carried along the tracker event tag, Ex, and the complete

object track, consisting of x and y positions at each frame, allowing the enforcement

of track consistency constraints. Object identity was recovered along with the most

likely interpretation of the chain of corresponding events. In this framework, the im-

portance of error recovery was paramount. In fact it is mostly due to including the

error into the formalism explicitly, that the system worked at all, since that allowed

treating terminals of the event stream pertaining to one object to be separated from

terminals of another.

Figure 2-4 shows one example of a detected interaction. The pane on the left

shows the output of the parser assigning partial tracks to the complete parse and

giving it an action label. The example in the picture is that of a person driving into

the scene, parking the car and walking out of the parking lot. The bottom panel

shows the temporal extent of each of the components of the “Drive-In” event.

2.2.2 Lessons

Many interesting questions arose in the process of building the systems shown in the

previous section. The principal decision in the system architecture, was to sort out

“hidden” and “overt” states. Clearly encoding the available knowledge and splitting

the state set into hidden and overt allowed us to take small computational risks. In

34

Object Tracks

Temporal extent of events

Component labelsAction labels

Figure 2-4: A screen shot of the surveillance system in the process of parsing the drop-off
event. The top let panel shows high level event parses emitted at each step. The top right
panel is displaying the static background with the object tracks contained in the current
parse overlayed on it. The bottom pane shows temporal extent of the parses and the most
likely object identities.

the context where states needed to be estimated, we used a set of simple tractable

models. In the overt layer, where states are known, we could let ourselves use more

computationally expensive model, such as SCFG, knowing that the worst possible

case they would have to address would in general be very simple.

The most frequently asked question was about structure and parameter learning

in this framework. Even though the point of building the full working system was

to test inferential mechanisms in a large mixed structure, it always seemed like a

good idea to include some sort of structural estimation into the inference. There

exist algorithms for structural learning in complex hierarchical representations that

grammatical descriptions provide (eg. [69]). However, the stumbling block for using

it in our system was the fact that all these algorithms rely on either having a good set

of models for the input alphabet, or collecting a large amount of transcribed train-

ing data that would allow the extraction of component models before the grammar

learning takes place.

35

Fortunately, in some domains such extensive corpora of transcribed training data

are available – natural language processing and speech recognition are the most promi-

nent examples of that. The latest developments in these fields clearly demonstrate

how far learning can be taken in the presence of large data sets. The area of com-

puter vision has not been as fortunate. Difficulties in obtaining large sets of complex

data seem to be primarily grounded in the fact that vision is not a communicative,

but rather a declarative channel of information. Thus, the visual input is rarely as

structured as the input in many problems related to language and speech. A visual

channel does not readily possess a finite vocabulary, implying that collection of a

large corpus of training data is not a simple task.

The experience of building the two complete systems above motivated us to ex-

plore possibilities of extracting the component primitives necessary for inferring the

hierarchical structure. Consequently, that led to a larger question in a context of

building an autonomous system that would not require elaborate crafting of its in-

ternal knowledge structure – is it possible to learn complex structures like the above

from scratch, where only physical capabilities of its sensory input and mechanical

constraints of the output actuators are known? And how can we do it quickly?

The answer to these questions lies to a large degree in the outcome of examining

the search space that the algorithm needs to explore in order to find a desired solution,

as well as identifying what solution is actually desired. In the absence of any con-

straints, all solutions and all parameter settings are equal – a phenomenon stated in

a “no free lunch theorem” [87]. It can be further formally shown [18], that there is no

classifier that performs universally better than any other one in such circumstances.

On the other hand, nature provides a proof by existence of the possibility of such

algorithms. This seeming contradiction indicates the fact that additional constraints

that are present in animal learning are derived from other sources, not related to

the observational data. These sources give meaning to the component perceptual

categories that the animal develops as a consequence experimentation with its envi-

ronment via internal and external benefits.

Thus the goal becomes providing such constraints to the learning system in a

36

consistent set of “benefits”, allowing to get “better” in some aspect of its decision

making. This goal firmly places the agent in the context of its environment, as now

it is clearly necessary for it to not only observe the environment in search of the

regularity, but to actively experiment with it, in order to derive the grounding of the

attained understanding in practical application of it.

2.3 Biological Inspiration

Edelman used the term “perceptual organization” as a collective term for a diverse set

of processes that contribute to the emergence of order in the visual input [25]. This

definition can, of course be extended to include all perceptual input. It is important,

however, to make a distinction between perceptions and sensations.

2.3.1 What Do We Call Perception?

Humans and animals acquire knowledge about the outside world through sensations

and perception. Sensations tell animals that there are “things” in the world outside

themselves; perception tells them what and where they are located and what they are

doing. Together, sensations and perceptions link their brains to the world and allow

them to form mental representations of reality.

It is known [28], that more than 50 percent of the cerebral cortex in the human

brain is devoted to visual processing, while much of the remainder is allocated to

audition and speech perception. The visual sense is especially impressive as it allows

humans to create and maintain detailed representations of their environment from a

very noisy and sparsely sampled array of retinal sensors lit by rather blurry patches of

light. From these simple inputs, complex models of the world are created that allow

one to leap to instantaneous conclusions about what is “out there”.

The information, coming from the sensory input, is combined with and filtered

through a massive array of internal representations, beliefs and expectations to form

the basis for making an informed guess about the real state of the world and the

ways to change it to one’s advantage. The fact that perception relies so much on

37

the knowledge of the world implies that it should not be studied and understood in

isolation – it must be linked with other cognitive processes, such as learning, memory,

judgment, and problem solving [28].

In animals and humans, perception is a process that seems effortless – it is immedi-

ate and correct. Interestingly, current research in psychological aspects of perception

suggests that continual learning is necessary in order to accurately perceive the world

[1]. The process of keeping perception correct and current should be regarded as

“learning”, though in many ways it is unique since unlike in many learning processes

in perceptual learning conscious awareness of it is not required.

2.3.2 Perceptual Learning

Perceptual learning, or the adjustment of perception to the stimuli of the environment,

is sometimes distinguished from cognitive learning, the latter term being reserved

for the modification of problem-solving behavior. Many phenomena suggest that

perceptual learning happens in human infants and continues through adulthood.

The area of psychology that studies formation of categorical perception provides

large body of examples of developmental formation of perception in humans. For

example Dror [22], presents an experimental study of spatial perception in a group of

US Air Force pilots with a control group consisting of non-pilot subjects. The authors

concluded that pilots had better judgement of metric (but not categorical) spatial

relations than non-pilots. Howard et al. [35], demonstrated a similar phenomenon

in categorical perception of minor/major triads in a group of people with varying

degrees of musical skill. Although the overall variation in the differentiation was not

large, it was correlated with the level of the musical skill of the subject.

The question of what exactly is learned and what is innate in these situations,

as well as in cognition in general, still remains unanswered. This topic has been the

subject of a number of philosophic arguments since Plato’s time [21]. A large body of

work in the areas of psychophysics and neurobiology shows that the basic perceptual

abilities of the human perceptual system (such as the ability to perceive luminance

contrast in the visual system) are largely innate, while others (such as some varieties

38

of object constancy) are learned and depend on experience [68]. Most significantly,

the mechanisms of perceptual organization used by infants in learning how to perceive

the world around them seem to be active throughout adulthood [25].

A finer degree of analysis of psycholinguistic aspects of color perception across

cultures was conducted by Zollinger [91], Uchikawa and Bointon [78], and others.

The studies focused on perception of color categories among culturally homogeneous

control groups from Japan, Germany and the United States1. The results of the exper-

iments concluded that the 11 basic primary colors are represented in most languages

in the world, indicating their universal differentiability, while perception of derivative

colors had clear cultural bias. In addition, Lynch et al. [49], clearly demonstrate that

the difficulty in color naming in infants is not due to limitations in perceptual capa-

bilities, suggesting that categories are not innate but are subject to tuning. These

studies allow one to conclude that in fact perception is not independent of acquired

abilities, yet lies very close to basic neurobiology.

Yet more evidence of developmental character of perception comes from research in

language acquisition. Birnham et al. [8], test categorical perception of native and non-

native speech in multiple age groups. Their findings indicate that not only does the

categorical perception of native utterances get refined with age, but also non-native

categorical perception gets “tuned-out”, resulting in lower degree of distinctions made

in non-native speech.

In addition, experiments in three-dimensional object recognition, ([75, 24]) hint

that representational learning in the perceptual system is taking place as well. Per-

formance of experimental subjects in the repeated task of recognition of a rotated

object showed increasingly uniform response times to presented stimulus, regardless

of the degree of rotation, while normally, the subjects’ response time in recognition

depends monotonically on the mis-orientation of the stimulus with respect to some

canonical attitude. This indicates that the sparser mental representation, requiring a

longer decoding time, was progressively replaced with a more memory-intensive, but

1The former study included two Japanese groups from areas with different degrees of Western
influence and one German, while the latter – one Japanese and one American

39

“computationally” efficient representation.

All of the above lets one conclude that perceptual learning does in fact take place

in animals and humans. For the purposes of this dissertation, an additional argument

needs to be made. Very often perceptual learning is viewed in the framework that

does not allow any amount of feedback to be delivered to the mechanism in control

of perceptual learning. In certain instances this is a valid framework, for example,

the three-dimensional object recognition experiments described earlier embody the

self-evident mechanism known as unsupervised learning. In contrast, skill-related

perception, such as a pilot’s spatial perception, some instances of color perception,

and examples from language acquisition are critically grounded in receiving a feedback

from the environment in which they are applied. The latter type of perceptual learning

is the focus of the thesis.

2.3.3 Semantic Grounding of Perception

The clearest example of refining the skill-

Figure 2-5: Consistent application
of rewards and punishments reinforces
the association between a behavior
and its context.

related perceptual organization can be seen in

animal training. For instance, dog obedience

training pursues the goal of teaching a dog to

reliably associate selecting a particular action

with reward in the presence of some stimulus.

In building up its perceptual organization an

animal forms a set of perceptual categories where

each category is somehow meaningfully differ-

ent from any other in the set. The formation

of the skill-related “meaning” of the category is

guided by the outcome of the experimentation of the animal with the environment

where this category is perceived existent. How is this meaning derived?

Imagine that a dog is learning to sit in response to an utterance “sit”, pronounced

by the trainer. Without questioning the dog’s linguistic abilities, it can be safely

argued that outside the context of getting a treat while sitting upon hearing the

40

utterance, this acoustic pattern has no other meaning to the dog. The dog would

not treat this utterance in any special way unless the treat was disposed a number of

times in this exact co-occurrence.

Similarly, the semantic grounding of perception can be derived by an autonomous

agent from the utility of it for achieving its goal. Categorization of perceptual input

is not useful unless reacting to it in some way produces a benefit. Further, Bobick [7],

argued that the perceptual categories form as “overgeneralization” of these benefits.

While learning the consequences of actions and relating these experiences to per-

ception is in general hard, acquisition of perception- and behavior shaping experiences

under training is a much simpler and direct task. There is much to learn in this re-

spect from animal trainers. Living with domesticated animals for many thousands of

years, people have found many ways of optimizing the animal’s learning process. All

these tricks can be summarized in just a few words – the point of training is making

it easy for the animal to find the utility of a particular behavior.

The tricks of animal handlers deserve a careful study from designers of learning

algorithms. In training a dog, trainers reward desired behaviors in desired circum-

stances. It is important that what is desired is clear to the animal. Then the con-

sistent application of rewards and punishments will reinforce the association between

the context of a behavior and the behavior that is being evoked. The training se-

quence in which the desired behavior is achieved usually with only small variations

follows the following routine:

• Create, cause or wait for the behavior to occur;

Eg.: The trainer lures the dog to sit. Every time the dog sits the trainers

delivers a treat. As a result the dog learns that the trainer wants it to sit. This

identifies the action of sitting down as a target for further training.

• Define the behavior;

Eg.: The trainer trains the dog to sit without luring. Trainer directs the

dog to make a distinction between which is a beneficial behavior and which is

not. This increases the probability that the dog will select the desired behavior

41

if it wants a treat.

• Cue and reinforce the behavior;

Eg.: The trainer trains the dog to sit on command. The trainer presents

a stimulus – an utterance and/or a gesture and rewards the dog only if it sits

down when the stimulus is present. The dog is made to specialize – search for a

perceptual context in which the behavior is beneficial. This forms the perceptual

category of the stimulus, giving it the semantic content of “sitting down”.

• Maintain the behavior.

Eg.: The trainer trains the dog to sit down on command in diffent

places, with different distractors and rewards. The dog is made to gener-

alize – it refines its idea of the perceptual context, that the time of day and the

color of the wallpaper do not matter. This stage further refines the category.

Switching momentarily to the domain of learning algorithms, one can easily iden-

tify parts of the autonomous system that are being affected in each stage of this

routine. The first two steps are concerned with establishing the training context and

identifying the action model under refinement; the remaining two refine the catego-

rization capabilities of the perceptual system. Indeed, the first step picks a family

of grossly relevant behaviors, while the second refines it by rejecting the ones that

do not belong to the desired category. The third and fourth steps do the same for

perception, while maintaining the association.

2.4 Technological Motivations

As Dorigo and Colombetti [19], point out, an argument in favor of the necessity of

learning perceptual organization can be made from an observation that the goal of

adaptation in an agent is learning how to best perform in its environment given its

capabilities. Ultimately, the designer of an agent would like to encode some of the

knowledge in the agent’s algorithm in such a way that is convenient for the designer.

Ideally it would let the designer formulate the agent’s goals using semantically loaded

42

statements like “Approach the corner and turn towards the exit”. The agent’s re-

quirements are to formulate the relations between sensory and immediate control

signals. A definite gap between agent’s and designer’s concepts of reality is usually

filled with such abstract concepts as a “world model”, which assumes knowledge of

every possible relation between the two representations, allowing for converting the

designer’s statements into patterns of voltages. Models engineered in place of that

“absolute knowledge” a) tend to reflect human’s point of view in forming sensory

groupings; and b) inherit a structure of human linguistic constraints [19].

Put concisely, human-designed perception inherits human-imposed flaws. In con-

trast, in the learning framework, adaptation of agent’s perception results in realization

of the world constraints in a form natural to the agent.

In addition, an argument can be put forward in favor of “developmental learning”

– continuous learning for autonomous systems that develop new representations, skills

and perception as necessary (e.g. [84]) – where it is inconvenient to frame the learning

problem in terms of training and testing phases. Such separation is often done in

traditional statistical learning for the purpose of accountability and simplicity of

proofs. Reinforcement learning research in this case extends its grasp to a much

more realistic setting and a satisfying goal: life-long on-line learning being one of its

objectives. In designing autonomous agents there is no reason to build in a mechanism

that at some point stops adapting to the new data. Learning and testing in this

setting are the two parts of an ongoing process. It remains a big challenge to develop

algorithms and architectures that possess the desired properties and are provably

correct, while being capable of autonomous operation.

Of course, as was mentioned in earlier sections, autonomous independent learning

cannot proceed when there are no clear self-evident constraints in the input data. For

instance, understanding the meaning of pixels in the image received from the camera

is all but an impossible task without properly grounding it in the context of the task

of the agent. It is so for the simple reason that there is an abundance of patterns in

the visual field, the vast majority of which are inconsequential to the task. Thus, the

problem of learning a good perceptual organization becomes that of deriving utility

43

of any given configuration.

The problems of utility and reward-driven optimization, have been the focus of

a large body of research in reinforcement learning [43, 74]. Reinforcement learning

assumes that the interactions of the agent with the environment result in some amount

of benefit or loss to the agent and seeks a solution to the problem of finding the best

behavior for the agent to maximize the benefit and minimize the loss on the long run.

The work of this dissertation borrows some very simple ideas from reinforcement

learning, attempting to extend the statistical estimation techniques to use the addi-

tional information provided to the agent by external subjective reward. The setting

of the thesis is strictly incremental, allowing to update parameters after observing

every new data sample. The contribution of this thesis is in exploring some tech-

niques for on-line learning equivalence classes in the perceptual space with the aid of

reinforcement. There are three issues that I address in the remainder of document:

1. How to learn perceptual equivalence classes with higher utility?

It is convenient to use techniques of unsupervised learning to estimate the per-

ceptual field of the agent, which will probably contain the categories of interest.

How can we extend these algorithms to take into account the utility of any given

configuration to derive the set of categories that prove the most useful?

2. How to learn on-line efficiently?

Learning on-line is difficult because only one data sample is examined at a

time. All the previously seen data should have been already processed and

stored away or discarded. This presents a problem that some old data, which

was not immediately useful might turn out to be useful in the future. How

should such data be utilized to provide a better support for future discovery?

3. How to learn the few useful categories and NOT learn the plethora of not so

useful ones?

Many trends and patterns in the agent’s sensory field do not possess any useful

correlations with the consequences of the agent’s action selection mechanism.

Therefore I will assume a constructivist view of learning of these patterns. The

44

primitives are only learned once they have resulted in increase in the overall

reward intake by the agent.

Presence of a trainer in this document is assumed only implicitly, as all algorithms

presented in the technical chapters are built to operate on-line without any clear

stopping conditions in sight. All algorithms are accepting one observation at a time,

be it a single data point, or a sequence. In chapter 6 this distinction is not even made

– the observation in that case is everything that has been seen so far. This setting

naturally responds to including an explicit trainer into the model, and, of course, can

be guided more or less successfully by a trainer via a particular order of presenting

the data, or a particular structure of rewards, given to the algorithm. With some

simple extensions, these algorithms could be trained via the training sequence that is

used in animal training.

2.5 Problem Setting

Having given the historical, biological and technological motivations, the problem

that this thesis addresses is that of building practical, usable systems that allow for

the perceptual system of the agent to be refined over time with some degree of näıve

supervision. The word näıve here is related to the fact that the type of the feedback

that is of interest for this work does not assume any knowledge of the trainer about

the details of the learning algorithm, while expressing the trainer’s subjective degree

of satisfaction with the learner’s performance.

The memory-based algorithm of the next section was used as the basis for the

auditory perceptual system of an animated dog, Duncan, the main actor of an in-

teractive installation “Clicker by Eire”, developed by the Synthetic Characters group

(see fig. 2-6). Typically, in training real dogs, the first phase of the training procedure

identifies a group of actions that will be rewarded. After that association is estab-

lished, the trainer presents an observation – an utterance or a gesture – simultaneously

with the onset of the desired action. During subsequent episodes the utterance gets

associated with the action, and then can be used as a stimulus.

45

In “Clicker by Eire”, the user trains Duncan by first, reinforcing the desired be-

havior regardless of the observation context, and then, training the dog to recognize

the command utterance and associate it with the appropriate action. The algorithm,

described in the next chapter, implements the final stage of the training. After the

dog is trained to prefer one action over others, the user, wearing a microphone, pro-

duces a command and rewards Duncan if it responds with an appropriate action. If

the response is correct, then the user “rewards” the dog, who quickly2 builds a small

repertoire of voice commands and learns to associate them with particular behav-

iors. With practice, the trainer could shape the dog’s action selection mechanism

to reliably perform tricks as directed by trainer’s voice commands, regardless of the

language or the gender of the trainer.

The algorithms described in this document

Figure 2-6: Duncan is an artificial
animated creature that accepts voice
commands. The shepherd, acting as
the user’s proxy, directs Duncan to
herd a flock of virtual sheep.

pursue the goal of improving the selective abil-

ity of the agent as the amount of interaction

with the trainer increases. The training proce-

dure used in this thesis consists of a series of

steps, during which the agent is presented with

a stimulus, here and below denoted by xn, to

which it responds by selecting an action,an. If

the trainer finds this behavior appropriate, he

or she rewards the agent by delivering to it some

scalar value of a reward, rn. With this in mind,

the task of learning the perceptual organization for the agent can be stated as follows:

Given a new observation, x, select an action, a, collect a

reward, r, and update parameters of the perceptual model to

increase the probability of receiving reward in the future.

Generally, the correspondence between observations and actions can be arbitrarily

complex, as well as the dependency of the reward on the past performance of the

2A vocabulary of 7 utterances would typically take 5–10 minutes to train for, which included playing
out all the actions selected by Duncan to the end, keeping the training setting more-less realistic.

46

a)

p*(x|s)

p*(s)

xn

s=s1

s=s2

p*(r|s,a)

a

a

r

r

b)

xn

p(x|s)

p(a|s)

p(a|xn)
p(s|xn)

Figure 2-7: a) Generative model of the environment. Nature (shepherd) randomly selects
a state, si and draws an observation (voice command, gesture, etc.), x

n, from a distribution
p∗(x|s = si). Upon observing the agent taking an action an, nature produces a reward (a
treat) from the distribution p∗(r|s = si, a = an). b) The solution which allows estimating
the states (perceptual categories) along with the policy of action selection for the task of
estimating the structure in a).

agent or past observations. However, for the task of associative training, the following

generative model of production of observations and reward will be assumed (see figure

2-7a)):

Environment Model

1. Nature can be in one of a discrete set of states S =
{si}Ki=1;

2. Nature selects a state, si, from a probability

distribution p(s);

3. From a conditional distribution p(x|s = si) nature

generates an observation xn;

4. Upon observing the agent taking an action an,
nature produces a reward from the distribution

p(r|s = si, a = an).

The goal of the agent then is to estimate parameters of the model shown in figure

2-7b). In that figure p(x|s) is the probability model of a category s, which is subject

to estimation; p(s|xn) is a belief state, calculated for the incoming observation from

current model parameters; p(a|s) is a policy, that is related to the past correlations

between state, action and reward; and p(a|xn) is the probability distribution based on

which action is selected upon observing xn. With this estimator, the overall structure

of the solution will be as follows:

47

Agent Model

1. Receive an observation, xn;

2. Using current perceptual model, p(x), compute the

probability of xn belonging to each of the perceptual

classes, s, p(s|xn);

3. With the current belief about the class membership,

p(s|xn), and the policy, p(a|s), construct the

distribution p(a|xn) according to which an action

is selected;

4. Collect reward, r;

5. Update the policy, p(a|s), so that actions resulting

in larger positive rewards are more likely given the

current belief state;

6. Update the perceptual model, p(x), so that the belief

state, resulted in the action with higher value

of the reward has stronger preference for the most

prominent state.

This structure will be the general structure under which the algorithms of this

document operate. Specific assumptions or simplifications will be explicitly stated in

the text of each chapter as appropriate.

48

2.6 Notation

In the remainder of this document I will follow the notation given below wherever

possible:

Ci class i

C
(i)
max maximum allowed number of samples in the model Mi

Mi i-th class model

M full model dataset, M = {Mi}Ki=1

p(a|s) policy – a probability distribution, according to which an action is

selected for a given state

p(s|xn) posterior probability of the state given an observation

p(a|xn) probability distribution according to which an action is selected for a

given observation

p(λ|s) a micro-state model membership

Q(s, a) state-action value function, here, an average discounted value of the

reward

r instantaneous reward

r̄ expected (discounted) reward

r̄+ positive part of expected reward

r̄− negative part of expected reward

xn n-th input sample

x
(i)
k k-th sample of the model Mi

λ a macro-state

49

50

Chapter 3

Learning Memory Based Models

When solving a given problem, try to avoid solving a more general problem

as an intermediate step.

Vladimir Vapnik, 1995

3.1 The Goal

This chapter describes the algorithm for on-line utterance learning under reward.

Here, the trainer gives a voice command to the agent and waits for the agent to

respond with some action. If the action that the agent performs is the desired one,

the trainer rewards the agent. Otherwise, the selected action remains unrewarded.

In this problem, the action selected by the agent serves as a label to the perceptual

category to which the utterance is assigned, so the policy, p(a|s), (recall section 2.5

and fig. 2-7b)) is very simple. For the rest of the chapter it will be set to a diagonal

and ignored, that is, p(a|xn) = p(s|xn). The reward is considered to be binary and

is simply an indication of the validity of the guess of the algorithm about each new

utterance. Thus the main problem is that of incremental supervised building of the

memory-based model.

3.2 Overview

This chapter presents an algorithm for learning an on-line memory-based classifier of

utterances of segmented speech. It follows the strategy set in the previous chapters

51

for assigning labels to classes based on the utility of the model to the agent with

respect to performing an associative learning task.

In building classifier systems one inevitably faces the choice of formulating a rule,

or a discrimination function, according to which a new query, xn, gets assigned a label,

yn. These classification rules can take an arbitrarily complex form and be formulated

in a variety of ways, striving for a minimum of some loss function. The complexity

of the problem dictates the appropriate choice of the solution.

3.2.1 Two Approaches to Solving the Problem

There are primarily two approaches to choosing such a discrimination rule – distribution-

based and distribution-free. Distribution-based techniques typically construct the

classifier in two steps – first, a class-conditional density of the data is estimated

for each class; and then the decision boundary between classes is established based

on the likelihood ratio criterion. The first step is typically the harder of the two,

as density estimation is inherently an ill-posed problem and is affected by the data

dimensionality, the size of the data set, feature scaling etc.

Another approach to finding a discriminant function is to solve the problem di-

rectly, without estimating the class-conditional densities. One example of such an

approach is a k-Nearest Neighbors classification rule. Even though it is typically

presented in context of density estimation tasks and contrasted to Parzen density

estimators, the solution given by it is essentially distribution-free. Nearest neigh-

bor classifiers have traditionally been very popular for several reasons: firstly, they

are simple and, therefore, intuitive and easily interpretable. Secondly, and most

importantly, they are mathematically tractable, while in the limit of training data

approaching performance of best possible schemes – it can be easily shown that un-

der very mild constraints local neighborhood rules achieve at worst a double of the

optimal error rate in the limit of data [13] (see appendix A.1).

Lately, attention in machine learning community has turned to the statistical

learning theory [80], that focuses on solutions to classification and regression prob-

lems in a distribution-free setting with a finite sample set. This shift in attention

52

from traditional methods resulted in the development of kernel methods, in partic-

ular, support vector machines (SVM). SVMs implement a principled mechanism for

solving distribution-free problems, that includes model complexity as a regularization

parameter.

In general, distribution-based methods give better solutions if such a solution is

possible to obtain. However, in a developmental framework (e.g. [84]) the distribution-

based techniques are initially not applicable due to the necessity of obtaining a large

amount of data.

3.2.2 What Is Here

This chapter will concentrate on solutions to a practical problem of training and

developmental learning of class models in a multi-class classification scheme. Initially

the models will have no information about the input space, and the agent will not

have observed any part of the data prior to training.

The learning will proceed incrementally, allowing the algorithm to collect the data

necessary to represent each class, while using a trial and error for class label assign-

ment. Each class in the algorithm will be represented by a collection of “memorized”,

previously observed samples that were correctly classified by the classifier.

One complication to building such memory-based representation is that the model

grows in size as more and more observations are seen by the agent. A large part of

this chapter is dedicated to exploration of different methods of finding compression

sets – subsets of the data that represent the rest of the data in a manner that is

optimal in some respect.

3.3 Sampled Classification Rules

Constructing classifiers on-line is different from batch learning in one respect – learn-

ing starts with no data available at hand in the beginning of the process. Imagine

the following incremental scheme – a classifier decides on the class membership of the

query point based on the class, which is the nearest to it in some respect, and gets a

53

a)

Always c2

c1 c3

c2

b)

Never c2

c3 c1

Figure 3-1: Illustration of effect of greedy label selection. The exploration strategy ad-
dresses the issues arising in incremental building of a classifier when little data are available:
a) on the finite sample class boundaries are being re-estimated. The true class boundary,
shown by the red dashed line, is different from the current empirical estimate (solid black
line). A greedy procedure disregards the error rate and, therefore, queries falling inside the
wedge between true and empirical boundaries always receive the same label; b) when no
data have been seen for a class c2 the query point is never assigned a label c2.

feedback from an oracle indicating if the assignment was correct. If it is correct, then

the observation is used to update the nearest class model, otherwise it is discarded.

Such a scheme will be called greedy.

Starting with a small data sample, the greedy scheme encounters two problems,

as illustrated in figure 3-1. Figure 3-1 a) shows the situation where the empirical

boundary between classes is significantly different from the true one. In this situation

all the points landing in the wedge between them will be given an incorrect label,

regardless of how frequently the labels in that region have been rejected by the en-

vironment. Another problem is illustrated in the figure 3-1b). It shows a situation

where one class has not received any data to fill its model to be a contender for some

area of the input space. In this case, the model is never discovered and the data

is simply rejected. These situations are routinely solved in reinforcement learning.

An important insight that the incremental setting of reinforcement learning problems

brings to the table is the trial-and-error approach.

3.3.1 Incremental Learning Algorithm

The the learning algorithm for the memory-based state representation needs to select

samples from the set of the previously observed such that the misclassification rate is

54

minimal. There are three problems that need to be explored for such setting: a) how

to select the samples to include in the class models; b) how to use the trial-and-error

approach to avoid the problems of greedy label assignment; and c) how to keep the

computational complexity in check. This section addresses the first two, while the

last problem is extensively explored in the following section.

Exploration Strategy in On-Line Classification

The trial-and-error paradigm to some degree quantifies the uncertainty of the agent

about the quality of its action selection, allowing it to experiment with results of

decisions that it currently finds sub-optimal. This “mistrust” is expressed via a

probability distribution over actions given the current perceptual state. The action

is selected by drawing a sample from this distribution. This strategy allows the

estimated optimal action to be selected more frequently than the sub-optimal ones,

not excluding the latter until some criterion is met 1.

Being an arbitrary construct, the probability distribution over actions given the

state, p(a|s), reflects the designer’s strategy of balancing exploration and exploitation.

Explorative strategy takes sub-optimal actions frequently, “exploring” the space of

actions, or labels, to see if a higher reward would unexpectedly result. This strategy

is appropriate for early stages of learning, while few observations are available and

the model bias is large. On the other hand, when enough data has been seen by

the algorithm and “surprise rewards” are rare, the exploration provides no additional

information. In this case it is more beneficial to go with the knowledge and make

optimal decisions at every step, or “exploit” the knowledge.

A form of the constructed probability distribution defines the exploration strategy.

For instance, in a K-class classification problem, setting the probability of the class

currently estimated to be optimal to the value of 1−ε and of every sub-optimal one to

ε/(K− 1) for some small ε results in an ε-greedy strategy. A Boltzmann distribution

with a decreasing temperature parameter is another popular choice. In this thesis a

1Typically this criterion is just “some time later”.

55

Boltzmann distribution parameterized by an expected total reward is used to allow

for “self-regulating” balancing of exploration and exploitation.

Label Assignment

To implement the exploration strategy, the learning algorithm uses a probabilistic

label assignment, while incrementally building the model for each class. Imagine that

the classifier needs to assign a label from a set S = {si}Ki=1 to a query point xn.

Using a correct model of a distribution over the labels, p(s|x), one can simply plug in

the value of the query into the model and find a probability distribution over labels,

as a value of p(s|x) at the point xn: p(s|x = xn). Then, the classification decision

about the membership of x can be found to minimize some risk criterion (Bayes,

Neyman-Pearson, minimax, etc.).

Each class in the algorithm is represented by a collection of previously observed

samples that have been correctly classified by the classifier. The full classifier model

M is represented by a collection of class models, M = {Mk}Kk=1, each of which is a

collection of correctly classified samples, Mk =
{
x
(k)
i

}Cmax

i=1
. That is:

M =

{
x : x ∈

{
x
(k)
i

}Cmax

i=1

}K

k=1

(3.1)

where 0 6 Ck 6 Cmax – number of samples added so far, and Cmax is the maximum

number of samples in the model, if applicable. The probability distribution over the

set of classes is computed based on a pseudo-distance between the query point, xn

and each of the class models2. For a discriminant function for a class k, gk(.), that

separates the set of samples that belong to the class from the rest of the data the

pseudo-distance is calculated by simply evaluating the function at the query point,

xn. Computing the value of the discriminant for each class at xn results in the vector

of pseudo-distances:

2It is known that the choice of the distance metric can have a large impact on the performance of
the algorithm.

56

d(xn) = {gk(xn)}Kk=1 (3.2)

In particular, for the nearest neighbor type rule, the distance vector can be computed

as a set of Euclidean distances to the nearest representative of each class:

d(xn) =
{
min

{
min
i
(‖xn − x

(k)
i ‖), dmax

}}K
k=1

(3.3)

which is just a set of k distances from xn to the closest sample of each class, capped

by dmax. The algorithm assigns a label si to a class with a probability P (s = si|xn),
which is computed in proportion to these pseudo-distances to each of the classes that

are present in the model:

p(a|xn) = p(s|xn) = e−ζd(x
n)

∑
s

e−ζds(xn)
(3.4)

where parameter ζ controls the entropy of the resulting distribution. It is convenient

to make it proportional to to the expected discounted reward: ζ = βr̄. This allows

varying the effect of the computed distances on a resulting distribution, p(a|x), such
that entropy of it H(p(a|x))→ 0, as r̄ →∞, resulting in a “winner-take-all” nearest

neighbor rule:

p(a|xn) = p(s|xn) = e−βr̄d(x
n)

∑
s

e−βr̄ds(xn)
(3.5)

where, β is a free parameter that can be set to a small value in the beginning stages of

the algorithm, and then slowly increased to result in sharper decisions when enough

data is acquired.

Given a new data sample, the algorithm computes p(a|xn), and samples it to

assign a label, sn = s`, and select an action an. If the action of the agent is rewarded,

the sample xn is added to the corresponding class model, M`. Subsequently, the

value of the expected discounted reward is updated:

57

Sample

Get reward

p(c|x)

c1

c2

c3

c1
c2
c3

c?

Figure 3-2: Illustration of the sampled incremental labelling procedure. A new query
point, xn, is used to compute a set of distances to the model classes. A label probability
distribution, p(c|xn) is constructed based on these distances. The action is selected by
sampling p(c|xn) and reward is collected. The reward dictates whether or not to include
the query xn into the model.

r̄t = r̄t−1 + α(r − r̄t−1) (3.6)

where r is the momentary reward and α is a learning rate set to some small value,

0 6 α 6 1. This equation is equivalent to incrementally estimating a “drifting mean”,

or a baseline rate of reward. The parameter α is an exponential decay parameter that

assigns lower weights to older values of reward in computing the sum of rewards up

until now. It can be easily seen that setting α to be inversely proportional to the

number of steps so far results in a sample mean.

The procedure is illustrated in the figure 3-2. Starting with Mi = {∅} and

di = dmax, the algorithm collects model samples by attempting to classify them

with labels drawn from p(a|xn) and examining outcomes of this procedure. Sample

assignments that resulted in receiving positive values of the reward lead to incremental

construction of class models as summarized below:

58

Label Selection Algorithm

1. Receive an observation, xn;

2. Compute distances to each of the class models, Mi

(eqn. 3.3);

3. Calculate distribution over actions, p(a|xn) (eqn.

3.5);

4. Select an action an = a` by drawing a sample from the

distribution p(a|xn);

5. Collect reward, r;

6. Update expected reward with the value collected (eqn.

3.6);

7. If r = 1 add sample xn to the model M`;

8. Proceed to step 1

This algorithm allows to build models of states incrementally. Some parallels can

be drawn between this algorithm and other well known on-line learning algorithms,

such as a multi-class Winnow algorithm, for example. The focus here is on building

a good model of the state, rather than the decision boundary. This goal is achieved

by selecting examples to store in the model, from which the decision boundary is

constructed when necessary.

3.3.2 Classification with Compression Sets

In a memory-based algorithm, where the model includes actual data samples, both

memory and processing power requirements grow with increase of the number of

stored samples. This necessitates additional methods to make the models sparse.

The problem of finding compression sets3 has been addressed in the case when all

the data is available at once. Then, a subset of the data may be selected such that

the performance of the classifier degrades the least. These techniques include the

one proposed by Hart [33], and later reviewed by a number of researchers. The idea

3After Floyd and Warmuth [27].

59

of the technique is as follows. Given N data samples, find a subset of size M < N

such that the error committed on the remaining N −M samples is minimal. The

variations on this technique proposed in a variety of papers, eg. [11, 17, 31] included

set reduction rules allowing for finding prototypes that do not belong to the original

set, or re-labelling the subset data to achieve minimum error rates on the remaining

set.

In the incremental setting, all data are not available at every step, but only the

data kept in class models. At each step of the algorithm a decision needs to be made

a) whether to include the successful query point in the prototype set; and b) which

prototype to discard from the model to free up space for the new sample.

In this respect the proposed algorithm compares several strategies of sample com-

pression – a) based on utility; b) based on minimization of the empirical risk; c) based

on class boundaries; and d) based on margin samples.

Utility Compression Sets

Each prototype in the model is augmented with a usage count, Zk, maintaining a

count of how many times the prototype has been found to be the closest to a query,

xm; and a lifetime count, Lk which is a count of queries applied to the classifier since

the prototype k was inserted into the model. Then the utility index of the prototype,

Uk, is computed as a ratio of the corresponding usage count to its lifetime:

U(x
(i)
j) =

Z(x
(i)
j)

L(x
(i)
j)

(3.7)

When the sample xn is considered for addition to the model Mi, and the model

contains Cmax prototypes - a maximum allowed number for the model, then the

prototype with the lowest utility index is discarded and replaced with xn.

60

Utility Compression Rule

1. Increment the count L(x
(i)
j) of every model sample;

2. If the reward r > 0

(a) Increment the usage count, Z(x
(i)
j) of the sample

Mi;

(b) If |Mi| > Cmax discard the sample with the

smallest utility index;

(c) Append the query xn to the set Mi;

Minimum Empirical Risk Compression Sets

After the sample xn is classified into the class Ci and added to the model Mi the

algorithm removes a sample which is found to be redundant. That is, the k-th sample

of the i-th set, x
(i)
k , which is the best predicted by the remaining samples in the model.

Misclassification risk for the sample x
(i)
k is computed as the probability of classifying

it into a class j 6= i, given all the present model samples with x
(i)
k removed from the

set Mi:

r(x
(i)
k , {x

(j)
NN}Kj=1) = p(Ck 6= i|x(i)k , {x

(j)
NN}Kj=1)

= 1− p(Ck = i|x(i)k , {x
(j)
NN}Kj=1) = 1− e

−ζ
∥∥∥x(i)

k
−x

(i)
NN

∥∥∥
2

K∑
j=1

e
−ζ

∥∥∥x(i)
k
−x

(j)
NN

∥∥∥
2 (3.8)

The sample x
(i)
k minimizing the risk in eqn. 3.8 is removed from Mi:

Mi =Mi\ argmin
x
(i)
k

[
r(x

(i)
k , {x

(j)
NN}Kj=1)

]

=Mi\ argmax
xi
k

e
−ζ

∥∥∥x(i)
k
−x

(i)
NN

∥∥∥
2

K∑
j=1

e
−ζ

∥∥∥x(i)
k
−x

(j)
NN

∥∥∥
2

(3.9)

61

a) b)

Figure 3-3: a) Margin compression sets are found by discarding the data lying away from
the margins; b) Boundary compression sets are the data points lying on the cluster boundary
of the classes.

Recall (from eqn. 3.4) that the last term of eqn. 3.9 is equal to the posterior proba-

bility of the class i given the sample, x
(i)
k . Hence the removed sample is the one with

the maximum value of the posterior probability, p(a|x(i)k).

Minimum Risk Compression Rule

If the reward r > 0:

1. If |Mi| > Cmax compute the risk for every sample in

Mi;

2. Discard the sample with the smallest value of risk;

3. Append the query xn to the set Mi;

Margin Compression Sets

Another approach to finding useful compression sets for the given set of models is

based on the observation that the areas of the space where the classification bound-

aries are constructed are more important to be included in the models than the data

lying in the areas distant from the decision boundary. The figure 3-3 a) illustrates the

intuition behind this scheme. It shows that for making a classification decision the

data located far from the margin between classes does not contribute to the decision

boundary, and, therefore, can be safely removed.

Support vector techniques provide the solution for the problem of finding the data

62

that lies in the margin between classes. The following is a condensed version of the

idea of support vector machines. For the full discussion, the reader is directed to the

literature (e.g. [79]).

Support Vector Machines Support vector machines are the realization of two

ideas: a) generalized optimal separating hyperplane ; and b) convolution of an inner

product. The solution to the classification problem is based on finding a hyperplane

that separates the data with minimum error. In order to do it the input data consist-

ing of observations and their labels, Di = {(xk, yk = I(xk ∈Mi))}Nk=1, is first mapped

to some high dimensional space, such that Ψi = {(zk = Φ(xk), yk = I(xk ∈Mi))}Nk=1

is the new dataset, where Φ(.) is a non-linear transformation.

Then, the optimal separating plane is determined by a vector w that minimizes

the margin functional:

F (w, ξ) =
1

2
‖w‖2 + C

N∑

i−1

ξi (3.10)

subject to the constraint:

yi(w · zi + b) > 1− ξi (3.11)

where C is fixed and ξi is a slack variable, making the second term of eqn. 3.10 a

penalty for the data being inside the margin. The solution to eqn. 3.10 is found via

quadratic optimization of the following dual problem: find {αi}Ni=1 that maximize the

Wolfe dual:

W (α) =
N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

yiyjαiαj(zi · zj) (3.12)

subject to constraints:

0 6 αi 6 C, i = 1, ..., N
N∑
i=1

αiyi = 0
(3.13)

After the solution for the set {αi}Ni=1 is obtained, w is found as:

63

w =
N∑

i=1

αiyizi (3.14)

while the classification decision is made based on the sign of the discriminant function:

g(xn, D) =

 ∑

i:zi∈{SV }

αiyi(zi · Φ(xn))− b

 (3.15)

An important insight of support vector algorithms is that in the calculations

above, one never needs to consider the feature space explicitly, since all feature data

is only used in the context of its inner product. However, the feature space can be

chosen in a special way, so that the inner product in that space is represented by a

kernel function in the input space, (zi · zj) = (Φ(xi) · Φ(xj)) = K(xi, xj). In order to

represent an inner product the kernel has to satisfy Mercer conditions. Known classes

of Mercer Kernels include RBF, polynomial and sigmoid kernels. That is, equations

3.12 and 3.15 can be re-written as follows:

W (α) =
N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

yiyjαiαjK(xi, xj) (3.16)

g(xn, D) =
∑

i:xi∈{SV }

αiyiK(xi, x
n)− b (3.17)

The most important fact for the application of compressing the model dataset is

that only the so called support vectors - data points lying on the margin boundary

- will have their corresponding Lagrange multipliers, αi 6= 0. These are the vectors

that are important for making the classification decision that the algorithm needs to

keep on a long run.

The Margin Compression strategy estimates the new set of support vectors at

every step when the model includes a new sample and possibly reduces it. In summary,

the algorithm for determining the margin compression set is as follows:

64

Margin Compression Rule

If the reward r > 0:

1. Append the query xn to the set Mi;

2. Find a set of support vectors, MSV
i ⊆ Mi as a

solution to the classification problem Mi vs.

{Mj}Nj=1,j 6=i;

3. Replace the set Mi with the reduced set MSV
i .

Boundary Compression Sets

Yet another approach to incremental finding the compression set is based on the

support vector clustering algorithm by Ben-Hur et al. [2].

The approach is based on an observation that in the case of nearest neighbor

or margin classification the interior points of the cluster do not affect the result of

classification. In contrast to the margin-based technique of the previous section,

the approach of this section identifies the cluster’s exterior points and uses them as

prototypes for each model. Thus, not only the margin support vectors relevant to

separating existing classes are kept in the model, but also the points on the cluster

exterior that do not belong to the margin support set (see fig. 3-3 b)). The intuition

is that the cluster support set is the set of potential support vectors if more classes

are added to the classifier in the future.

The cluster support set is found with the use of a “kernel trick” - mapping the

data to some higher-dimensional (feature) space and finding the smallest enclosing

sphere for it. Then, the points lying on the surface of the sphere in the feature space

can be shown to lie on the cluster’s exterior in the original space.

Support Vector Clustering The support vector clustering algorithm solves the

problem of finding the cluster boundaries by mapping the data from the input space

to some high dimensional feature space and then finding a minimal enclosing sphere

in that space.

The setting of the problem is very similar to that of the previous section. Since

65

finding cluster boundaries only involves one class at a time, class index will be dropped

for the remainder of this section. The data, D = {xk}Nk=1, is first mapped to some

high dimensional space, such that Ψ = {zk = Φ(xk)}Ni=1 is the new dataset. The

points enclosed in a sphere of radius R in the feature space satisfy the inequality

constraint:

‖Φ(xj)− a‖2 < R2 + ξj (3.18)

with slack variables ξi > 0 and a the sphere center. The problem is now to minimize

R2 subject to the above constraints. Introducing the Lagrange multipliers for the

constraints, Wolfe dual and a kernel, K(xi, xj), to express the inner product as before,

the objective functional is given by:

W (α) =
N∑

i=1

αiK(xi, xi)−
N∑

i=1

N∑

j=1

αiαjK(xi, xj) (3.19)

Again, the solution for Lagrange multipliers αi is found by quadratic optimization,

where αi 6= 0 indicates that the point lies on the surface of the minimal enclosing

sphere in the feature space, and, thus, on the cluster boundary in the input space.

The Boundary Compression strategy estimates the new set of cluster boundary

points at every step when the model includes a new sample, and possibly reduces

it. In summary, the algorithm for determining the boundary compression set is as

follows:

Boundary Compression Rule

If the reward r > 0:

1. append the query xn to the set Mi;

2. Find a set of boundary points MB
i ⊆ Mi as a solution

to the minimum enclosing sphere problem;

3. Replace the set Mi with the reduced set MB
i .

66

Compression Set of Mi Decision Metric

KNN Mi \ argmin
x
(i)
j

{
Z(x

(i)
j)

L(x
(i)
j)

}
dk =

∥∥∥xn − x
(k)
NN

∥∥∥
2

KNE Mi \ argmax
x
(i)
j

e
−ζ

∥∥∥∥x
(i)
j
−x

(i)
NN

∥∥∥∥
2

K∑
k=1

e
−ζ

∥∥∥∥x
(i)
j
−x

(k)
NN

∥∥∥∥
2

dk =
∥∥∥xn − x

(k)
NN

∥∥∥
2

SVC Mi \
{
x
(i)
j :

∥∥∥Φ(x(i)j)− ai

∥∥∥
2
< R2

i + ξj

}
dk = −

(
|Mk|∑
j=1

yjαjK(x
(k)
j , xn)− bk

)

SVS Mi \
{
x
(i)
j :

[
wi · Φ(x(i)j) + bi

]
> 1− ξj

}
dk =

∥∥∥xn − x
(k)
NN

∥∥∥
2

SVL Mi \
{
x
(i)
j :

[
wi · x(i)j + bi

]
> 1− ξj

}
dk = −

(
|Mk|∑
j=1

yjαj(x
(k)
j · xn)− bk

)

SVM Mi \
{
x
(i)
j :

[
wi · Φ(x(i)j) + bi

]
> 1− ξj

}
dk = −

(
|Mk|∑
j=1

yjαjK(x
(k)
j , xn)− bk

)

Table 3.1: Summary of compression rules and sampling strategy. For each classifier, the ta-
ble shows the set reduction technique in the second column, followed by the pseudo-distance
metric based on which the probability of label assignment is computed.

Summary of Compression Set Rules

The summary of the rules for finding a compression set of the class model is shown in

the table 3.3.2. The table lists six different set reduction techniques. The table shows

the strategy of the set reduction for each classifier, followed by the pseudo-distance

metric for computing the probability of action selection, p(a|xn), as shown in eqn.

3.5. :

1. KNN

Utility-based sample reduction strategy. When a new sample is added to the

modelMi and the model size exceeds the maximum allowable, C
(i)
max, the sample

with the lowest utility index, Uk (see eqn. 3.7, is discarded from Mi. The set

of class distances for eqn. 3.5 is computed as Euclidean distances to the closest

representatives of each class model, x
(k)
NN .

2. KNE

Minimum risk strategy. First, a sample is added to the rewarded model, Mi,

then all samples inMi are examined in turn calculating the posterior probabil-

ity of the class i with the sample removed. The one having the least uncertainty

67

about its label (highest value of the posterior probability, p(a = i|x(i)k)) is re-

moved fromMi. Decision metric is the nearest neighbor Euclidean distance, as

in KNN;

3. SVC

Cluster Boundary rule. When a new sample xn is added to the model Mi, the

support vector clustering is performed on the model in order to identify points

not lying on the cluster boundary, which are subsequently removed. An action

is selected with probability based on the value of the discriminant function of

eqn. 3.17 at the query point, xn;

4. SVS

“Silly” SVM with the Margin rule and a vector norm decision metric in the

input space4. After a new sample is added to the model Mi a support vector

classification “one against the rest” is solved to find the set of Support Vectors

lying on the margin boundary. The remaining samples are removed from the

model Mi. The decision metric is the nearest neighbor Euclidean distance, as

in KNN and KNE models;

5. SVL

Linear SVM with the Margin rule. In the case of the Linear SVM input and

feature spaces coincide. The set of support vectors is identified after addition

of a new sample, as in SVS. An action is selected with probability based on the

value of the discriminant function of eqn. 3.17 at the query point, xn;

6. SVM

RBF Kernel SVM with the Margin rule. The set of support vectors is identified

after addition of a new sample, as in SVS and SVL models. An action is selected

with probability based on the value of the discriminant function of eqn. 3.17 at

the query point, xn.

4It is “silly” because the decision metric does not match the metric used in the compression rule.

68

Figure 3-4: The sheep.

3.4 Experimental Results

Initially, the algorithm of this chapter was developed for the “Trial by Eire” installa-

tion by the Characters group. The installation was used with a large number of users

in a variety of noise conditions and showed a fairly robust performance even with the

simplest utility-based compression. While only qualitative results have been collected

from “live” runs of the algorithm with KNN compression set rule, it was tested on

three standard data sets from the UCI Machine Learning Repository [5], to get more

definite quantitative results.

In all experiments reported in sections 3.4.2, 3.4.3 and 3.4.4 the results are av-

eraged over 120 runs with data randomly reordered. For the KNN and KNE set

compression methods, the parameter Cmax was set to 20.

3.4.1 Trial by Eire

In the live system, the user would have a goal of training the artificial dog, Duncan,

to respond to a set of 5-7 sheep herding voice commands. Although users varied in

their gender, and native tongue, the training would normally take 2-3 minutes for

the whole set. The main difficulty in the training was that the initial guess of the

first utterance of each class was typically time consuming. It is explained by the fact

that the distribution over actions from which the action label is sampled would be

almost uniform for a new utterance of each class. This emphasizes the importance

69

Figure 3-6: Training Duncan.

for practical applications of the action pre-conditioning before the perceptual and

associative training takes place, providing a nice parallel to the initial discussion of

lessons from animal training in section 2.3.3.

While the algorithm used in Duncan was very simple,

Figure 3-5: Duncan.

it raised many interesting questions mainly concerned with

economizing the memory available for the model storage. Ex-

ploration of different options lead to formulation of the com-

pression set rules shown above and, subsequently, the tech-

nique of SVM-based sequence classification, presented in full

in the following chapter.

A more thorough examination of the implications of different compression rules

and decision metrics is necessary to properly evaluate the algorithm. The evaluation

is performed on three data sets collected from the University of California, Irvine,

Machine Learning repository [5]. Three data sets were used: a) Iris data set; b) Wine

data set; and c) Japanese Vowel data set. The following presents them in order.

70

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
KNN
KNE
SVC
SVS
SVL
SVM

Figure 3-7: Results of running the algorithms on the Iris dataset. The average accuracy
attained by the algorithm is plotted against the number of observations seen so far.

3.4.2 The Iris Set

The Iris data set consists of 150 samples of
Accuracy Prototypes

KNN 0.927362 19.397222

KNE 0.918276 19.580556

SVC 0.893316 18.625000

SVS 0.902188 9.927778

SVL 0.853878 3.561111

SVM 0.899894 9.630556

Table 3.2: Results on the Iris set.

measurements of 3 species of the Iris plant - Iris

Setosa, Versicolour and Virginica. One class is

linearly separable from the other 2, while the lat-

ter are not linearly separable from each other.

4 characteristics of each plant are measured: 1)

sepal length in cm.; 2) sepal width in cm; 3) petal

length in cm; 4) petal width in cm.

The results are presented in the figure 3-7 and

the table 3.2. The second column of the table shows the accuracy attained by the

incremental classifier after seeing the whole data set. The third column shows the

number of retained prototypes per class. All results are averaged over 120 runs.

This proved to be a simple data set where nearest neighbor classifiers achieved

marginally best performance, while retaining the maximum number of prototypes

(∼38% of the data). Linear SVM performed the worst but only used 3.6 prototypes

per class (7.2% of the data).

71

20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
KNN
KNE
SVC
SVS
SVL
SVM

Figure 3-8: Results of running the algorithms on the UCI Wine dataset. The average
accuracy attained by the algorithm is plotted against the number of observations seen so
far.

3.4.3 The Wine Set

The Wine data set consists of 178 samples
Accuracy Prototypes

KNN 0.646044 19.363889

KNE 0.600730 19.205556

SVC 0.648654 16.575000

SVS 0.549376 14.013889

SVL 0.652421 4.547222

SVM 0.663934 9.341667

Table 3.3: Results on the Wine set.

of measurements of 13 parameters of 3 types of

Italian wine.

The results are presented in the figure 3-8 and

the table 3.3. The second column of the table

shows the accuracy attained by the incremental

classifier after seeing the whole data set. The

third column shows the number of retained pro-

totypes per class. All results are averaged over

120 runs with random re-ordering of samples.

The “silly” SVM showed noticeably the worst performance of the set, while retain-

ing 23.5% of the data. In contrast, the RBF and linear SVMs turned out to be the

best, at the expense of storing away 15.6% and 7.62% of the data respectively. The

latter, as well as a good performance of the boundary rule indicate that the classes

were well separable.

72

100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
KNN
KNE
SVC
SVS
SVL
SVM

Figure 3-9: Results of running algorithms on the Japanese Vowel dataset. The average
accuracy attained by the algorithm is plotted against the number of observations seen so
far.

3.4.4 The Vowel Set

The last experiment was run on a Japanese
Accuracy Prototypes

KNN 0.545064 16.715741

KNE 0.508990 16.468519

SVC 0.858571 17.693519

SVS 0.411129 12.515741

SVL 0.855106 14.337963

SVM 0.849584 18.772222

Table 3.4: Results on the Japanese
Vowel set.

Vowel data set. The set consists of 640 sequences

of 12 LPC cepstral coefficients. The sequences

consist of 7 to 29 coefficient vectors each and are

collected from 9 male speakers, pronouncing the

Japanese vowel “æ”.

The experiments were run on time-normalized

data, as will be shown in the next chapter, which

resulted in it occupying 252-dimensional space.

Even though time-normalization presents a vio-

lation of the no-lookahead principle, it will be shown later that there exists a method,

which allowing to avoid previewing the data in practice, while delivering at least the

same performance. That allowed the experiments to be conducted with normaliza-

tion.

The results are presented in the figure 3-9 and the table 3.4. The second column

73

of the table shows the accuracy attained by the incremental classifier after seeing the

whole data set. The third column shows the number of retained prototypes per class.

All results are averaged over 120 runs with random re-ordering of sequences.

The “silly” SVM again showed the worst performance while storing 17.6% of the

data. Linear, the boundary rule, the RBF and the Linear SVMs and this time showed

dramatically better performance than other contenders (24.9%, 20.1% and 26.4% of

data stored).

3.4.5 Discussion

While being so simple the algorithm contains a sketch of a powerful idea of using

whatever little information that is available from the environment to refine percep-

tion. This insight will be developed further in the subsequent chapters, however,

what is most interesting in this chapter is the different ideas of forming the reduced

memory-based models and the performance that the algorithm achieves using them

incrementally.

Theoretically, two questions still remain open - a) what can be said about the

convergence rate of the nearest neighbor classifier? and b) what can be said about

the convergence rate of the classifier using a compression set? Unfortunately, currently

not much can be concluded - some details are given in appendices A.2 and A.3. Those

results are definitely not the final word of theory, however, they require much more

effort before they become useful for practical purposes.

The Iris data set gave no surprises. Classification rates of all algorithms were

relatively high - around 90%. In this situation, only the linear SVM showed a slightly

poorer performance taking the most of the performance loss on the two non-separable

classes of the set. KNN and KNE showed the best accuracy. The low dimensionality-

to-sample size ratio provided good conditions for the nearest neighbor rules.

Despite the fact that the Wine data set is usually referred to as “easy”, the

incremental classification of it was not very successful. The main problem that the

all classifiers had to deal with was the uneven scale across different dimensions. While

74

whitening5 the data would have improved the results, it would be a violation of the

desired property of not having to see the data before trying to classify it. In the end,

the main loss was sustained by the “silly” SVM, combining the nearest neighbor rule

with the Support Vector reduction rule.

On the data set of the most interest - the Japanese Vowel set - the dramatic

improvement in performance achieved by the SVM-based techniques illustrates a good

generalization ability that the SVM can provide. The high dimensionality of the space

with barely 3 samples per dimension for all 9 classes showed to be an obstacle for

the local neighborhood rules. The situation with neighborhood rules would probably

not be so grim had they not run out of data. On the larger dataset, the convergence

of these rules can be traced further, however, for the purposes of this application

the data set provided about 70 repetitions of each class of utterances. This is not

satisfactory for a live training application. SVM-based compression rules achieved an

accuracy of about 70% after 20 repetitions each, which is much closer to the target

convergence rate.

The performance of the “silly” SVM proved that it is almost never a good idea to

use an SVM compression set with a nearest neighbor decision rule. The explanation

for this is very simple - the neighborhood rule used for label assignment was computed

based on the Euclidean metrics of the input space, while the margin is computed in

the feature space, which imposes a non-Euclidean metrics on the input space.

Perhaps the biggest surprise of all the experiments was the excellent performance

of the boundary compression rule. Indeed, unlike with margin rules, to find a sparse

subset each class was examined independently of the rest. In addition, this strategy

tends to pick outermost samples of the class, without any concern for outliers. Despite

these two shortcomings, on the examined data sets the performance of the boundary

compression rule was on par with, if not better than that of margin rules. The

performance seems to be a property of the data set. However, in higher dimensions,

this technique has a much better chance of succeeding.

The conclusion of this chapter is that in problems with low dimensionality-to-

5That is, transforming it to occupy a unit sphere.

75

sample size ratio, neighborhood rules perform well and are worth considering at the

lower computational cost. As the ratio grows higher, margin-based rules begin to

gain their edge. In that situation, as well as when there is a reason to believe that the

classes are reasonably well separated, boundary rules, being computationally simpler

than full margin rules, should provide faster convergence, especially in situations

where some of the classes are not yet represented.

76

Chapter 4

Support Vector Classification of

Sequences

So far nothing has been said about the implications of the sequential character of the

data. All the data, sequential or not, has been treated in the previous chapter as if it

all lived in the same space and that every data sample was easy to plot and compare

to another. The reality of utterance processing is that this is not true. The input data

set typically consists of multivariate short-time spectral sequences of variable length.

Examples of the input to the classification algorithms presented in this chapter are

shown in figure 4.

The figure shows example waveforms of utterances belonging to two classes, their

short-term spectral representation (second column) and the time-aligned spectral se-

quences (third column).

Support vector machines have been successfully used in many fields for classifica-

tion and regression tasks. However, there is a difficulty of using it with sequences of

observations, since they “live” in a space with variable dimension. In order to apply

support vector machines to find solutions in the space of sequences, either the input

data has to be time-aligned in such a way that all input sequences are mapped onto

a space with a fixed dimension, or an algorithm needs to be developed that allows

direct treatment of sequences. Some solutions for time-normalization has been shown

by Rabiner and Juang, [61], which is the basis for the approach taken in section

77

1

5

10

15

20

25

30

35

40

38 1 59

5

10

15

20

25

30

35

40

1

5

10

15

20

25

30

35

40

39 1 59

5

10

15

20

25

30

35

40

1 59

5

10

15

20

25

30

35

40

1 59

5

10

15

20

25

30

35

40

1 58

5

10

15

20

25

30

35

40

1 59

5

10

15

20

25

30

35

40

Figure 4-1: An example of the input data for classification. The left column shows wave-
forms of utterances coming from two classes - “Sit” (first two rows), and “Roll over” (second
two rows). The middle column - their corresponding Mel-scale cepstral coefficients. The
waveforms and coefficient sequences are of different lengths, as can be read off the horizon-
tal axis. The right column shows the output of the time-alignment algorithm. Minimum
distance spectrograms are outlined. The one outlined with a solid rectangle is the master
prototype to which all remaining data are aligned. After the dimensionality normalization
has been applied the spectrograms have the same dimensionality and can be used with
standard classification techniques. In contrast, the support sequence machine, described in
the text, can work with unnormalized spectrograms of the second column directly.

78

4.1.1. Support vector algorithms for treating sequential data have also deserved some

attention. For instance, Jaakkola and Haussler, [38] use the gradient space of fixed

size induced by the parameters of an HMM trained on input sequences to derive the

kernel to be used within the SVM. However, developmental incremental setting of the

problem addressed in this thesis disallows direct application of these techniques.

The following two sections describe the time-normalization and the dynamic align-

ment kernel solutions in turn.

4.1 Dimensionality Normalization

One approach to Support Vector classification of sequences is to time-align the data

in the data set, which effectively makes the data have equal dimension across the

data set. For the purposes of time alignment and dimensionality normalization, a

technique of Dynamic Time Warp (DTW, eg. [61]) is frequently used.

Dynamic Time Warp procedure aligns (re-indexes) one sequence of observations

with another such that the total per-sample distortion measure is minimized.

4.1.1 Time alignment

Consider two patterns, X and Y , represented by sequences of vector-valued features,

(x1,x2, ...,xTx) and (y1,y2, ...,yTy), where sample indices, ix and iy in the sequences

X and Y range from 1 to Tx and Ty, respectively. The general time-alignment between

the two sequences involves the use of two warping functions that relate the indices of

the two patterns to some common time axis, that is:

ix = φx(k), k = 1, 2, ...T (4.1)

iy = φy(k), k = 1, 2, ...T (4.2)

The global dissimilarity between the patterns can be measured considering the pair

of the functions φ = (φx, φy) as the sum of T local dissimilarities, d(X [ix] ,Y [iy]),

79

weighted by the cost of re-indexing at k-th step, m(k):

Eφ(X ,Y) =
T∑

k=1

d (X [φx(k)] ,Y [φy(k)])m(k)/Mφ (4.3)

where Mφ is a normalization factor, depending on the form of the slope weighting

constraint, m(k). The form of m(k) is purely heuristic, expressing the designer’s

preferences for the local slope of the warped path. This slope weighting constraint

can take many forms. The interested reader is encouraged to look at the literature

on speech recognition, such as Rabiner and Juang, [61], for further details. The dis-

tortion measure, Eφ and the warping function, φ can be easily computed via dynamic

programming, where DTW algorithm is one possible realization.

4.1.2 Batch Time-Normalization

Using the DTW algorithm, the data in the full dataset is transformed to a common

length sequence. The heuristic for locating a common sequence to which all data are

aligned is based on finding a set of sequences that provide the least distortion within

each class (a “mean” prototype), and then picking the longest prototype of the set.

The data is transformed as follows:

1. The DTW error matrix is computed for each class of the training data by

aligning each pair of sequences in the dataset and computing the corresponding

error:

Ek
i,j = Eφ(ski , skj)

where Eφ(·, ·) designates the DTW error between the sequence ski warped to the

sequence skj , as in eqn. 4.3.

2. Minimum error prototypes are found for each class as sequences producing the

least amount of within-class error:

s∗,k = argmin
i

(∑

j

Ek
i,j

)

80

3. The longest prototype is found among the set of k minimum error prototypes:

s∗ = argmax
k

{
|s∗,k|

}K
k=1

4. All data in the set are warped to s∗ with corresponding warp functions, Pφ(s1, s2) =
φ−1s2 ◦ φs1 :

ŝki = Pφ(ski , s∗)

where Pφ(.) designates the warp of the sequence ski to the sequence s∗ with the

pair of the warping functions, computed by DTW algorithm.

5. If ŝki is a multivariate sequence, it is converted to the vector form:

x̂ki = vec(ŝki)

4.2 Support Sequence Machine

The above procedure for the dimensionality normalization is not convenient in practice

for use in a developmental setting, where model parameters are updated at every

new data sample. Indeed, the sample used as the “master sample” is found in the

dataset, which has to be observed in its entirety before the normalization can be

made. While incremental learning algorithms for training Support Vector Machines

are available, the normalization of the data needs to be performed at every step. A

different method, which does not require pre-processing of the data, ought to be found

in order to make the support vector technique useful in the incremental setting for

sequence classification.

One approach to classification with the use of kernel methods was proposed by

Watkins [83]. The author shows that scores produced by some dynamic alignment

algorithms form valid kernels. The report proves the validity of the conditional sym-

metric independence kernels for pair hidden Markov models. Here another, model-free

technique is presented, which is based on dynamic programming.

81

Gaussian radial basis functions are a popular choice of SVM kernels. Gaussian

RBFs satisfy Mercer conditions for representing an inner product in a Hilbert space

and are easy to compute from the data in the input space:

K(xi, xj) = e−ζ‖xi−xj‖
2

(4.4)

To be useful, the kernel only requires an error norm to be defined between any two

data points in the input space. On the other hand, the Dynamic Time Warp technique

provides some distortion measure between two sequences, si and sj. However, in order

to induce a metric on the space of sequences, the distance function µ(.) has to satisfy

four requirements:

1. µ(si, sj) > 0

2. µ(si, sj) = 0 if and only if si = sj

3. µ(si, sj) = µ(sj, si)

4. µ(si, sj) + µ(sj, sk) > µ(si, sk)

The DTW distortion, Eφ clearly satisfies condition 1, as it is a linear combination of

nonnegative local distortions with non-negative wights, eqn. 4.3. The requirement

of condition 2 is also trivially true when m(k) is chosen and no 0-weight coordinate

moves are allowed ([61]). The same applies to the triangle inequality, 4.

However, condition 3 is not satisfied by Eφ. Using the superscript xy to denote

the warping transformation from the sequence x to the sequence y, the following

symmetrization solves this problem while retaining properties 1, 2 and 4:

82

Classifier Error rate Accuracy Prototypes
KNN 5.4% (94.6%) 270
MCC 5.9% (94.1%) N/A
HMM 3.8% (96.2%) N/A
SVM 1.8% (98.2%) 58.2
SSM 1.8% (98.2%) 127.3

Table 4.1: Batch classification results on the Japanese Vowel dataset. SVM with the DynA
kernel is shown in the last row of the table.

D(si, sj) =
1

2
[Eφ(si, sj) + Eφ(sj, si)]

=
1

2

T∑

k=1

[
d(si(φi(k)), sj(φj(k)))m

ij(k)/M ij
φ

+d(sj(φj(k)), si(φi(k)))m
ji(k)/M ji

φ

]

=
1

2

T∑

k=1

d(si(φi(k)), sj(φj(k)))
[
mij(k)/M ij

φ +mji(k)/M ji
φ

]

(4.5)

Using eqn. 4.5 in place of the error norm in eqn. 4.4 allows us to use the dynamic

time warp distortion measure to compute the kernel matrix:

K(si, sj) = e−ζD(si,sj)
2

(4.6)

Clearly, the dynamic alignemnt kernel of eqn. 4.6 (DynA kernel) satisfies the Mercer

conditions to represent an inner product and can trivially be used within the support

vector algorithm.

The table 4.2 shows the results of application of the DynA kernel to the set of

sequences of 12 LPC coefficients, collected in the UCI Japanese Vowel dataset. The

data set consists of 270 training and 370 test samples of 9 speakers pronouncing the

Japanese vowel “æ”. The task is to correctly identify the speaker.

The table compares performance of different classification algorithms on the dataset.

KNN and SVM are the traditional 1-nearest neighbor and RBF Support Vector ma-

chine respectively. These two algorithms are tested on the data that underwent the

time normalization, as discussed in section 4.1. That results in the data being mapped

83

to the fixed 250+-dimensional Euclidean space. MCC, HMM and SSM are run on

sequences directly. Of these three algorithms, MCC, is the Multidimensional Curve

Classification algorithm, proposed by Kudo et al. [44], for which the above data set

was collected; HMM is a continuous 5-state Hidden Markov Model; and SSM is the

support Vector Machine with the Gaussian RBF kernel, using the symmetrized DTW

error metric as the basis for the DynA kernel (eqn. 4.6).

The SVM techniques attain the error rate of 1.8%, misclassifying 7 utterances of

the test set of 370 with perfect classification of the training set of 270 utterances and

outperforming the best reported results achieved with other techniques.

The SVM with the traditional kernel retains a smaller number of support vectors

while running on the batch-normalized data while attaining the same performance

as the SSM. However, the inherently heuristic technique of data alignment might

result in higher distortions of the utterances that are significantly different from the

“master” prototype, resulting in a drop in performance, whereas the DynA kernel is

only computed based on pairwise relations and does not result in systematic error.

SVM is also at a disadvantage in the situation where no data is seen beforehand,

that is in developmental situations, which are the topic of interest to this dissertation.

84

Chapter 5

EM for Weak Transduction

If a man will begin with certainties, he shall end in doubts; but if he will

be content to begin with doubts, he shall end in certainties.

Sir Francis Bacon (1561 - 1626)

5.1 The Goal

The chapter presents an algorithm that implements both perceptual and associative

learning with the Expectation Maximization framework. It relieves the constraints

on the policy, p(a|s) (see section 2.5 and fig. 2-7 b)) imposed in the previous chapter.

This chapter will introduce an additional stage for estimating the mapping from states

to actions.

The goal of this chapter is to develop a memory-conscious approach to learning a

statistical model of perceptual organization simultaneously with learning associative

action selection for applications on longer-range tasks than the technique described

in chapter 3.

The parametric statistical model provides less flexibility in the cluster assignments

than the memory-based as the cluster models are localized, hence, we can no longer

assume a direct mapping between states and actions, that is p(s|xn) is no longer the

same as p(a|xn).
In addition, the reward is not assumed to be binary and can vary from unspecified

negative to unspecified positive values. This takes the problem of learning percep-

tual organization out of the domain of supervised learning and into the territory of

85

transductive, and of yet uncharted, weakly transductive learning, as will be shown in

the later sections. From the point of view of reinforcement learning paradigm the

problem addressed in this chapter falls into the category of associative learning with

simultaneous estimation of the hidden state.

5.2 Overview

Keeping in mind that the goal now is to learn parameterized models of input cat-

egories, imagine again the situation where an agent is trained to respond to a set

of voice commands. After hearing an utterance the agent performs an action. The

trainer would like to train the agent to respond correctly by providing (possibly noisy)

rewards and punishments after seeing actions that it performs in response. In this

scenario the agent needs to learn two things: a) parameterized equivalence classes in

the space of utterances; and b) what action to select upon observing a sample from

one of these classes. The first problem is that of clustering under reward, while the

second is the typical policy learning task of reinforcement learning.

There exist a number of algorithms permitting learning of policies of action selec-

tion given that the perceptual system provides a good set of features. But how can

such features be efficiently estimated while the policy learning is taking place? This

chapter focuses on the solution to the problem by embedding a simple associative

search algorithm into an Expectation Maximization paradigm.

In addition, this chapter introduces the notion of weak transduction in order to

properly place the solution among the existing techniques used for unsupervised and

transductive problems.

The task of on-line estimation of the perceptual organization and the policy of

action selection is cast here as a problem of a multi-armed bandit with hidden state

and solved iteratively within the Expectation Maximization framework. The hidden

state is represented by a parameterized probability distribution over states tied to

the reward. The parameterization is formally justified, allowing for smooth blending

between likelihood- and reward-based costs.

86

The chapter proceeds as follows: after introducing the multi-state bandit prob-

lem, section 5.4 describes a modification of the reinforcement pursuit algorithm that

allows to include the hidden state. Section 5.5 justifies modifications to the EM

algorithm that allow to include the reward information into the parameter estima-

tion and to solve the problem of learning perceptual organization along with policy

learning. Experiments with this algorithm showing the results for different objectives

are presented in section 5.7. The chapter concludes with section 5.8 pointing out

contributions and some of the problems with the algorithm.

5.3 Introduction

Let us return for a moment to the original problem statement. The problem, again,

is to find a mapping between continuous observations and a set of discrete actions

that the agent can execute. In the short run, as the previous chapters show, some of

these observations could be simply memorized and then a generalization rule could

be invoked to assign an action to a new observation.

One of the main advantages of the memory based-techniques of the previous chap-

ters is their insensitivity to the distribution of the data within each category. In such

a formulation, each cluster can potentially contain a set of disjoint clusters, collected

within one model. This allows us to keep the policy matrix square and diagonal,

since in these circumstances the many-to-one mapping from states to actions is of-

ten unnecessary. The drawback of the technique is that it is largely memory and

computation bound.

5.3.1 Long Term Perceptual Learning

In the long run, memorization of the prototypes does not lead to a satisfying solution.

Indeed, if the number of observations that the algorithm is allowed to keep is not

bounded, then very soon the problem becomes intractable, as the computational

complexity of it is typically quadratic in the number of prototypes. In addition, the

memory requirements make it in efficient to store even small subsets of the data. In

87

contrast, it is often beneficial to learn a distribution-based model of the input space

when the amount of data allows, as distribution-based methods typically perform

better than the distribution-free.

For a longer term learning task one would like to seek a parametric solution

that allows discarding the data altogether, while keeping only their statistics. Now,

estimating the parametric statistics necessitates using far simpler models for the data

(e.g. Gaussians, etc.) than the data itself. Now one needs to trade the simplicity

of the input representation with the necessity of learning to associate these simple

unimodal categories with actions, building up multimodal perceptual models which

were essentially available for free with memory-based techniques. In other words, in

a statistical setting, part of the complexity is now shifted to the policy, such that

p(s|xn) is no longer the same as p(a|xn).

Associative Search

The policy in the problem addressed here has a special and simple character - since

all observations are assumed to be equally likely and independent - the trainer can

produce any utterance or gesture at will - there is no need to keep the history as a

part of the action context. In other words, the agent’s behavior does not change the

state of the world, which only changes at random. The task of the policy estimation

in such a simplified setting is termed associative search and requires no historical data

to be solved. However, it is complicated by the necessity of perceptual learning, or

state estimation.

State Estimation

The difficulty with policy evaluation comes from the fact that the action selection,

performed by sampling the distribution over actions, p(a|xn) is no longer the same as

the distribution over states, p(s|xn). In order to construct p(a|xn) one needs the entire
distribution p(s|xn), as will be shown in subsequent sections, and not just its value at

a particular state. In this setup one can never commit to a state and the states need

to be estimated without the direct knowledge about exact state attribution of the

88

observation xn. At worst - this is a problem of unsupervised clustering. However, if

an action is rewarded, the fact that selecting it based on a particular value of p(s|xn)
was beneficial provides additional information. Thus, the problem of state estimation

is weakly supervised and one needs to solve clustering under reward.

5.3.2 Related Work

This chapter is based on the Expectation Maximization algorithm [16, 62, 89] ex-

tended to situate it within the context of reinforcement learning and to take advan-

tage of the additional information that is available as a result of interaction with the

environment. Neal and Hinton [54], show a view of the EM algorithm that makes the

extensions made in this chapter possible.

At a certain parameter setting and binary reward the algorthm shown here can be

viewed as an on-line version of the λEM, presented by Nigam et al. [55], for learning

with partially labeled data (albeit for a Gaussian Mixture) and transductive inference

[80]. However, the problem solved by the algorithm described here is in general more

difficult than the problem of transductive clustering, which Nigam’s algorithm solves

as it does not have access to exact labels for the input data.

To learn the policy of the action selection the learning algorithm developed here

uses an N -armed bandit model (see for example Sutton and Barto, [74]). The multi-

state policy is estimated with the aid of the reinforcement pursuit algorithm of That-

achar [76], which is applied to a set of states simultaneously.

A problem similar to the one presented here was explored by Likas [45], who used

a variant of the REINFORCE algorithm [85] to learn Vector Quantization on the

batch data, aided by a reward signal.

The technique of probability matching for reinforcement learning used here is

similar to that shown by Sabes and Jordan [66]. Using this technique, the algorithm

presented here constructs a reward-dependent probability distribution to guide the

algorithm towards the configuration resulting in higher value of the expected reward.

89

5.4 Estimation of the Associative Policy

The problem of agent training, as described earlier, falls into the category of as-

sociative learning with hidden state. If the state space is modeled with a mixture

distribution, then the problem can be described as follows: given an observation,

estimate the state of the world from a finite set of states, S = {si}. Given the belief

about the state membership, select an action (label), which will result in the max-

imum amount of expected payoff received once the action is performed. With that

payoff, update the parameters of the policy of the action selection and of the input

distribution. This section will deal with solving the problem of policy estimation for

such a setup.

5.4.1 Multi-State Bandit Problem

Due to the previously stated assumption of

arm

reward

Figure 5-1: 10-armed bandit model.
Each of the 10 arms produces a reward
by drawing a sample from a corre-
sponding distribution. Each box signi-
fies the reward distribution with some
mean (horizontal bar) and variance
(height of the box).

the observations being independent of each other,

this problem can be thought of as a multi-state

N -armed bandit [74]. The N -armed bandit is

a gambling device with a set of N arms (see

fig. 5-1). Each arm has a probability distribu-

tion associated with it, according to which the

sample reward is drawn every time the arm is

pulled. Most frequently the reward generating

process is assumed to be stationary or, at most,

slowly varying.

Now imagine that the bandit can be in any one of M states, each of which have

different distributions of the reward. Before each trial the bandit switches to a new

state and produces an observation, xn, from the distribution associated with this state

(see fig. 5-2). The player’s goal is to identify this state and perform action selection

and model update for that state. When the state is perfectly known the problem

reduces to M independent N -armed bandits. It is more difficult when the state is

90

a)

p*(x|s)

p*(s)

xn

s=s1

s=s2

p*(r|s,a)

a

a

r

r

b)

xn

p(x|s)

p(a|s)

p(a|xn)
p(s|xn)

Figure 5-2: a) A generative model of the environment, shown as a 2-state 4-armed bandit.
The bandit randomly switches between two states, according to a sample drawn from p(s).
After selecting the state, s, an observation, xn is produced from a distribution p(x|s). b)
The estimator consists of two parts - a perceptual model and a policy. Upon receiving
the observation, xn, the distribution p(a|xn) is constructed and an action is selected by
drawing a sample from it. Upon delivery of the reward parameters of both the policy and
the perceptual model are updated.

hidden and must be estimated.

5.4.2 Solutions with Known State

When the state is exactly known, then the solution for the multi-state bandit is

achieved by independently solving a set of single-state bandits. A variety of action-

value methods, such as sample average, reinforcement comparison and reinforcement

pursuit, have been proposed to solve the single-state bandit problem1. The general

idea is to stochastically search the action space while updating the estimate of the

reward function. A probability distribution over the action space (action preference)

is built based on this estimate and action selection is done via sampling from this

distribution.

The simplest pursuit method, adapted for the multi-state agent, maintains an

estimate of the payoff structure of the bandit via action value function, Qt(a, s). This

function is updated at each step based on the reward received from the bandit after

pulling the arm a by, for example, an exponentially-weighted sample-average method:

1Another classical method for solving bandit problems, which includes balancing of exploration
with exploitation involves computation of the so called Gittins indices. This method provides an
optimal solution to a large class of problems, but assumes the knowledge of prior distribution of
possible problems.

91

Qt(a, s) = Qt−1(a, s) + α(r −Qt−1(a, s)) (5.1)

Based on the value of Qt(a, s), the pursuit method updates its action prefer-

ence model, p̂t(a|s), such that the action with the highest value of Qt(a, s) in-

creases the probability of being selected by a small fraction, γ. Actions that are

currently found to be suboptimal decrease their probability correspondingly. Let

a∗t+1 = argmaxa(Qt(a, s)), then:

p̂t+1(a
∗|s) = p̂t(a

∗|s) + γ(1− p̂t(a
∗|s))

p̂t+1(a|s) = p̂t(a|s) + γ(0− p̂t(a|s)), ∀a 6= a∗
(5.2)

The convergence of the pursuit method is dependent upon values of α and γ,

which in all experiments of this chapter are set to be α = 0.1 and γ = 0.01. In

addition, it is readily combined with ε-greedy techniques to allow for non-stationary

environments.

5.4.3 Solutions with Hidden State

In the presence of the hidden state the problem of estimating the optimal action

becomes more difficult. The uncertainty about the state can be dealt with by dis-

tributing the reward proportionally to the current belief about the state membership

of the observation xn.

Most of the bandit search algorithms allow for formulating a policy, or a proba-

bility distribution over actions, given a state, p(a|s). This is an arbitrary distribution

which only expresses the current estimate of “action preferences”. The action is

selected by sampling the conditional probability distribution p(a|xn), which can be

calculated from the belief state and the policy, by marginalizing the joint, p(a, s|xn):

92

p(a|xn) =
∑

s

p(a, s|xn)

=
∑

s

p(a|s, xn)p(s|xn)

=
∑

s

p(a|s)p(s|xn)

(5.3)

The action selection now takes into account the uncertainty about the state, encoded

in the state posterior. For the purpose of bandit updates, the reward is distributed

among M bandits in proportion to their contribution to p(a|xn):

Qt(a, s) = Qt−1(a, s) + α(rp(s|xn)−Qt−1(a, s)) (5.4)

The action preference update equations, eqn. 5.2 are left unchanged.

5.5 Clustering Under Reward

State estimation under reward can be performed with the aid of the Expectation

Maximization algorithm, which is often used for unsupervised clustering. This section

introduces a technique for including the reward function into the EM re-estimation

procedure. The new objective function is simply implemented in the EM framework

while allowing the algorithm to “fall back” to the unsupervised mode if no reward is

provided.

5.5.1 Weak Transduction

The EM algorithm is a powerful tool for solving unsupervised and transductive prob-

lems. It is often used as a clustering algorithm with the objective of maximizing

the likelihood of the data. This is a good heuristic to use for learning perceptual

organization when no other evidence is available. However, by using an unsupervised

technique for learning the perceptual organization, one disregards its utility for the

agent.

The utility of a perceptual configuration is measured by the reward that the agent

93

a)

:<;<=?>A@
BDCFE(>HG

I @KJML?ENG);DOQP"C�BR>
b)

Supervised

Transductive

Weakly
Transductive

Figure 5-3: a) Illustration of transductive inference for classification. Empty circles indi-
cate the data with unknown class membership. Classification boundaries are different for
estimators with and without unlabeled data. b) Weak transduction has no direct indication
of the class label, but a probability distribution over labels.

collects while using it. Therefore, an algorithm is sought, which while capable of

learning from patterns in the input data alone, can be “directed” with the reward to

choose a different configuration providing higher payoff. That is, the solution should

be an EM-type algorithm, which would allow the inclusion of reward into its objective

for state estimation, while learning the policy of action selection.

The Expectation Maximization algorithm is frequently used for unsupervised clus-

tering of data by spatial proximity in the space of features. For a given number of

clusters the algorithm proceeds iteratively to first, calculate from the current cluster

statistics the probability of data to be generated by each cluster, a state posterior,

p(s|x); and then to average the data, weighted by this posterior to update cluster

statistics.

When the data comes with the known state attribution, sn = z, then the posterior

of each data point turns into a deterministic function, having 1 at the slot of the

corresponding state and 0 elsewhere:

p(sn = z|xn) = 1

p(sn 6= z|xn) = 0
(5.5)

Averaging with respect to this posterior, let us call it p01(s|x), results in the parameter

estimation to decompose into several independent supervised estimation problems.

94

When only part of the data has an exact label, sn = z, then the solution to the

clustering problem results in a mixture of the supervised solution for the labeled data

and the unsupervised solution for the unlabeled set. This is an example of transduc-

tion, where the knowledge from the labeled data is transduced onto the unlabeled.

The setting of a transductive classification is illustrated in the figure 5-3 a). In the

figure the supervised solution does not follow the valley in the density of the complete

data set, while transductive inference takes into account all available data.

Supervised, unsupervised and transductive learning methods view the label infor-

mation in a binary fashion - it is either present or absent. In contrast, under the

circumstances of the problem where the knowledge about the label is inexact and

subjective, the situation is a bit worse than in the transductive setting, but better

than unsupervised. With the current setting of the model parameters the posterior

p(s|xn) is computed as the state membership of the query point. If, consequently,

some value of reward results from this assignment, it indicates the quality of the pos-

terior given the current parameter settings. This is the situation, which the algorithm

being described encounters in the task of estimating a state. That is, in line with

the above taxonomy, the data is labeled with a probability distribution, as illustrated

in figure 5-3 b). It is convenient to call data labeled in this fashion weakly labeled,

and the problem - a Weak Transduction. These terms properly place the problem

among traditional machine learning tasks and emphasizes its relation to already ex-

isting techniques for learning with labeled, unlabeled and partially labeled data (e.g.

[55]).

5.5.2 Reward-driven variational bound

Typically, the EM algorithm for density estimation is used for unsupervised max-

imization of the likelihood function of a parametric density model when obtaining an

analytical solution for the gradient in the parameter space is difficult. This is the case

when we need to learn parameters of a mixture density. In the algorithm of this chap-

ter the input space is represented by a mixture density, p(x; θ) =
∑

i p(si)p(x|si; θi),
parameters of which, θ, need to be estimated. The goal of the algorithm, however,

95

is to not simply maximize the likelihood of the data, but also take into account the

external reward signal if such is present. To do so, in this section a new cost function

is justified, which allows for inclusion of the reward in the traditional EM framework.

EM as a variational bound optimiza-

log[p(x,θ)]

θ∗

G(x,θ)

θ

Figure 5-4: The step in the direc-
tion of the gradient of the lower bound
bound of eqn. 5.8 is the step in the di-
rection of the gradient of likelihood.

tion. The main idea of EM is based on sim-

ple geometric reasoning - if instead of maximiz-

ing some difficult function one maximizes its

convex lower bound that touches the function

at a current parameter value, then a step in

the direction of the gradient of this bound is

also a step in the direction of the local maxi-

mum of the function. For a likelihood function,

f(θ) = p(x, θ), where x is the data set and θ is the vector of parameters, the EM

algorithm is based on the following bound (geometric-arithmetic mean inequality):

f(θ) =

∫
p(x, s, θ)

q(s)

q(s)
ds

>
∏

s

(
p(x, s, θ)

q(s)

)q(s)

= g(x, θ)

(5.6)

Here, g(x, θ) is a lower bound of the likelihood, f(θ), and q(s) is some positive

function of s, integrating to 1. Typically, for the purposes of optimization of f(θ),

the logarithm of g(x, θ) is optimized:

G(x, θ) =

∫
q(s) log p(x, s, θ)− q(s) log q(s)ds (5.7)

It follows from eqn. (5.6) that for any density q(s), G(x, θ) is a lower bound on

log f(θ). Now the density q(s) needs to be found, which touches log f(θ) at θ. The

cost function in eqn. (5.7) can be re-written as follows [54]:

G(x, θ) = −D (q(s)||p(s|x, θ)) + log f(θ) (5.8)

96

where D(p||q) is a Kullback-Leibler Divergence between distributions p and q. From

here it is easily shown that G(x, θ) = log f(θ) when q(s) = p(s|x, θ), that is, the

bound will be touching the likelihood function at the current θ, as shown in figure

5-4.

Augmented reward bound. In order to let EM include the expected reward

into the optimization, the EM bound shown above needs to be augmented with a

reward-dependent term. It is easy to do using the probability matching technique

[66].

To learn preferred cluster configurations, one can consider observation-state pairs

and construct a reward-dependent probability distribution, p∗(s|x; r). The task of the

learning algorithm is to select from a set of conditional distributions p(S|X , θ), aided
by rewards that are provided by the environment for some of the data points. These

rewards can be thought of as inverse energies - pairs (s, x) receiving higher rewards

correspond to lower energy states. Energies can be converted to probabilities via the

Boltzmann distribution, which represents the ideal observation-state mapping - (s, x)

pairs receiving higher rewards being more likely than pairs receiving low reward. If

the parameters of p(s|x, θ) are adjusted so that it is close to p∗(s|x; r), then the output

of the algorithm will typically result in higher rewards.

Following this line of reasoning p∗(s|x; r) is made proportional to the Boltzmann

distribution as shown later in the text. Starting with the equation (5.8), an additional

term penalizes the estimator for being different from this distribution in the posterior:

F (x, θ) = −D (q(s)||p(s|x, θ))+

Eq(s)

[
log

p∗(s|x; r)
p(s|x, θ)

]
+ log f(θ)

(5.9)

When q(s) is set to the posterior distribution, p(s|x, θ), the expectation term turns

into negative divergence between the posterior and, p∗(s|x; r):

97

Eq(s)

[
log

p∗(s|x; r)
p(s|x, θ)

]∣∣∣∣
q(s)=p(s|x,θ)

=

−D(p(s|x, θ)||p∗(s|x; r))
(5.10)

In fact this term induces a different but very intuitive bound for the likelihood

maximization, which is shown in the theorem 5.5.1.

Theorem 5.5.1. F (x, θ) is a lower bound on log f(θ).

Proof. Starting from (5.9), one can write:

F (x, θ) =−D (q(s)||p(s|x, θ))

+ Eq(s)

[
log

p∗(s|x; r)
p(s|x, θ)

]
+ log f(θ) =

∫
q(s) log

p(s|x, θ)
q(s)

ds

+

∫
q(s) log

p∗(s|x; r)
p(s|x, θ) ds+ log f(θ) =

∫
q(s)

[
log

p(s|x, θ)
q(s)

+ log
p∗(s|x; r)
p(s|x, θ)

]
ds+ log f(θ) =

∫
q(s) log

p∗(s|x; r)
q(s)

ds+ log f(θ) =

−D (q(s)||p∗(s|x; r)) + log f(θ)

(5.11)

In the last line of eqn. (5.11) the divergence, D(q(s)||p∗(s|x; r)) > 0, from which

follows that

F (x, θ) 6 log f(θ), ∀q(s), θ, s.t.
∑

(q(s)) = 1 (5.12)

with equality holding iff q(s) = p∗(s|x; r).
This function has the same form as eqn. (5.8), which implies that for practi-

cal purposes one may simply substitute the EM-induced posterior with the fictitious

probability distribution, p∗(s|x; r). It provides the traditional bound for the likeli-

hood function in the absence of the reward. With the reward present, the algorithm

performs only a partial E-step. However, the step in the direction of the gradient of

98

a)

S�THUWV XZY�[]\
θ ^�_

θ∗

` Ya[b\
θ ^dc ebfhg

θ
b)

i�jHkWl mZn�o]p
θ q�r

θ∗

s n�o]p
θ qdt ubvhw

θ

Figure 5-5: a) The augmented bound behaves just like the traditional EM bound when
no reward is present. b) With the reward present the bound is no longer in contact with
the likelihood at the current parameter setting, leading uphill in the expected reward.

this bound leads uphill in the future expected reward.

Now p∗(s|x; r) needs to be constructed in a convenient form. The main constraint

that should be imposed is that the additional term in eqn. (5.9) vanishes when after

producing a label s for an observation x, the reward r received from the environment

is 0. That is,

Eq(s)

[
log

p∗r=0(s|x; r)
p(s|x, θ)

]
= 0 (5.13)

which implies that p∗r=0(s|x; r) = p(s|x, θ). The distribution p∗r=0(s|x; r) can be set to

be proportional to the Boltzmann distribution:

p∗(s|x; r) = p(s|x, θ) exp (βrp(s|x, θ))
Zβ(x, θ)

(5.14)

This form of p∗(s|x; r) is used throughout the rest of this chapter.

The resulting bound is illustrated in figure 5-5. The augmented bound behaves just

like the traditional EM bound when no reward is present. With the reward present,

the bound is no longer in contact with the likelihood at the current parameter setting,

leading uphill in the expected reward. The point of contact with the bound is the

value of parameter at which the posterior p(s|xn) equals p∗(s|x; r).

99

5.6 Reward-Driven Expectation Maximization

Now the two parts of the estimation procedure can be joined to get the complete

solution to perceptual learning under reward. The algorithm is shown below and is

illustrated in the figure 5-6.

The algorithm folds the action-selection policy estimation into the Expectation

step of the EM algorithm while using the immediate reward signal to control the

entropy of the posterior for the Maximization step. The algorithm is iterative and

incremental, performing one iteration per data point, keeping only the sufficient statis-

tics about the density function of the input space. The goal of the algorithm is to

estimate the structure shown in the figure 5-2. It proceeds as follows:

REM algorithm

1. Initialize: Set parameters of the M-state Bandit

model to starting values; guess initial parameters

of the distribution p(x) and iterate the following

Expectation and Maximization steps; for each new data

point:

2. E-step:

(a) calculate p(s|xn) using the Bayes rule and the

current parameters of the observation model, p(x);

(b) Forward pass:

i. compute p(a|xn) (eqn. 5.3);

ii. select an arm by sampling p(a|xn)
(c) Backward pass:

i. collect reward and distribute it among the

states in fractions of p(s|xn);
ii. calculate p∗(s|xn, rn) (eqn. (5.14));

3. M-step: Maximize the resulting bound, eqn. (5.11),

with respect to parameters, θ.

In the forward pass of the algorithm the processing breaks out of the EM’s Expec-

tation step to select an action and update the Bandit model as shown in the figure

5-6. The yielded payoff serves as a control parameter for the EM.

100

xn p(s|xn) Q(a,s) p(a|s) p(a|xn)

a

rp(x) Q(a,s)p(s|xn, r)

n+1 EM Pursuit

Figure 5-6: The reward-driven perceptual learning algorithm breaks out of the expectation
step of EM to compute the improved posterior. Then the parameter estimation is performed
with respect to p(s|xn, r)

5.7 Experiments

The experimental analysis of the algorithm presented in this chapter is performed on

a series of tasks of increased difficulty. The first experiment does not include policy

learning and is designed to simply test estimation of the perceptual model alone for a

fixed optimal policy. Next, two experiments are performed, which involve the policy

estimation. In the first experiment the reward is delivered by a bandit with only

one arm per state producing a unit of reward. In the second experiment the binary

restriction on the bandit is removed allowing each arm to produce some value of

reward, positive or negative. Finally, an experiment is performed with a variation on

the reward structure such that the reward reinforces arbitrary objective, not related

to the likelihood of the data.

5.7.1 EM for state estimation

The first experiment confirms the conclusions of the previous section, showing that it

is in fact possible to use the EM framework for partially supervised tasks. It has to

be shown that, given the context of the classification task, the algorithm will result

in choosing the clustering configuration that provides a higher expected reward.

In the experiments of this section, the performance of the algorithm is compared

with the traditional EM. However, it should be understood that this comparison is for

101

reference only, as the EM is not designed to perform the task that REM is targeting

and can only provide the “worst case” performance.

As a source of the data a Gaussian mixture, q(x) =
∑
q(s)q(x|s) is used. The

algorithm estimates the density p(x) =
∑
p(s)p(x|s) by adjusting its parameters in

an on-line fashion, upon seeing every data point, xn. The reward is delivered after

an attempt to classify xn to be generated by a particular component of p(x|si). The
experiment proceeds as follows:

1. Initialize the generator mixture, q(x): for each state,

si, randomly select a Gaussian observation model -

µi ∼ N(0, 2I) and σi = I;

2. Iterate:

(a) randomly choose a generator state, sk;

(b) generate an observation, xn, distributed with µk
and σk;

(c) using current parameters of the model, p(x),
select a label ln;

(d) if ln = sk, deliver a reward of 1, otherwise, −1;
(e) update parameters of the model

i. compute p∗(s|xn; r̂) via eqn. (5.14);

ii. perform the E-step of the EM algorithm using

p∗(s|xn; r̂) in place of p(s|xn).

The results of the incremental reinforced binary classification experiments are

shown in the figure 5-7. The top plot shows the attained likelihood of the data after

a number of randomly generated samples. The horizontal axis shows the number of

iterations (data points seen so far) with the likelihood plotted along the vertical axis.

It is curious to see that the unguided EM (with β = 0) attains the lowest likelihood.

This is partially due to the fact that the EM is more likely to get stuck in the local

maxima, while the reward signal delivers some extra energy for the algorithm to get

out of it.

The intuition behind choosing the parameter β is that as it increases, the entropy

of the probability distribution from which a label is selected drops. Characteristic

102

0 50 100 150 200 300
0.005

0.01

0.015

0.02

0.025

0.03

0.035

lik
el

ih
oo

d

0 50 100 150 200 250 300
0.2

0.4

0.6

0.8

1

ac
cu

ra
cy

x
 = -2

x
 = -1

x
 = 0

x
 = 4

x
 = 10

x
 = -2

x
 = -1

x
 = 0

x
 = 4

x
 = 10

Figure 5-7: Performance of the REM averaged over 1000 runs for different values of the
parameter β as compared with EM. Curiously, even negative values of β result in higher
likelihood than that attained by EM.

10 0 10
10

0

10 y = -2

10 0 10
10

0

10 y = -1

10 0 10
10

0

10 y = 0

10 0 10
10

0

10 y = 4

10 0 10
10

0

10 y = 10

1 2 1 2 1 2 2 1 2 1

Figure 5-8: Results of a run of the algorithm for different values of β starting from the
same initial conditions. For coefficients with opposite signs the labeling is reversed, while the
EM produces the labeling by chance. In this run the source distribution has the component
1 (green) at the position (5, 5) and component 2 (red) at (0, 0).

103

behavior of the algorithm can be observed at extreme values of β: with β = −∞,

the distribution over labels is uniform and the label selection is performed purely by

chance, with no regard to neither the reward nor mixture parameters. At β = 0 the

distribution over labels exactly equals to the mixture posterior, that is the algorithm

disregards the reward completely, performing the unsupervised parameter estimation

as mixture parameters dictate. Setting β to +∞ results in a “winner-take-all” label

assignment.

The second plot in figure 5-7 complements the likelihood plot by showing the

classification accuracy of the algorithm at different values of the parameter β. It is

expected that the accuracy of the EM used for classification should not be better

than chance, since even when EM converges to the correct set of classes it does

not care which source cluster corresponds to which estimated component. Positive

values of the parameter β drive the extended EM towards correct labeling, while

negative β drives the algorithm away from it, as can be seen in the accuracy plot.

It is interesting that none of the settings of the parameter β result in the optimal

accuracy of 1. There are two reasons for this. First, any fixed value of β less than

∞ will result in sub-optimal label to be selected, albeit with small probability. The

second reason is related to the fact that even optimal Bayes classifier will not achieve

the perfect classification rate as randomly placed source Gaussian components may

significantly overlap.

The influence of β is further illustrated in the figure 5-8. The figure shows the

resulting clustering attained with different values of β. It can be seen that the clusters

for positive and negative values of β have opposite labeling while zero-valued β is

labeled by chance. In this run the source distribution has the component 1 (green)

at the position (5, 5) and component 2 (red) at (0, 0), which is correctly identified by

the algorithm with large positive value of β.

5.7.2 Multi-State Bandit with Hidden State

In contrast to the previous experiment a policy estimation is now introduced. The

estimation of the perceptual state has to be performed on the basis of indirect reward

104

attribution, that is, the state now becomes hidden.

Maximization of the likelihood - Binary Bandit

This section shows the results on problems in which the reward function is well aligned

with the likelihood, that is, the problems where maximization of the reward results in

maximization of the likelihood. Results for this task are shown in figure 5-9. Unlike

in the experiments of the previous section, the cluster identity is not important, as

long as they correctly partition the input space. The multi-state Bandit essentially

implements the mapping from clusters to labels.

It is particularly interesting to see if the reward-based estimator of the input

density results in a better fit of the resulting observation density to the one that gets

reinforced than the regular EM. In the case of a Gaussian mixture density with a

known number of components (known number of states), the fit can be measured

with the symmetrized KL Divergence (see appendix B):

S(p||q) = 1

4

[
(µq − µp)

T (Σ−1q +Σ−1p)(µq − µp)

−tr
(
Σ−1q Σp +Σ−1p Σq − 2I

)] (5.15)

For a lack of a better analytical method, this quantity is computed for every

combination of source and estimator components and the minimum value is selected.

The experiment with a 2-state 10-arm Bandit is performed as follows:

1. Initialize: for each state, randomly select a Gaussian

observation model: µi ∼ N(0, 2I), σi = I;

2. Iterate:

(a) randomly choose a generator state, sk;

(b) generate an observation, xn, from N (µk, σk);

(c) using current parameters select an action an;

(d) if an is the same as the optimal arm deliver a

reward of 1, otherwise −1;
(e) update parameters of the model;

105

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Annealed REMREM EM Supervised

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1 Annealed REM

REM EM

Supervised

re
w

a
rd

d
iv

e
rg

e
n
c
e

a)

b)

Figure 5-9: a) Performance on the 2-State 10-Armed binary bandit. b) Divergence between
estimated and true source distributions.

One variation on the algorithm described in this chapter is the REM with the

parameter β changing over time. For example, slowly increasing β, starting with the

value of 0 will result in the algorithm to not pay any attention to the reward initially,

while slowly shifting towards the “winner-take-all” mode after some period of time.

Let us call it annealed REM.

The figure 5-9a) shows the average amount of reward collected by Bandits trained

with the EM, REM and annealed REM algorithms compared to the case where the

input space is estimated via a supervised estimator. As the goal is an accurate

reproduction of the source mixture, these plots need to be considered along with the

divergence plots (eqn. 5.15), given in figure 5-9b). The annealed REM algorithm,

which slowly increases the value of the parameter β, performs very well, converging

even faster than the supervised case. It is somewhat puzzling, but easily explained by

the fact that the annealing amounts to simultaneous exploration of all states of the

106

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

Annealed REMREM EM Supervised

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

0

0.5

1

1.5 Annealed REM

REM

EMSupervisedre
w

a
rd

d
iv

e
rg

e
n
c
e

a)

b)

Figure 5-10: a) Performance on the full 2-State 10-Armed bandit. b) Divergence between
estimated and true source distributions.

bandit in the initial stages. This gives a good set of initial conditions for subsequent

search in each bandit when β increases.

Maximization of the likelihood - Full Bandit

The algorithm works with the full bandit, where each action taken by the algorithm

results in some value of the reward – positive or negative, with no modifications. The

results are shown in the figure 5-10a). As in the case with the binary bandit, the

initial convergence of both REM and Annealed REM is faster than the supervised

case. The advantage, compared to EM, however, seems less spectacular than in the

binary case. The divergence plots (figure 5-10b)), as before, show better fit of REM

and Annealed REM to the source distribution.

This experiment shows the worst case scenario for the algorithm. The reward

structure here has many local maxima and is “distracting” for the on-line search. The

107

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Action 1 Action 2 Action 3

Figure 5-11: Source and the reward structure for the reward bound maximization task.
The data forms four strong clusters, while the reward is delivered for selecting action 1 if
the data comes from the area marked “Action 1”, etc.

search becomes more difficult and the limitations of the search algorithm become the

deciding factor in the achieved performance. However, despite the inconsistencies in

the reward, the perceptual system captures the input distribution better when aided

by the reward than when no feedback is given.

Maximization of the reward

It is interesting to see how this model performs on a problem in which the reward

function is not aligned with the likelihood. The problem in this section is as follows

- the input data is generated from 4 2-dimensional Gaussians. However the reward

is delivered in such a way that action a1 is rewarded when xn1 < 1.5, a2 - when

1.5 6 x1 < 4 and a3 when x1 > 4, as shown in figure 5-11.

The performance of the model on this task is shown in the figure 5-12. After 2000

iterations the EM estimator yields an average reward of 0.58, Annealed REM - 0.82

and supervised estimator - 0.96 with the maximum possible reward of 1.

Figure 5-13 shows results of a single run of the algorithm. The left column of

the figure shows the resulting positions and outlines of the mixture components.

The middle column shows the classification decision regions corresponding to the

clustering shown on the left. The right column shows the “cluster assignment” -

108

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Annealed REM

Supervised

EM

re
w

a
rd

Figure 5-12: Performance of EM, REM and a fully supervised estimator on the problem
where reward structure does not coincide with the likelihood (averaged over 2000 runs).

0 2 4 6

0

2

4

6

1

2

3

4

0 2 4 6

0

2

4

6

1 2 3
4

0 2 4 6

0

2

4

6

1
2

3

4

1

1

1

2

2

2

3

3

3

1

2

3

4

1

2

3

4

1

2

3

4

0

2

4

6

0

2

4

6

0

2

4

6

a)

g)

d) e)

h)

b)

0 2 4 6

0 2 4 6

0 2 4 6

f)

i)

c)

Figure 5-13: Final cluster positions (left column), decision regions (middle column) and
cluster assignment matrices (right column) for REM (top row), supervised (middle row)
and EM (bottom row) estimators after a single run.

109

matrices that map states to actions, p(a|s). A value in k-th position of l-th row

of the matrix indicates the probability of selecting an action k once the point xn is

classified as belonging to the cluster l. Figures (a–c) demonstrate the performance of

the annealed REM algorithm, (d–f) - that of the supervised model, and the bottom

row (g–i) - the performance of the unguided EM. The supervised case gives the best

possible partitioning of the input while using 3 Gaussians (component 4 is never used

and therefore has a mixing coefficient 0). The REM uses all 4 components and aligns

them with the reward partitioning. Note that both clusters 2 and 4 select action a1.

5.8 Discussion

This chapter presented an extension to the EM algorithm that allows for solving

a range of learning tasks - from fully unsupervised, to fully supervised, including

the partially and weakly labeled data. The justification for entropic variations of the

posterior to achieve arbitrary component assignment goals is provided in the text. The

algorithm allows for smooth blending between likelihood- and reward-based costs.

The algorithm is applicable to the longer range learning tasks when the amount

of data available to the algorithm is relatively large. One can imagine a system

where this algorithm is combined with one of the memory-based solutions presented

in earlier chapters. The system would use the short term saliencies of the memory-

based algorithm in combination with the long range model shown in this chapter,

which would keep track of all data seen so far.

One of the problems of the algorithm is the appropriate choice of the parameter

β. In some cases it is convenient to have an asymmetric schedule for positive and

negative rewards, which adds another parameter to the set.

In other cases special care must be taken about the fact that both reward signal

for the clustering algorithm and the state assignment for the action selection are

non-stationary.

As a larger shortcoming, both this and the previous chapters required the input

to be pre-segmented. This is not always convenient. For instance, in this framework

110

learning command gestures remains difficult.

111

112

Chapter 6

Learning Markov Models

The subtlety of nature is greater many times over than the subtlety of the

senses and understanding.

Sir Francis Bacon (1561 - 1626)

6.1 The Goal

This chapter is dedicated to an algorithm for on-line learning of gesture models from

unsegmented input stream. The gesture models are built based on their utility in

the context of sequential testing and label estimation. In the process of learning, the

algorithm builds a global observation model, which is then factorized into independent

gesture models with the aid of reward. This chapter shows a technique for a clean-

slate learning of the global model and a way to bootstrap extraction of a set of simpler,

more compact and efficient primitive recognizers.

Following the formulation of the problem of perceptual learning, (section 2.5),

the problem of on-line learning of unsegmented gesture in this chapter is slightly re-

formulated in order to account for the temporal character of the input observations,

as shown in figure 6-1. In this reformulation the notation is changed to reflect the

multi-state form of the input models. In this formulation the state, s, previously

associated with “the state of the world”, will be renamed to a “macro-state”, λ,

to reflect that it is now more complex and consists of a set of states itself. These

113

Macro-states,

λ

(Micro-)States, s

p(a|λ)p(λ|xlk
...xt)

p(a|xlk
...xt)

xtxt-1
x1

Figure 6-1: The input models (macro-states) are modeled by a collection of states with
their own state dynamics. Macro-states, λ are then associated with actions.

component states will be called micro-states, or simply “states”, and denoted by s.

For the purposes of this chapter, again, the policy, p(a|λ) will be assumed square

and diagonal, so that p(a|X) = p(λ|X), where X = (x1, x2, . . . , xt) is a sequence of

observations. In the setting of agent training, where the agent is trained to perform

an action in response to a gesture, the input is a continuous trajectory in some

feature space. This trajectory contains the stimulus, which is assumed to be reliably

segmented at its end-point, as specified in the later sections. From a series of such

inputs accompanied with rewards once the correct action is taken by the agent in

response, the algorithm needs to estimate a set of individual models - one per gesture.

With this in mind, the goal of the chapter is to develop a mechanism for clean-slate

learning of a set of sequential Macro-states, λ (see fig. 6-1). For a given sequence

of measurements, x1...xt, the algorithm needs to find a set of subsequences, xlk ...xt,

best modeled by each of the K models λk, select an action, and update parameters

of the corresponding macro-state that define its temporal extent, state composition

and intra-state dynamics to maximize future reward.

6.2 Overview

The previous chapter presented an algorithm for long term learning of segmented

observations. The drawbacks of the algorithm include difficulties in using it with

114

z|{M}�~����.}]�d�K� �.��{]�F~A}]�
�.�Q�a���K�������A���K�
�b�0�H���d�
�a���({

���]�����(�"���

� �0�H���
�����"�

�D�d�
� {��K�����A�Q���
Figure 6-2: Learning gesture models. The observations for an infinite trajectory in the
input space. The unsupervised model is built incrementally by adding states as necessary.
State occupancy and state transition counts give rise to the Hidden Markov Model which
is factorized into separate (possibly overlapping) gesture models or em macro-states as a
result of interaction with the environment.

sequences and the fact that it is hard to model unsegmented data. In this chapter

another algorithm is developed to continuously learn from an unsegmented gestural

input. The idea of it follows in the steps of the previous chapter - it draws heavily on

the unlabeled data and unsupervised experiences in order to maximize the utilization

of the rare reward.

The main insight that is explored in this chapter is that the reward helps in

extracting recurrent gesture models that have provided high utility to the agent. The

learning algorithm developed here approximates the input sequences of observations

by a set of radial basis functions used as micro-states and collects micro-state Markov

statistics. After some period of time the model will be asked to assign a label (identify

the macro-state) to the observed sequence. If the label is correct, then the model will

be rewarded. After a while the reward structure will help to decompose the collection

of micro-states into groups (possibly overlapping) of states that form a a macro-states.

115

These macro-states will be extracted from the full model to form a learned “gesture

vocabulary”. The illustration of the process is given in figure 6-2.

6.3 Introduction

Practical aspects of learning from unsegmented gesture are inspired by tricks of animal

trainers. The development of this chapter uses formalisms that have been developed

for learning and inference in graphical models. A brief introductory exposition of op-

erations with graphical models necessary for understanding of the rest of this chapter

is given in this section.

6.3.1 Tricks of Animal Trainers

The immediately apparent difficulty of learning command models from an infinite

sequence is that the part of the sequence that is actually relevant to the the model

is not identified. This difficulty persists unless some convention about delivery of the

reward is adopted and understood by both the learner and the trainer.

The inspiring observation comes from studies in animal behavior and training

tricks adopted by animal trainers to aid animals in solving just the problem described

above. It has been shown (e.g. [46]) that the reward is the most effective in training

when the time interval between the onset of the reward and the behavior selected by

the animal is minimal. This shows that animals experience the segmentation problem

which is central to the goal of the algorithm that this chapter develops.

Dog trainers have adopted a method, named “clicker training” to help dogs dis-

tinguish between a relevant and an irrelevant behavior. The trick is based on pre-

conditioning the dog on a sound of a device, called a clicker, which produces a sharp

loud click. First, the click is associated with reward - every time the clicker is used,

the dog receives a treat. With such conditioning the sound of the clicker becomes a

reliable predictor of a reward - a secondary reinforcer. Now, when the reward needs

to be delivered at that exact moment that the desired behavior in the dog is invoked,

the clicker is used to indicate that the dog will be rewarded for selecting the current

116

behavior, which allows the dog to precisely segment the observation on which it is

being conditioned.

Thus, the algorithm presented here is largely based on the assumption that the

mechanism of detecting the end-point of the observation and onset of the desired

action is available. This allows us to simplify the goal by limiting the infinite input

sequence by the endpoint time index, t.

6.3.2 On-line Gesture Learning

In context of gesture learning and recognition, one would like to develop algorithms

that are capable of “clean slate” life-long learning. These learning circumstances are

best characterized by two main features: a) the agent has no indication when the next

useful observation will arrive, and hence, needs to learn incrementally, after observing

each new datum; and b) observations form an infinite sequence with only the latest

part being relevant. These two features make the problem of on-line gesture learning

difficult - the agent needs to update parameters upon seeing an observation, but it

cannot reliably infer which part of the sequence is relevant.

The on-line character of the estimation also brings up another interesting aspect of

the learning problem - the labels (or, rather, a subjective measure of their correctness)

are only rarely available. That means that transductive inference should be the

defining framework for parameter estimation. That is, the algorithm needs to be based

on an unsupervised estimator, while leaving the option open for rare but valuable

labels. In this case, by the time a label is given, strong unsupervised support for it

already exists.

6.3.3 Graphical Models

In motion analysis, gestural input is frequently modeled by a Hidden Markov Model

(HMM). An HMM is a sequential probability model, or a probabilistic finite state

machine, that, much like its non-stochastic siblings, encodes the assumption that the

process under review is memoryless. HMMs received their share of attention in the

117

A B C

a)

B

A C

b)

A C

B

c)

Figure 6-3: a) C is independent of A given B; b) A is independent of C given B; c) A is
independent of C, and A is NOT independent of C given B.

community due to the tractability of inference and learning algorithms that have been

developed in the speech community.

Recently, HMMs caught their second wind with advances in graph-theoretic ap-

proaches to belief propagation and Bayes nets. Graphical models, such as Bayes nets,

allow us to view HMMs in context of larger tasks and help formulate many kinds of

variations while keeping track of complexity of resulting solutions.

Graphical models help present the problem of probabilistic inference clearly and

concisely and formulate all known independencies between all variables involved in

the solution. In short, a graphical model represents a random variable by a node

in the graph where edges connect the variables between which there might exist a

dependency. A directed edge between two nodes represents a conditional dependency,

encoding an assertion of probability of the child node given its parent.

The probability of any group of nodes (variables) in the network, possibly condi-

tioned on any other group of nodes, can be easily computed from the joint probability

distribution over all nodes of the graph. A graphical model represents a family of

factorizations of the joint probability as a product of all nodes conditioned on their

immediate predecessors:

p(x1, ..., xn) =
n∏

i=1

p(xi|xπi) (6.1)

where xπi is the set of nodes that are parents of xi.

Three canonical graphs, shown in figure 6-3, encode three main types of conditional

independencies that can arise in a problem represented by a Bayes net. Without

much detail, while often representing causality or conditional independence between

118

the variables the configuration in 6-3 a) asserts that C is independent of A given B.

As follows from eqn 6.1, the joint probability distribution for this configuration is

calculated as follows:

p(A,B,C) = p(A)p(B|A)p(C|B) (6.2)

The configuration in figure 6-3 b) encodes the fact that A is independent of C given

B with the following joint:

p(A,B,C) = p(B)p(A|B)p(C|B) (6.3)

The last canonical graph in figure 6-3 c) indicates that A is independent of C, and A

is NOT independent of C given B. The following computes the joint distribution of

this configuration:

p(A,B,C) = p(A)p(C)p(B|A,C) (6.4)

These three canonical graphs serve as building blocks in modeling independencies

between variables in the model.

Using graphical models makes it easy to trace

xt-1 xt+1

st+1st-1

λt-1

st

xt

λt+1λt

Figure 6-4: Independence structure
of the model. An observation, xt is
generated by a micro-state st which is
conditioned on the gesture model, λt.

dependencies between variables in the graph.

For instance, the problem addressed in this chap-

ter can be graphically represented by a graph

shown in the figure 6-4. The graph shows the

presence of Markov assumption in the process

of state switching - each state is only depen-

dent on its predecessor. It also asserts that the

transition from state to state is affected by the

current gesture model, λt. Notationally, every-

where in this chapter where a graphical model is used a node shown by a circle

will represent a continuous random variable, while the one shown by a square will

represent a discrete one.

119

a) b) c)

Figure 6-5: Reward-driven on-line decomposition. a) A large hidden Markov model is
estimated on-line by counting state occupancy and state transitions. b) State attribution is
found with reward which with some probability assigns each micro-state state to a gesture
model. c) Monte-Carlo sampling fits independent models to each macro-state

In terms of graphical models the structure of the process of decomposition of the

infinite trajectory representation into a set of individual models (states) is schemati-

cally shown in figure 6-5. The process is based on a long term unsupervised estimation

of the transition model in the visual field, fig. 6-5 a). When rewards are delivered,

each micro-state is given a gesture model attribution, fig. 6-5 b), which allows to

factorize the full model into a set of gesture-specific models. These models are sub-

sequently sampled to build a set of independent primitives, fig. 6-5 c).

6.3.4 Previous Work

A large part of this work is built upon research done in gesture recognition and

speech processing. The algorithm starts with the membership of each state being

completely independent and proceed to implicitly discover causal dependencies in the

membership structure.

A technique useful for on-line sequence processing, based on an “open-ended”

Dynamic Programming algorithm was shown in [14]. This chapter uses the idea of

this technique to formulate the on-line multi-model Viterbi approximation algorithm

for evaluation of likelihood-based measures on sub-sequences of observations.

Wilson [86], devoted his dissertation to a study of techniques for modeling gestural

input. The models used in his work are very similar to those used here. One impor-

120

tant distinction is that while Wilson’s work used models that have been physically

instantiated at the run time, the current work focuses on techniques of building them

on-line, perhaps at the expense of some simplifications.

To evaluate the probability structure of the model the algorithm of this chapter

uses a fairly general view of probabilistic sequential machines grounded in graphical

models and Bayes nets literature ([59, 40, 41, 60]). A study of several algorithms for

learning and inference in Dynamic Bayes Nets with similar structure was presented

by Pavlović and Rehg in [58]. The authors examined several approximate solutions

to the “loopy” DBN problem with continuous state. As is the case here, the model

is in a sense simpler, having a discrete state, and, more importantly, fixed switching

states.

The work shown by Hong, Turk and Huang in [34] demonstrates an elegant solu-

tion to gesture learning via extraction of a finite state machine. The algorithm begins

with collecting data and spatially segmenting it into an unspecified number of states

with a given variance. Then temporal structure of state transition is learned and used

for classification. In the work of this thesis, the algorithm has no access to the data

beforehand and cannot pre-segment it. Instead, it performs an RBF approximation

of the incoming sequences to form a set of micro-states. Micro-states, as well as new

gesture models, are created on demand, when either the coverage of the input space

is found insufficient, or some indication that a new gesture is being shown is given to

the system.

6.4 Multi-Model Gesture Representation

In this chapter it is assumed that a single gesture consists of a trajectory in some

feature space that is switching from state to state. Some of these states are related

to a stimulus, (form meaningful gestures) while others are the “filler” states. The

state’s attribution to a particular gesture is represented by a probability distribution

over possible models. For states having strong membership this distribution will

have a very low entropy, while the distribution for “background” states will be close

121

a)
xt-1 xt+1

st+1st-1 st

xt
b)
xt-1 xt+1

st+1st-1

λ

st

xt
c)
xt-1 xt+1

st+1st-1

λt-1

st

xt

λt+1λt

Figure 6-6: a) Hidden Markov Model; b) fixed and c) switching model of a sequence
generator.

to uniform. The learning needs to accomplish the following a) for a sequence of

observations extending infinitely into the past compute the probability of each of the

models being responsible for producing at least the ending part of it; and b) update

parameters of this model with a simple system of rewards and punishments.

6.4.1 Probabilistic Models of Gesture

The hidden Markov model has become the weapon of choice in modeling sequen-

tial data. The inferrential structure of the HMM is conveniently represented via a

graphical model, shown in the figure 6-6 a). This model asserts that the sequence of

observations is generated by a process that switches between a set of discrete states.

Furthermore, the switching process is subject to the Markov assumption - the current

state of the process depends only on the previous state.

There exists a variety of possibilities when it comes to representing the generation

of a sequence of observations from a finite vocabulary of sequential models. Assigning

a variable λ to represent a particular element of the vocabulary, one alternative is

to condition all the states on the probability of the generator being in a particular

model, as shown in figure 6-6 b). In a generative sense, this “fixed” model has one

parameter that specifies the element of the vocabulary currently in effect.

This model does not model a process according to which a particular value of λ

is chosen. Given a particular sequence of observations representing a single gesture

the inference can be made as to which one of a set of gestures has been observed.

A switching model (figure 6-6 c)) allows queries of a different kind, modeling

122

the process that switches between the gestures of the set according to some switching

dynamics. Given a sequence of observations, the model allows to determine which ges-

tures have been observed and in what order. This type of model has been extensively

explored by Pavlović and Rehg [58].

Despite the fact that some progress in inference in loopy networks has recently

been made (e.g. [90]), inference in both fixed and switching models is notoriously

difficult due to presence of cycles in the network topology.

The fixed model is of the main interest to the work of this chapter since the goal

of the on-line algorithm is to find the probability of a single gesture having just been

performed. The estimation of this probability is typically simple on a fixed length

sequence. It is more difficult when each model can potentially be responsible for a

subsequence of different length. Näıvely, one can consider computing the likelihood

of the best fitting sequence, then take its value, multiply by the model prior and

normalize, hoping to get the posterior probability. Unfortunately this computation

results in an estimate that is biased towards assigning higher probabilities to shorter

sequences, since the likelihood function is exponentially decreasing with the length of

the sequence.

An alternative measure is to compute the posterior based on the length-normalized

likelihood of the sequence. Then the posterior probability can be approximated from

a set of these normalized likelihoods. The difficulty of computing the likelihood in

the presence of loops in the model can be alleviated by cut-set approximation (see

Pearl [59] and Jensen [40]).

The cut-set method is based on the approximation that instantiates (gives a par-

ticular value) to a set of strategically chosen variables in the graph such that the

instantiation turns the cyclic graph into a tree. Then the inference is performed on

the tree for each value of the variable set. To get the final quantity of interest, the re-

sults are averaged. Of course, such approximation is difficult to apply to a continuous

variable.

In the cut-set method it is often unclear which nodes to instantiate. In contrast,

in the case of the problem at hand, not only does instantiation of λ break all cycles as

123

xt-1 xt+1

st+1st-1

λ=2

st

xt

λ=2 λ=2

xt-1 xt+1

st+1st-1

λ=1

st

xt

λ=1 λ=1

xt-1 xt+1

st+1st-1

λ

st

xt

Figure 6-7: Illustration of the cut-set conditioning. In the model on the left a variable is
instantiated such that the remaining network forms a tree. Then a traditional propagation
algorithm can be used to query the network. The process is repeated for each value and
the result is averaged.

xt-2 xt

stst-2

λ=1

st-1

xt-1 xt-2 xt

stst-2

λ=2

st-1

xt-1xt-3

st-3

... ...

Figure 6-8: Illustration of the search in the cut-set tree. The model claims different
subsequences of the input for different values of λ.

shown in figure 6-7, but it also allows us to solve the problem of subsequence search.

The figure provides an illustration of how the loops can be treated. By assigning a

particular value to λ, the graph turns into a tree, where inference is simple. Then

the search is performed on the tree to find the best starting time index of the input

sequence for which the model with the given value of λ can claim responsibility (see

fig. 6-8). The following sections will describe the algorithm outlined above in more

detail.

6.4.2 State Space Model

A “state space” is a set S = {S,N, T,Q}, where S is a set of (Gaussian) states, N - a

state sample count, T - a state transition count, and Q - is a state model membership

function.

The state, s ∈ S, represented by a Gaussian RBF kernel, is parameterized by two

parameters - the kernel center, c, and the state covariance, Σ:

124

sk = e((x−ck)
TΣ−1

k
(x−ck)) (6.5)

where Σ is chosen to be isotropic: Σ = hI, such that a state is represented by

a spherical Gaussian with width h. The state sample count, N , is a number of

samples that has been assigned to each state so far. An entry Ti,j into the transition

count matrix, T , indicates how many times a sample fell into the j-th state while

its predecessor was assigned to the state i. A state model membership function, Q,

is a count of rewards for attributing the state to a particular model. That is, for a

given value of state and gesture indices, s and λ, the value of the state membership

function, Qk,i = Q(s = i, λ = k), is the amount of reward (or average discounted

reward), r̄(s, λ), that has been collected while the i-th state was attributed to k-th

model such that:

Q(s, λ) = r̄(s, λ) (6.6)

State parameters allow us to calculate maximum likelihood estimates of probabil-

ities of interest when necessary, as will be shown below.

The state space model is built on-line “as needed”. The states represent a spatial

distribution of the trajectory points that the system has seen so far. Once a new

trajectory sample, xn is received, the squared Mahalanobis distance from it to the

closest kernel is computed:

D = min
k

{
(x− ck)

TΣ−1k (x− ck)
}

(6.7)

i = argmin
k

{
(x− ck)

TΣ−1k (x− ck)
}

(6.8)

If that distance is found to be smaller than a threshold, dT , both sample and

transition counts, Ni and Tj,i, of that state are increased by one. If, on the other

hand, the distance to the closest kernel is large, a new kernel, centered at the sample

xn, is added to the model, while its initial sample and transition counts, as well as

125

the model membership vector, Qk,i are set to one.

As a result of this process, a model consisting of a large number of states linked

by the transition count matrix is incrementally built. The state counts allow us to

compute simple state occupancy and state transition statistics, which can be used to

update the state model membership, such as:

p(λk|si) =
Qk,i∑

m

Qm,i

(6.9)

p(sj|si) =
Ti,j∑

m

Ti,m
(6.10)

p(si) =
Ni∑

m

Nm

(6.11)

The complete model and the dependency between model variables can be rep-

resented graphically , as shown in the figure 6-4. In this diagram, each state, st is

responsible for an observation xt and is conditioned on the macro-state, λt.

6.4.3 Inference and Testing

The algorithm is built for training an agent to correctly respond to an observation by

selecting an action. Here the system is presented with an unsegmented gesture and

is asked it to label it. The complication is that the starting point of the sequence is

not indicated.

As before, the action selection in the algorithm is based on sampling from the

posterior distribution, p(λk|X), where X is all available observations. Hence, the goal

of action selection is to compute the probability of a given model being responsible

for the observation sequence so far. This computation needs to be performed for each

new sample, xt.

Typically, in the case of a finite segmented sequence one would use the Likelihood

Ratio test guaranteeing the minimum Bayes risk of classifying the sequence into one

of a set of classes:

126

tl3l2 l1

Figure 6-9: Problems of finding the “best” sequence - (1) the beginning of the sequence
is unknown, (2) the best sequence for each model can be of different length.

λ = argmax
k

(p(λk|x1...xt))

However, the problem that the algorithm is facing is that only the final part of

the whole sequence is related to the reward, while each of the models can provide

support for sequences of different length. In other words, one would like to use a

similarity measure that considers comparing sequences of different lengths. One such

measure is the expected amount of agreement between the sequence of observations

and the “best” state sequence, s∗lk . . . s
∗
t , that the k-th model can provide for these

observations, assuming that such can be extracted. Using the shorthand λk ≡ (λlk =

k, ..., λt = k), with the usual Markov assumption and factorizations of the model

shown in figure 6-4, the likelihood of the k-th model can be written as follows:

p(xlk ...xt, s
∗
lk
...s∗t |λk) =

p(s∗lk |λlk = k)p(xlk |s∗lk)
t∏

τ=(lk+1)

p(s∗τ |s∗τ−1, λτ = k)p(xτ |s∗τ)
(6.12)

Taking a logarithm of 6.12 gives the following relation:

log p(xlk ...xt, s
∗
lk
...s∗t |λk) ≈

t∑
τ=lk

log
[
p(s∗τ |s∗τ−1, λτ = k)p(xτ |s∗τ)

]
=

(t− lk)E
[
log p(xi, s

∗
i |s∗i−1, λi = k)

]
= (t− lk)η

∗,k
lk

(6.13)

where (t−lk) is the length of the “best” subsequence ending at the t-th sample, and the

expectation, η∗,klk is the average “disagreement” between the sequence of observations

including samples starting at the time index lk and ending at t and the “best” state

127

1 t

s
t
a
t
e
s

parsing direction

⇒

+

+

+

η
η

η

1 1

2 1

1

max * * *

max * * *

max * *

, ...

, ...

...

,

s s s

s s s

s s

l l t

m m t

K n n *st

Figure 6-10: Viterbi parse

sequence that the k-th model can provide. The expectation is easily calculated from

eqn. (6.13). For every sequence from lk to t, the value of η
∗,k
lk

gives its time-normalized

model score:

η∗,klk ≈ log p(xlk ...xt, s
∗
lk
...s∗t |λk)

t− lk
(6.14)

6.4.4 Multi-Model Viterbi Approximation

The equation (6.14) provides neither the means for computing the state sequence

s∗lk ..s
∗
t nor the starting time index lk. Fortunately, both can be found via the ap-

proximate Viterbi algorithm, provided that the likelihood of equation (6.13) can be

calculated for a given state sequence. This calculation requires a model-conditioned

transition matrix, p(st|st−1, λt), which is difficult to obtain on the small input sample,

as it consists of MN 2 entries, where M is a number of gestures in the full model,

and N - a number of states. Instead it can be approximated with quantities that are

already available. Note that the following holds:

p(st|st−1, λt) =
p(st, λt|st−1)
p(λt|st−1)

=
p(λt|st, st−1)p(st|st−1)

p(λt|st−1)

=
p(λt, st−1|st)p(st|st−1)
p(λt|st−1)p(st−1|st)

(6.15)

The joint probability p(λt, st−1|st) is, again, difficult to estimate, but it can be ap-

128

proximated in the maximum entropy sense, from its marginals, p(λt|st) and p(st−1|st):

p(λt, st−1|st) ≈ pME(λt, st−1|st) = p(λt|st)p(st−1|st) (6.16)

This approximation essentially neglects the dependency of λt on st−1 given st and

amounts to reversing the arrows directed from λ to s in the fig. 6-4.

Now, substituting 6.16 into 6.15, the approximation to the model-conditioned

transition matrix can be calculated:

p(st|st−1, λt) ≈
pME(λt, st−1|st)p(st|st−1)

p(λt|st−1)p(st−1|st)

=
p(λt|st)p(st−1|st)p(st|st−1)

p(λt|st−1)p(st−1|st)
=
p(λt|st)p(st|st−1)

p(λt|st−1)

(6.17)

As an aside, the computational savings achieved as a result of the approximation

are actually quite significant. The number of parameters in both models grow with the

number of states and the number of models. For N states and M models, the exact

representation requires estimation of E = MN 2 parameters, while approximation

reduces this number to A = MN + N 2. The ratio of these two numbers gives the

relative computational savings as the number of states grows:

A

E
=
M +N

MN
(6.18)

that is, the the difference in growth in complexity between the two models is propor-

tional to the ratio between a sum and a product.

It is important to say that the above approximation to the model-conditioned

transition p(st|st−1, λt) is not necessary. If enough data is available to reliably estimate

it directly, one should always do so. However, in the face of the small sample this

approximation provides a good starting point for the algorithm as it produces a

maximum entropy model. The independence assumptions as stated above will result

in presence of extra links between states, which can be removed with further training.

In contrast, missing links are difficult to recover.

The inference algorithm presented in this chapter uses a time-normalized multi-

129

model version of Viterbi approximation, which is shown below. Note that one needs

to obtain a set of values of η - one per time step. This is clearly inefficient. However,

since the Viterbi algorithm is recursive, it can be “reversed” and instead run from

the current time step back into the past, providing the score, η incrementally, as

proposed in [14]. Since η is time-normalized, it can be directly used for comparison.

Using δkτ (i) to denote the highest probability of the k-th model along a single path

through the state set, which accounts for the last (t − τ) observations and starts in

state i, and ψkt (i) the argument that maximizes that quantity, the inference algorithm

is formalized as follows:

Multi-Model Viterbi Parse

1. Initialize (∀i : 1 ≤ i ≤ N)

δkt (i) = log p(xt|st = i)
ψkt (i) = 0

2. Recurse (∀i, τ : 1 ≤ i ≤ N ; (t− 1) ≥ τ ≥ 1)

δkτ (j) = max
1≤i≤N

{
1

t−τ+1

[
(t− τ)δkτ+1(i)

+ log p(λτ+1 = k|sτ+1 = i) + log p(sτ+1 = i|sτ = j)− logC]

}

+ log p(xτ |sτ = j)

ψkτ (j) = argmax
1≤i≤N

{
1

t−τ+1

[
(t− τ)δkτ+1(i)

+ log p(λτ+1 = k|sτ+1 = i) + log p(sτ+1 = i|sτ = j)− logC]

}

3. Terminate
η∗,k1 = max

1≤i≤N

[
δk1(i)

]

s∗,k1 = argmax
1≤i≤N

[
δk1(i)

]

4. Recover the sequence (∀τ : 2 ≤ τ ≤ t)

s∗,kτ = ψkτ−1(s
∗,k
τ−1)

η∗,kτ = δkτ (s
∗,k
τ)

The values under the log in step 2 represent a logarithm of the conditional tran-

sition probability, p(sτ |sτ−1, λk), calculated via the equation (6.17), where C stands

130

for the normalization constant (denominator of eqn. (6.17)). Note the re-scaling of δ

and ψ at each step by the current sequence length (Lk of eqn. 6.13).

After the last step of the algorithm for each model one has a sequence of most likely

states, S∗,k = s∗,k1 ...s∗,kt and a sequence of “per sample” scores, η∗,k1 ...η∗,kt . Within this

sequence the search for the time index, lk, of the “best” sequence corresponding to

the k-th model is performed:

ηmaxk = max
1≤τ≤t−w

[
η∗,kτ
]

lk = argmax
1≤τ≤t−w

[
η∗,kτ
] (6.19)

These equations allow us to calculate the time-normalized posterior using Bayes’ rule:

p̂(λ|xlk ...xt, s∗,klk ..s
∗,k
t) =

eη
max
k p(λ)∑

λ

eηmax
m p(λ)

(6.20)

where eη
max
k is the per-sample likelihood, which is the result of the fact that η is

the log-likelihood. The label is chosen by sampling from this distribution, which is

essentialy an implementation of the following classification rule:

λ = argmax
k

(p̂(λk|xlk ...xt, s∗,klk ..s
∗,k
t)

As an aside - for the task of label selection one can always parameterize the

expression for the posterior with the average discounted reward, similarly to how it

was done in the chapter 3 (cf. eqn. 3.5):

p̂β(λ|xlk ...xt, s∗,klk ..s
∗,k
t) =

eβr̄η
max
k p(λ)∑

λ

eβr̄ηmax
m p(λ)

(6.21)

where β is an entropic parameter related to the sensitivity of the posterior to the

reward, amd r̄ is the “baseline” value of reward. The reward is maintained as follows:

r̄t = r̄t−1 + α(r − r̄t−1) (6.22)

where α is, again, a learning rate. With a proper choice of β, the distribution in eqn.

131

6.21 becomes “self-regulated”. This parameterization allows for more exploration in

the absence of the reward, while switching to exploitation mode when reward is high.

6.4.5 Reward distribution

With the full model the algorithm maintains the state-model membership function,

p(λ|s), which is readily computed from the state-model value, Q, (see eqn. 6.9).

The state-model value function is updated every time a model, λk, that has been

selected by the sampler, based on the distribution of equation (6.19) is rewarded:

Q(sτ ∈ S∗,k, λ = k) = r + γQ(sτ ∈ S∗,k, λ = k) (6.23)

where r is the instantaneous reward. The value of the state being attributed to a

model is increased by some value if the whole model has been rewarded or slowly

decreased otherwise.

6.4.6 State Sharing

One problem with the above approach is that sharing states between different gestures

is difficult. If a state can be a part of two gestures, then, since it is tied to the

particular model by a posterior probability, p(λ|s), increasing the probability for one

state decreases it for others. To avoid that, an additional auxiliary binary vector

variable, z can be added to each state introduced to indicate the state assignment.

The binomially distributed variable z indicates the “coherence” of the relationship

between a state and a model.

Let the k-th component of the variable z take the value 1 if the state belongs to

the model k, and 0 otherwise. The graphical model representing the relation between

a gesture models and states is shown in figure 6-11. With this variable, the model

membership function, Q, is split into two components - one responsible for collecting

the positive reward, and the other - for negative. Now the table Q is a function of

state and a gesture model, such that:

132

Q(s, λ, z = 0) = r̄−(s, λ)

Q(s, λ, z = 1) = r̄+(s, λ)
(6.24)

Correspondingly to the change in the structure, the update equation for Q (eqn.

6.23) should be changed:

Q(sτ ∈ S∗,k, λ = k, z = 0) = −r + γQ(sτ ∈ S∗,k, λ = k, z = 0) if r < 0

Q(sτ ∈ S∗,k, λ = k, z = 1) = r + γQ(sτ ∈ S∗,k, λ = k, z = 1) if r > 0
(6.25)

The probability distribution over values of

xt-1 xt+1

st+1st-1

zt-1

st

xt

zt+1

λ

zt

Figure 6-11: Independence structure
of the state sharing model.

z can be computed, based on the current state

of the table Q. The probability p(z = 1|si, λk)
specifies the degree of coherence between the

state si and the gesture model λk. Introduc-

tion of the auxiliary variable z does not change

the fundamental computations. It is clear from

comparing the model in figure 6-11 with the one

in figure 6-4, that the only computation affected

by it is calculation of the transition probability,

p(st|st−1, λ, z):

p(st|st−1, λt, zt) =
p(st, zt|st−1, λt)
p(zt|st−1, λt)

=
p(zt|st, st−1, λt)p(st|st−1, λt)

p(zt|st−1, λt)

=
p(zt|st, λt)p(st|st−1)

p(zt|st−1, λt)

(6.26)

With this relation, the likelihood function can be computed similar to equation

6.12. Using the shorthand z1 ≡ (zlk = 1, ..., zt = 1):

133

p(xlk ...xt, s
∗
lk
...s∗t |λk, z1) =

p(s∗lk |λlk = k, zlk = 1)p(xlk |s∗lk)
t∏

τ=(lk+1)

p(s∗τ |s∗τ−1, λτ = k, zτ = 1)p(xτ |s∗τ)
(6.27)

and, subsequently:

η∗,klk ≈ log p(xlk ...xt, s
∗
lk
...s∗t |λk, z1)

t− lk
(6.28)

The approximation algorithm, shown in section 6.4.4 now uses the conditional

transition probability given in equation 6.26 in place of p(st|st−1, λt) while setting

z = 1.

The definition of “coherence” is somewhat loose and leaves some room for interpre-

tation of the form of the distribution p(z|s, λ). Obviously, the Maximum Likelihood

estimate of it is given by:

pML(z = 1|s, λ) = Q(s, λ, z = 1)

Q(s, λ, z = 0) +Q(s, λ, z = 1)
(6.29)

This form of p(z|s, λ) is not always convenient. One shortcoming of this form is

that the state that has never received any evidence is assumed to be 50% coherent

with every gesture. One possible solution to this situation is to initialize Q unfairly

and give Q(s, λ, z = 0) a high initial value. Another possibility is to weigh the

maximum likelihood estimate by some factor related to its entropy, such that high

entropy estimate of pML(z|s, λ) results in low value of p(z = 1|s, λ).

6.5 Model Extraction

Since majority of the states in the full model that is learned will be the “filler” states,

for the efficient model representation one would like to extract simpler and more

efficient models of each gesture. The fundamental problem in the model extraction

is that even though the algorithm might have a pretty good idea about which states

belong to each particular model, at some point it would need to commit to a hard

134

Sample and fit Sample and fit Sample and fit

¡W¢a£N¤�¥ £N¤ ¦�§a¨

©<ª¬«�¯® «� ° ±³² λ ´)µ0¶ ©<ª¬« ® « ° ± ² λ ´�·N¶ ©¸ª�«�³® «� ° ±³² λ ´b¹d¶

©bºaª�« ® « ° ± » ©�¼aª¬« ® « ° ± ¶©�½�ª¬« ® « ° ± ¶
Figure 6-12: Sampling scheme

assignment of states to models. To avoid that a different route is chosen - it fits a

simpler model to the set of states weighted by their corresponding probability of the

full model. Short of the analytical solution, the problem is solved via a Monte Carlo

simulation by sampling from it and generating large amounts of data to which the

new model is fit. In order to build a sampler one needs a good estimate for the initial

state of the sub-model. The corresponding probability distribution over all states,

πk, can be calculated from the transition matrix, Ak = p(st|st−1, λk). Then, starting

with a state chosen from πk the algorithm can generate a sequence of states from Ak

with observations generated at each state, until a final state is encountered.

Computations involved in recovery of the transition matrix, Ak, have already

been shown in the equation 6.17. In order to run the simulation the algorithm needs

a termination probability model, φk - a probability distribution over states that the

state is final; and the starting state probability model πk. The former is computed

from the joint transition p(st, λk|st−1) as the out-of-model probability - a probability

of transitioning into a state that belongs to any other model:

135

φk(i) = 1−
∑

j

p(st = j, λk|st−1 = i) (6.30)

πk is computed based on the heuristic1 that the state has a higher probability of

being the starting state if on average it results in a longer sequence if the process

starts in this state. In other words for each state the algorithm needs to compute the

expected number of hops induced by the transition matrix until reach the final state is

reached. For a joint transition matrix Jk = p(st, λk|st−1) probability of reaching any

state from any other in exactly n hops from every state in the model is computed by

taking the power of the matrix Jk. Hence, the required expectation for this transition

matrix is computed as the infinite sum of these powers multiplied by corresponding

number of hops. Then, πk are calculated from the row-wise maximums of J∞k :

J∞k =
∞∑

n=1

nJnk = Jk(I − Jk)
−2 (6.31)

πk(i) =
max
j

(J∞k (i, j))
∑
i

max
l

(J∞k (i, l))
(6.32)

The model {πk, Ak, φk, {µl, Σl}l=1..N} allows to sample the k-th model to produce

enough data to train a simpler isolated model as shown in the experimental section.

6.6 Algorithm Summary

The following presents the summary of the algorithm described in this chapter.

1which is not always true

136

On-Line Gesture Learning Algorithm

1. Initialize the model to S = N = T = Q = X = ∅, where

X is the sample buffer;

2. For every new sample, xn:

(a) Append xn to the sample buffer X = X ∪ xn;
(b) Compute the minimal distance, D (eqn. 6.8);

(c) If D < 2.5, add a state to the state set S = S∪si;
(d) Update occupancy and transition counts, N and T;

(e) Compute model statistics (eqn. 6.9);

(f) If queried:

i. From the buffer X compute the posterior,

p̂(λ|xlk ...xt, s∗,klk ..s
∗,k
t), (eqn. 6.20);

ii. From p̂(λ|xlk ...xt, s∗,klk ..s
∗,k
t) select an action;

iii. Collect reward, update Q (eqns. 6.23, 6.25);

iv. Clear the sample buffer X;

3. For every individual gesture model:

(a) Compute π and φ (eqns. 6.32, 6.30);

(b) Sample the model and produce the corpus, Dk;

(c) Train a Hidden Markov Model on Dk.

6.7 Experiments

This section shows some experiments with the online model building and model ex-

traction. All experiments use a simple cartesian feature space to simplify the presen-

tation.

6.7.1 Mouse Gesture

In the first experiment the algorithm is used to learn a set of models for classification

of a mouse gesture. The algorithm proceeds as follows:

137

10 20 30

10

20

30

d)

10 20 30

10

20

30

e)

10 20 30

10

20

30

f)

10 20 30

10

20

30

g)

-100 0 100

-100

0

100

1

2

3

4
5

6

7

8 9

10

11

12
131415

16

17

18

19

20

21

23

24

25

26

27

28

29 30 31

a)
5 10 15 20 25 30

5

10

15

20

25

30

c)b)

-100 0 100

-100

0

100

Figure 6-13: a)-c) a full HMM structure resulting after performing several unsegmented
mouse gestures. a) A full RBF state space; b) resulting link structure. Vertices show means
of RBF states, links - state transitions. The thicker ones correspond to higher probabilities
of transitioning form one state to another. c) Full transition matrix. d)-g) Factored joint
transition matrices, p(st, λk|st − 1), for the 4 gestures that have been rewarded.

1. The user draws a continuous stroke with the mouse;

2. The user performs a gesture at the end of which the

algorithm is queried to select a label;

3. If the user agrees with the label, then one unit of

reward is delivered to the algorithm, otherwise -

either no reward or a negative value of reward is

delivered;

4. If the user is not satisfied, go to step 1;

5. For each model run a simulation to generate 100
synthetic data sequences;

6. Train a 4-state Hidden Markov Model on the synthetic

data set.

The algorithm builds the state space on-line as necessary checking the distance

138

a) b) c) d) e)

Figure 6-14: a) Contribution of all states to the state space. b)-e) State space factorization.
Top row shows the individual gesture models for which the full model was trained. Bottom
row shows the state space decomposition with the state membership function.

-100

0

100

-100 0 100

b)

1

2

4

3

1 2 3 4

1

2

3

4

-100

0

100

-100 0 100

c)

1

2

4

3

1 2 3 4

1

2

3

4

-100

0

100

-100 0 100

d)

1

2

4

3

1 2 3 4

1

2

3

4

-100

0

100

-100 0 100

a)

12

4

3

1 2 3 4

1

2

3

4

Figure 6-15: Individual HMMs and their transition matrices extracted from the full model
by Monte Carlo simulation. (The dominant diagonals have been removed from the matrices
to show the transition structure).

139

between every new sample and existing RBF kernels (eqn. 6.8). The algorithms

learns models for 4 gestures, shown in the top row of figure 6-14 b) - e). After

traversing each gesture several times and delivering a reward upon each correct guess

that the algorithm makes, it arrives to the configuration shown in the figure 6-13a)-

c). The figure 6-13 a) shows the resulting state space. Even though no reward or

state attribution is reflected in the plot b) graphically showing only state transitions,

one can see a strong hint at the structure to which the algorithm has arrived in an

unsupervised fashion. After the estimated state membership was used to factor the

full transition matrix it arrives to the set of gesture-specific state transition models,

which “highlight” parts of the state space relevant to each gesture, shown in figures

6-13 d)-g).

The probability mass in the full model is evenly spread in the input space, as

shown in figure 6-14 a). The state membership indicates its estimate of the state

contribution to each of the macro-state estimates (bottom row of figure 6-14 b) - e)).

Since the state membership is a probabilistic assignment, all states are still used in

each model even though probability of the majority of them to belong to a particular

model is very low. These models are used to compute the starting and stopping state

probability distributions for each gesture (eqns. 6.32 and 6.30), and sample sequences

from resulting gesture models which include all states to fit smaller isolated models

to each data set. Resulting 4-state HMMs and their transition matrices are shown in

figure 6-15 a)-d).

The full model in this experiment instantiates 31 states with 14 “filler” states

(55% state utilization). After the decomposition 4 4-state HMMs were used to model

the gestures independently. The figure 6-15 a)-d) shows the resulting HMMs and

their transition matrices with the main diagonal removed to expose the transition

structure. The structure clearly reflects input gesture shapes.

6.7.2 Vision System

The algorithm is now applied to learning a simple gesture classification system. The

input features are computed from a motion average image that allows some small

140

c)

b)

a)

Figure 6-16: a) Attention gesture; b) pointing left with return gesture; c) pointing right
gesture.

5 10 15

5

10

15

a) 5 10 15

5

10

15

b) 5 10 15

5

10

15

c) 5 10 15

5

10

15

d)

Figure 6-17: a) Transition matrix of the full model. b)-d) Transition matrices conditioned
on state membership. At the stage shown in the plot matrices include 18 states.

degree of smoothing of the estimated motion trajectory. For each new image taken at

time t, It, the motion average image is computed as a decaying running sum (α = 0.3):

Mt = α|It − It−1|+ (1− α)Mt−1 (6.33)

The weighted mean of pixels in Mt is used as a simple estimate of the hand position.

Using this feature as input, the algorithm is trained on-line for a set of three gestures

shown in figure 6-16. It needs to be noted that the choice of input features is not

extremely robust and is chosen only for convenience of presentation.

After a period of training (usually very short) delivering 5 units of reward for each

correct classification the algorithm arrives to a configuration similar to that shown

in figure 6-17. In the situation shown in the figure, the model has accumulated 18

141

0 300
0

200

2 4

1

2

3

4

a)

0 300
0

200

2 4

1

2

3

4

b)

0 300
0

200

2 4

1

2

3

4

c)

Figure 6-18: Individual extracted HMMs and their transition matrices.

states. The algorithm executes the sampling procedure to extract the set of 4-state

HMMs, as shown in in figure 6-18.

The vision system runs on a dual processor 500 MHz Pentium III PC at the rate

of 15 frames per second. Isolated gesture models are extracted off-line.

6.8 Discussion

This chapter showed an algorithm that allows for extraction of Markov gesture models

from a larger HMM-based structure, estimated on-line. For clarity, results are shown

on an intuitively understood set of features (absolute position). It is obvious that

the easiest step that will make the system more robust is performing the modeling in

the velocity space ([9]). But even with these simple features, the system shows good

results in fast on-line learning of gesture models on demand.

The main problem of the algorithm comes from the cornerstone assumption about

Markov structure of a gesture. This means, for instance, that a “figure eight” gesture

will have problems at the self-intersection point. Even though this particular problem

is easily solved with selecting different features (e.g. velocity instead of absolute

position), this will remain an inherent problem in general unless some information

about history is included with each state.

142

Chapter 7

Conclusions

The thesis is devoted to a study of algorithms for learning perceptual organization in

the context of action selection for autonomous agents. The main bias of the thesis is

to frame the problem such that the perceptual organization is directly related to the

benefit of its use. The thesis presents three different settings in which the learning

takes place:

• short-term on-line memory-based model learning (chap. 3 and 4);

• long-term on-line distribution-based statistical estimation;

• mixed on- and off-line continuous learning of gesture models (chap. 6).

The three methods proceed within essentially the same framework, consisting of

a perceptual sub-system and a sub-system that implements the associative mapping

from perceptual categories to actions. While the problems solved by each algorithms

used in some way, only the Reward-driven Expectation Maximization explored the

mapping mechanism fully (chapter 5). Nonetheless, the insight of this framework is

that the semantic grounding of perception is derived by the agent in the outcome of

the action selection.

In solving real problems of artificial intelligence it is important to look at human

and animal learning - not for answers, but for questions. This thesis examines one

aspect of learning - learning to find a better perceptual organization under reward as

143

a result of interactions with the environment. This problem arises in the context of

skill-related learning, where some frequently used aspects of perception get refined,

while others are tuned out.

The main conclusion of the thesis is that in thinking about problems of adap-

tation of an autonomous system, one needs to think about the learning problem in

its entirety. The formulation of the problem, which includes diverse sources of cer-

tainties, however insignificant, might make the solution span several areas of what

is collectively called machine intelligence, but in a sense it makes the problem easier

and the solution more efficient. Indeed, using reward to guide the otherwise unsuper-

vised statistical estimation showed promising results in the experiments in chapter

5, while the problem of continuous learning in chapter 6 would not have even been

possible without it. Similarly, the memory-based techniques benefited greatly from

being situated in the context of action selection, where reward signal was almost as

good as the direct supervision.

7.1 Contributions

This dissertation contributed to several areas, primarily focusing on making the algo-

rithms shown here practical with respect to memory and computation requirements.

In the process of developing the main topic, several problems have been encountered

and explored in some depth, resulting in contributions listed below.

The main contribution of the thesis is formulating the problem of learning per-

ception under indirect supervision. The setting of the problem allows one to use the

reward that the agent receives from the environment to guide the process of learning

a better perceptual organization. This formulation allows one to view the problem of

perceptual learning as a problem of autonomous learning based on semantical ground-

ing of perception in interactions of the agent with its environment. The outcome of

interactions is expressed in the scalar subjective value of reward that the agent re-

ceives upon making a decision. Even though the action selection in this work is only

associative, more complex representations and mappings could be developed.

144

The setting of all problems in this dissertation is strictly incremental. At first

sight, it should make no difference to the learning algorithms, however, it is not so.

The practical aspects of incremental learning and parameter estimation, especially

in the initial stages of the algorithm when very little data is available cannot be

underestimated. In particular, developing a classification scheme that would assign

labels to new data points based on the data that has been observed so far requires

additional thought to be given to situations when observed data does not yet contain

members of some class. This requires using techniques of exploration, widely used in

reinforcement learning, into procedures of otherwise traditional statistical estimation,

as was shown in the earlier chapters.

Additionally, solving estimation and classification problems on such impoverished

data sets initially rules out using distribution-based techniques, especially in spaces

of high dimensionality. Building a learning algorithm for clean slate learning requires

examining each sample of the observed data set individually and avoiding summa-

rization of the set by its statistics. Under these circumstances, the computational

expense of memory-based techniques can grow unbounded. This dissertation con-

tributes to development of memory-based algorithms by formulating and examining

different strategies of making the memorized sample sparse, while maintaining the

best possible classification performance (chapter 3). The proposed techniques in-

cluded a utility-, a margin- and a boundary-based set compression while comparing

it to the known risk-based technique.

The problem of utterance classification calls for techniques for sequence analysis.

In the presence of a large data sample, statistical techniques can be used to sum-

marize data sets by sequential statistical models, such as Hidden Markov Models.

However, the nature of the small sample learning again makes this solution infeasible.

Developing a technique for sequence classification based on Support Vector Machine

using only the pairwise distortion measures is another contribution developed in this

document (chapter 4).

Introducing a solution to the problem of the long-term statistical estimation of

perceptual input, this dissertation formulated the idea of weak transduction. The

145

reward in this setting provided a scalar value that evaluated the “quality” of the pos-

terior probability of the model components given the new observation. Including the

reward into the problem of density estimation provides less information than direct

supervision. Nevertheless, however small, this information provides subjective guid-

ance to the algorithm convergence in the parameter space, as was shown in chapter

5.

Learning from unsegmented gestures provides an additional challenge since the un-

known temporal extent of the gesture needs to be recovered. Chapter 6 contributed

to the solution of the estimation task by formulating an on-line largely unsupervised

estimation of transition dynamics of a sizeable Hidden Markov Model that is subse-

quently “teased apart” into model dependent representation with the help of a reward.

The chapter developed the multi-model Viterbi approximation for online classifica-

tion using the full model, while not separating the set of state into subsets explicitly.

However, to derive a more efficient compact representation of the individual gesture

vocabulary, a Monte Carlo sampling was used while solving the problem of finding

starting and stopping sub-model states necessary for sampling.

Summary of the specific contributions of this dissertation to on-line state space

exploration is shown in the list below:

1. Formulation of the problem of perceptual learning with indirect supervision;

Identification of a reward that the agent receives from the environment as a

result of an interaction can help to guide the process of learning a better per-

ceptual organization.

2. Formulation of developmental classification with compression sets;

The ideas of finding compression sets on a full sample of the data, as well as

formulation of the optimal compression set for the case of a zero Bayes risk

has been extended to the area of incremental on-line learning. This extension

includes a mechanism for augmenting exploitative techniques with a degree of

exploration.

3. Formulation of the margin-based compression rule;

146

The data in memory-based state representations does not have an equal value

for the task of classification a new sample. The margin-based rule is based on

an observation that in discriminative setting the data located away from the

class margin is not used for classification. The rule results in finding a sparse

subset of the samples in the memory model leading to significant memory and

computational savings.

4. Formulation of the boundary-based compression rule;

Similarly to the margin classification rule, the bound set compression rule dis-

cards the data located inside the class model. The advantages of this rule include

its good performance even in cases where class margins cannot be estimated well

in the initial stages of learning for classes that still have no representation in

the model.

5. Development of a technique of Support Sequence classification;

The contribution of the thesis includes the development of a technique for clas-

sification sequential data with Support Vector Machines. The Support Vector

- based algorithm embeds a dynamic programming algorithm inside the Kernel

calculations. That allows to treat sequences of variable length within the SVM

framework directly without re-sampling.

6. Introduction of the idea of Weak Transduction;

The dissertation introduces a notion of Weak Transduction and presents a so-

lution to this problem in the context of perceptual learning under indirect su-

pervision. Weak transduction emphasizes that the information given to the

classifier in form of the reward is weak, yet contains information that can be

utilized.

7. Exploration of incremental Reward-driven Expectation Maximization;

The problem of weak transduction is solved in this thesis within the Expectation-

Maximization framework as a part of perceptual learning under reward. The

advantage of the technique is that an outside observer can use it to direct the

147

learning process of an agent with näıve feedback.

8. Development of an algorithm for on-line reward-driven unsegmented gesture

learning algorithm;

The contribution of the last technical chapter of the thesis is in the development

of a practical algorithm of a clean-slate learning from an unsegmented gestural

input. The proposed model can quickly be trained to identify a gesture from a

fixed set. The essence of the contribution is that the learning proceeds with a

largely unsupervised model while using the feedback from the trainer to find a

decomposition of the model dynamics into a set of independent models.

9. Development of the multi-model Viterbi approximation;

The thesis contributed by developing and algorithm of gesture learning based

on a well known Viterbi approximation. The Viterbi algorithm is modified to

run simultaneously on a set of models approximated in a maximum entropy

sense on demand.

10. Solution for the Monte-Carlo technique for compact vocabulary extraction.

Finally, the thesis develops a solution for extraction of a set of independent

gesture models from the full multi-gesture representation used for structural

learning. This allows, when convenient, to replace the larger and less efficient

model with a set of smaller and efficient ones to proceed with further model

refinement.

7.2 Further Work

In this work many problems of autonomous learning were left unexplored. The main

focus of this dissertation was devoted to the setting of associative learning where a)

reward was immediate, albeit rare; and b) no state transitions were involved in policy

estimation. To make the application of the ideas of this thesis more general one

needs to address two problems: firstly, how to perform state discovery under delayed

reward; and secondly, how to do it in the setting of the full reinforcement task. These

148

two problems are both interesting and challenging, requiring more work to find an

efficient solution.

Another issue, which is perhaps the most promising is combining the techniques of

this dissertation with similar approaches to learning action space of the agent. Again,

two problems exist and are only partially addressed in this thesis - the problem of

action bias and the problem of learning in the action space.

Action bias. First, in all algorithms shown here in the beginning of the learning

process all actions are presumed equally likely. In the face of a large set of actions,

this can make training extremely inefficient and frustrating. In animal training this

problem is solved by building up the action preference in a setting which is close to

fully supervised. Then, gradually, the reward structure and the input are changed to

facilitate building of the association between an observation, an action and a reward.

In the system where the utterance learning algorithm was used, it was, in fact, being

done outside of the utterance learning algorithm. Inclusion of the algorithm for

building the action prior could significantly benefit its usability.

Learning in the action space. The second issue is related to exploration in the

action space. In this dissertation all actions were presumed existing and no new skills

were acquired by any of the algorithms during training. Again, this would not be

extremely satisfying in a complete system. During training actions can and should be

built up from some primitive representations. It can be done within the framework

of presented algorithms by about the same means as the perceptual learning. One

can imagine moving a robot arm to produce some meaningful action while estimating

patterns of control voltages necessary to reproduce it. Here, again, the reward could

help to separate the meaningful changes in the parameters of the arm from the tran-

sient ones in much the same way as it was done in perception. Furthermore, shaping

actions and shaping perception could be done alongside to cross-validate formation

of action and perceptual primitives.

Learning hierarchical sequence models. The algorithm of the last chapter

extracts gesture models from an unsegmented sequential input with help of the re-

ward. It is an interesting starting point for learning hierarchical models that initially

149

sparked my interest in the topic of this dissertation. As a part of the motivation I

showed two systems built on the basis of a hierarchical grammatical representation.

These representations are possible to learn once a good set of the primitive compo-

nents is discovered. This problem is made more difficult in the setting of this thesis

when the amount of training data is very small.

There might be a number of different ways of attacking this problem. Using a bit

of a speculation one might imagine approaching it from these directions:

1. Partitioning the training problem

As a general note, the learning problem is made much easier by the presence

of the trainer, whose goal it is to constrain the search space for the subject of

training. One might imagine constructing a training situation such that reliable

and accurate repetitions of the structural occurrences are provided to the agent;

2. Imposing structure

As was stated in chapter 6, no switching dynamics were imposed on the gesture

model, λ. In order to discover structure and hierarchy one would need to keep

track of the macro-state transitions. In fact this is the simplest thing to do since

gesture models are not unsupervised and are uniquely determined by the pres-

ence of the reward. Then one would only need to keep the transition statistics

(with some continuity constraints) on the change in the value of λ as indicated

by the reward independently from the input observations. Then, as more data

becomes available, the switching model can contribute to the inference, much

the same way as [58] propose;

3. Reinforcement learning solution

The most obvious solution to the problem, once primitives are extracted, would

be to use the posterior probability distribution over them as a belief state for

the full-scale reinforcement learning technique. Some tree-based state represen-

tations (for instance, [50]) lend themselves to inducing the utile structure;

4. Model merging

A technique of Bayesian model merging (see [71]) can be employed once the

150

primitive components are extracted from the full input model. It is convenient

to talk about the hierarchy in terms of a context-free grammar. In fact, learning

hierarchical sequential representation is equivalent to inducing (at least) the

context-free grammar. With this in mind, for any sequence of primitives the

grammatical structure can be induced from the model transition counts when

incrementally, a chunking operation is performed - for the highest co-occurrence

pair postulate a non-terminal and form a re-write rule. The chunking operation

is in a sense equivalent to establishing the length of the historical record of model

transitions from the reinforcement learning solution from above. Typically, in

learning from data, a merging operation is required in order to discover merged

models (for instance, a model of an utterance “Stay” as a combination of a male

speaker and a female speaker models). In the setting of this dissertation such a

generalization is extracted from the policy;

5. Iterative refinement

Perhaps a more immediate solution to the hierarchical learning problem from

unconstrained on-line observations is the iterative refinement of structural hy-

potheses. The idea is to use full model as well as the extracted primitive set

in order to learn the hierarchical structure. As a first step one would extract

the independent primitives. Using these primitives one would produce several

competing hypotheses about some aspect of local structure. At the next step

the inference on the full model is done using the structure hypotheses and the

winning ones would move to the next round. The process would repeat while

necessary.

In conclusion, the problem domain of learning in the action-perception cycle

turned out to be interesting and rich. Much more work is required to solidify the

concepts explored in this dissertation. I can only hope to have provided ideas that

can be extended and turned into practice.

151

152

Appendix A

Nearest Neighbor Performance

Bounds

A.1 Asymptotic Bound

This section summarizes the derivation of the asymptotic bound as presented in Duda

et al. [23]. The asymptotic analysis of a nearest neighbor procedure can be done

starting with estimating Bayes risk in the simplest case of a single neighbor two-class

classification problem. For the binary classification Bayes Risk, r∗, is a probability of

misclassification of a query xn. In order to classify a sample xn into one of the classes

C1 or C2, a nearest neighbor, x(1) needs to be found. Then xn is assigned the to the

class of x(1). An error occurs when the true label of xn does not coincide with the

label of x(1), that is:

r∗ = P
(
(xn ∈ C1 AND x(1) ∈ C2) OR (xn ∈ C2 AND x(1) ∈ C1)|xn, x(1)

)

= P (C1|xn)P (C2|x(1)) + P (C2|xn)P (C1|x(1))
(A.1)

The asymptotic behavior of the classifier can now be analyzed from the observation

that when the amount of data is large, the nearest neighbor x(1) is so close to xn that

P (Ci|x(1)) can be replaced with P (Ci|xn), and as a result, the error rate of a 1-NN

153

classifier, r(1) becomes:

r(1) = 2P (C1|xn)P (C2|xn) (A.2)

Extending this reasoning to multi-class case, with K classes, the conditional risk can

be written as follows:

r(1) = P (C1|xn)
K∑

i=1;i6=1

P (Ci|xn) + . . .+ P (C2|xn)
K∑

i=1;i6=K

P (Ci|xn)

=
K∑

i=1

P (Ci|xn) [1− P (Ci|xn)] = 1−
K∑

i=1

P (Ci|xn)2
(A.3)

On the other hand, r∗ = 1−max
i
{P (Ci|xn)} = P (C`|xn). From this and an applica-

tion of the Schwartz inequality it follows that:

(K − 1)
K∑

i=1;i6=`

P (Ci|xn)2 >

[
K∑

i=1;i6=`

P (Ci|xn)
]2

= [1− P (C`|xn)]2 = r∗2 (A.4)

Adding (K − 1)P (C`|xn)2 to both sides:

(K − 1)
K∑

i=1

P (Ci|xn)2 > r∗2 + (K − 1) [1− r∗]2 (A.5)

Substitution of A.5 into A.3 gives,[13]:

r∗ 6 r(1) 6 2r∗ − K

K − 1
r∗2 (A.6)

Computing expectation of both sides with respect to x we get the bound for the error

rate, L = Ex [r].

L∗ 6 L(1) 6 2L∗ − K

K − 1
L∗2 (A.7)

154

A.2 Finite Sample Bound

The main question regarding the nearest neighbor classification schemes is its rate

of convergence. What can be said about the rate at which they achieve their limit

performance? Unfortunately, to this day the answer is - absolutely nothing. In fact, it

can be formally shown that in general, no universally best distribution-free classifiers

exist (e.g. see [18]).

One can attempt to approach the problem from a different point of view - by

examining error bounds achievable by a particular classification rule on a finite sample

of data. Unfortunately, even though with some work the bounds can be formulated,

they remain fairly loose. To get a feel of this in the general case, consider the following

nearest neighbor approximation bound, given by Stone, [72]:

Lemma A.2.1 (Stone, 1977). For any integrable function f , and n and any k ≤ n,

k∑

i=1

E{|f(X(i)(X))|} ≤ kγdE{|f(X)|}

where γd ≤
(
1 + 2/

√
2−

√
3
)d
− 1 depends upon the dimension only.

Excitingly, this lemma essentially states that the difference between expected value

of a function and that estimated empirically from a set of nearest neighbors differs

at most by a factor of γd, depending on dimensionality only. Unfortunately, the

numerical value of γ1 = 3.8637, γ2 = 22.6556, γ3 = 114.0539, ... leaves a lot to be

desired.

A.3 VC Bound on a Condensed Classifier

This section outlines the argument about the VC bound on the performance of a

condensed nearest neighbor classifier based on the presentation given in Devroye et

al., [18].

One can attempt to find a bound on a simple condensed nearest neighbor classifier

from the point of view of VC theory. This is accomplished in several steps:

155

Theorem A.3.1 (Vapnik and Chervonenkis, 1971). For any probability measure

ν and class of sets A, and for any n and ε > 0,

P

{
sup
A∈A

|νn(A)− ν(A)| > ε

}
6 8s (A, n) e−nε2/32

where s (A, n) is the shatter coefficient of a family of classifiers A1. To compute the

shatter coefficient on which the VC bound of the theorem A.3.1 depends, a Voronoi

partitioning of a space induced by a set of m points needs to be considered. The

shatter coefficient of a set of a family consisting of up to m Voronoi cells Am can be

bounded by a set union bound:

s(Am, n) ≤ s(A1, n)
m

Each cell is an intersection of m − 1 n-dimensional half-spaces. The shattering

power of such family can again be bounded by the set intersection bound:

s(A1, n) ≤ s(P , n)(m−1)

where P is a family of half-spaces. With the help of the Sauer’s lemma the shatter

coefficient of a half space can be bounded by an expression which only includes the

VC dimension and a number of the data points, n:

s(P , n) ≤
VP∑

i=0

n

i

 ≤

(
ne

VP

)VP

by Sauer’s lemma, where VP is the VC dimension of P ;

VP = d+ 1

after Vapnik [80], where d is the dimensionality of the feature space. Collecting the

above we get:

1A shatter coefficient is the maximum number of different subsets of n points that can be picket
out by the family A

156

s(Am, n) ≤
(

ne

(d+ 1)

)(m−1)m(d+1)

Using Ln(A) to denote an error probability of a classifier A ∈ A and L̂n(A) for its

empirical estimate, the error can be bounded by the “worst case”: |Ln(A)− L̂n(A)| ≤
sup
A∈A

|νn(A) − ν(A)|, where ν(A) is the error rate of A and νn(A) is its empirical

estimate on n data points. Substituting the result from above into the theorem A.3.1

proves the following:

Theorem A.3.2 (Devroye and Wagner, 1979). For all ε > 0 and all distribu-

tions,

P
{
|Ln(A)− L̂n(A)| > ε

}
6 8

(
ne

d+ 1

)(m−1)m(d+1)

e−nε
2/32

which is currently the best one can assert about the performance of a condensed

nearest neighbor classifier. This bound is not particularly tight, allowing only to say

that the performance improves in probability as m grows.

157

158

Appendix B

Divergence for Gaussian Densities

This section derives a closed form expression for the divergence between two gaussian

distributions given by their sufficient statistics, {µi,Σi}. This expression is useful for

evaluation of divergence between two Gaussian mixture distributions.

D(p||q) =
∫
p(x) log

(
p(x)

q(x)

)
dx =

∫
p(x) (log p(x)− log q(x))dx =

∫
p(x) log p(x)dx−

∫
p(x) log q(x)dx =

−H(p(x)) + C(p(x), q(x))

(B.1)

where H(p(x)) is the entropy and C(p(x), q(x)) is the cross-entropy. Substituting

explicit expressions for Gaussian densities for p(x) and q(x) into the expression for

the entropy, H(p(x)):

159

H(p(x)) =

∫
p(x) log p(x)dx =

∫
1

(2π)d/2 |Σp|1/2
e(−

1
2
(x−µp)TΣ

−1
p (x−µp))

× log

[
1

(2π)d/2 |Σp|1/2
e(−

1
2
(x−µp)TΣ

−1
p (x−µp))

]
dx =

∫
1

(2π)d/2 |Σp|1/2
e(−

1
2
(x−µp)TΣ

−1
p (x−µp))

×
{
log

[
1

(2π)d/2 |Σp|1/2

]
−−1

2
(x− µp)

TΣ−1p (x− µp)

}
dx =

∫
1

(2π)d/2 |Σp|1/2
e(−

1
2
(x−µp)TΣ

−1
p (x−µp)) log

[
1

(2π)d/2 |Σp|1/2

]
dx−

−1

2

∫
1

(2π)d/2 |Σp|1/2
e(−

1
2
(x−µp)TΣ

−1
p (x−µp))(x− µp)

TΣ−1p (x− µp)dx =

log

[
1

(2π)d/2 |Σp|1/2

]∫
1

(2π)d/2 |Σp|1/2
e(−

1
2
(x−µp)TΣ

−1
p (x−µp))dx−

−1

2

∫
1

(2π)d/2 |Σp|1/2
e(−

1
2
(x−µp)TΣ

−1
p (x−µp))(x− µp)

TΣ−1p (x− µp)dx =

log

[
1

(2π)d/2 |Σp|1/2

]
− 1

2
Ep

[
(x− µp)

TΣ−1p (x− µp)
]
=

log

[
1

(2π)d/2 |Σp|1/2

]
− 1

2
Ep

[
tr
(
(x− µp)

TΣ−1p (x− µp)
)]

=

log

[
1

(2π)d/2 |Σp|1/2

]
− 1

2
Ep

[
tr
(
Σ−1p (x− µp)(x− µp)

T
)]

=

log

[
1

(2π)d/2 |Σp|1/2

]
− 1

2
Ep

[
tr
(
Σ−1p Σp

)]
=

log

[
1

(2π)d/2 |Σp|1/2

]
− 1

2
Ep [tr (I)] =

log

[
1

(2π)d/2 |Σp|1/2

]
− d

2
=

− log
[
(2πe)d/2 |Σp|1/2

]

(B.2)

Similarly, for the cross-entropy term:

160

C(p(x), q(x)) =

∫
p(x) log q(x)dx =

∫
1

(2π)d/2 |Σp|1/2
e(−

1
2
(x−µp)TΣ

−1
p (x−µp))

× log

[
1

(2π)d/2 |Σq|1/2
e(−

1
2
(x−µq)TΣ

−1
q (x−µq))

]
dx =

∫
1

(2π)d/2 |Σp|1/2
e(−

1
2
(x−µp)TΣ

−1
p (x−µp))

×
{
log

[
1

(2π)d/2 |Σq|1/2

]
−−1

2
(x− µq)

TΣ−1q (x− µq)

}
dx =

log

[
1

(2π)d/2 |Σq|1/2

]∫
1

(2π)d/2 |Σp|1/2
e(−

1
2
(x−µp)TΣ

−1
p (x−µp))dx−

−1

2

∫
1

(2π)d/2 |Σp|1/2
e(−

1
2
(x−µp)TΣ

−1
p (x−µp))(x− µq)

TΣ−1q (x− µq)dx =

− log
[
(2π)d/2 |Σq|1/2

]
− 1

2
Ep

[
(x− µq)

TΣ−1q (x− µq)
]
=

− log
[
(2π)d/2 |Σq|1/2

]

−1

2
Ep

[
((x− µp)− (µq − µp))

TΣ−1q ((x− µp)− (µq − µp))
]
=

− log
[
(2π)d/2 |Σq|1/2

]
− 1

2
Ep

[
(x− µp)

TΣ−1q (x− µp)

−2(µq − µp)
TΣ−1q (x− µp) +(µq − µp)

TΣ−1q (µq − µp)
]
=

− log
[
(2π)d/2 |Σq|1/2

]
− 1

2
Ep

[
tr
(
(x− µp)

TΣ−1q (x− µp)
)]

−Ep

[
(µq − µp)

TΣ−1q (x− µp)
]
+

1

2
Ep

[
(µq − µp)

TΣ−1q (µq − µp)
]
=

− log
[
(2π)d/2 |Σq|1/2

]
− 1

2
Ep

[
tr
(
Σ−1q (x− µp)(x− µp)

T
)]

−(µq − µp)
TΣ−1q (Ep [x]− µp) +

1

2
(µq − µp)

TΣ−1q (µq − µp) =

− log
[
(2π)d/2 |Σq|1/2

]
− 1

2
Ep

[
tr
(
Σ−1q Σp

)]
− (µq − µp)

TΣ−1q (µp − µp)+

+
1

2
(µq − µp)

TΣ−1q (µq − µp) =

− log
[
(2π)d/2 |Σq|1/2

]
− 1

2
Ep

[
tr
(
Σ−1q Σp

)]
+

1

2
(µq − µp)

TΣ−1q (µq − µp)

(B.3)

Substitution of the above results into the equation B.1 gives:

161

D(p||q) = log
[
(2πe)d/2 |Σp|1/2

]
− log

[
(2π)d/2 |Σq|1/2

]
−

−1

2
Ep

[
tr
(
Σ−1q Σp

)]
+

1

2
(µq − µp)

TΣ−1q (µq − µp) =

log

[
(2πe)d/2 |Σp|1/2

(2π)d/2 |Σq|1/2

]
− 1

2
Ep

[
tr
(
Σ−1q Σp

)]
+

1

2
(µq − µp)

TΣ−1q (µq − µp) =

log

[
ed/2 |Σp|1/2

|Σq|1/2

]
− 1

2
Ep

[
tr
(
Σ−1q Σp

)]
+

1

2
(µq − µp)

TΣ−1q (µq − µp) =

(B.4)

To avoid assymetry in the measure of divergence, we use the following:

S(p||q) = 1

2
[D(p||q) +D(q||p)] =

1

2

[
log

[
ed/2 |Σp|1/2

|Σq|1/2

]
− 1

2
tr
(
Σ−1q Σp

)
+

1

2
(µq − µp)

TΣ−1q (µq − µp)+

]
+

+
1

2

[
log

[
ed/2 |Σq|1/2

|Σp|1/2

]
− 1

2
tr
(
Σ−1p Σq

)
+

1

2
(µp − µq)

TΣ−1p (µp − µq)

]
=

1

2

[
log

[
ed/2 |Σp|1/2

|Σq|1/2
ed/2 |Σq|1/2

|Σp|1/2

]]

+
1

2

[
−1

2
tr
(
Σ−1q Σp

)
+

1

2
(µq − µp)

TΣ−1q (µq − µp)

−1

2
tr
(
Σ−1p Σq

)
+

1

2
(µp − µq)

TΣ−1p (µp − µq)

]

1

2

[
d− 1

2

[
tr
(
Σ−1q Σp

)
+ tr

(
Σ−1p Σq

)]

+
1

2
(µq − µp)

T (Σ−1q +Σ−1p)(µq − µp)

]
=

1

2

[
d− 1

2

[
tr
(
Σ−1q Σp +Σ−1p Σq

)]
+

1

2
(µq − µp)

T (Σ−1q +Σ−1p)(µq − µp)

]

1

4

[
d− tr

(
Σ−1q Σp +Σ−1p Σq

)
+ (µq − µp)

T (Σ−1q +Σ−1p)(µq − µp)
]
=

1

4

[
(µq − µp)

T (Σ−1q +Σ−1p)(µq − µp)− tr
(
Σ−1q Σp +Σ−1p Σq − 2I

)]

(B.5)

For a lack of a better analytical method, the latter expression is used to compute

the divergence between all pairs of components of two Gaussian mixture density. The

mixture-to-mixture mapping that achieves the minimum divergence is chosen.

162

Bibliography

[1] F. Bedford. Perceptual learning. In D. Medin, editor, The Psychology of Learning

and Motivation, volume 30, pages 1–60. Academic Press, 1993.

[2] Asa Ben-Hur, David Horn, Hava T. Siegelmann, and Vladimir Vapnik. A support

vector method for clustering. In Todd K. Leen, Thomas G. Dietterich, and Voler

Tresp, editors, Advances in Neural Information Processing Systems, pages 367–

373. MIT Press, 2000.

[3] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni-

versity Press, 1995.

[4] Christopher M. Bishop. Latent variable models. In Michael I. Jordan, editor,

Learning in graphical models. MIT Press, Cambridge, MA, 1998.

[5] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

[6] A. Bobick and Y. Ivanov. Action recognition using probabilistic parsing. In Proc.

Comp. Vis. and Pattern Rec., pages 196–202, Santa Barbara, CA, 1998.

[7] Aaron F. Bobick. Natural Object Characterization. PhD thesis, MIT, 1987.

[8] Denis K. Burnham, Lynda J. Earnshaw, and John E. Clark. Development of

categorical identification of native and non-native bilabial stops: Infants, children

and adults. Journal of Child Language, 18 (2):231–260, 1991.

[9] L. W. Campbell, D. A. Becker, A. J. Azarbayejani, A. F. Bobick, and A. Pent-

land. Invariant features for 3-d gesture recognition. In Second International

163

Conference on Face and Gesture Recognition, pages 157–162, Killington, VT,

1996.

[10] Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support

vector machine learning. In Todd K. Leen, Thomas G. Dietterich, and Volker

Tresp, editors, Advances in Neural Information Processing Systems, pages 409–

415. MIT Press, 2000.

[11] C Chang. Finding prototypes for nearest neighbor classifiers. IEEE Transactions

on Computers, 26:1179–1184, 1974.

[12] Vladimir Cherakassky and Filip Mulier. Learning from Data. Concepts, Theory

and Methods. Wiley, New York, 1998.

[13] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions

on Information Theory, 13:21–27, 1967.

[14] T. J. Darrell and A. P. Pentland. Space-time gestures. Proc. Comp. Vis. and

Pattern Rec., pages 335–340, 1993.

[15] P. Dayan and T. Long. Statistical models of conditioning. In NIPS 10, Denver,

CO, 1998.

[16] N.M. Dempster, A.P. Laird and D.B. Rubin. Maximum likelihood from in-

complete data via the EM algorithm. Journal of Royal Statistical Society B,

39:185–197, 1977.

[17] P. Devijver and J. Kittler. On the edited nearest neighbor rule. In Proceedings

of the Fifth International Conference on Pattern Recognition, pages 72–80, Los

Alamitos, CA, 1980. Pattern Recognition Society.

[18] Luc Devroye, Lázsló Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern

Recognition. Springer, 1996.

[19] Marco Dorigo and Marco Colombetti. Robot Shaping. An Experiment in Behavior

Engineering. MIT Press, Cambridge, MA, 1998.

164

[20] B.A. Dosher and Z. L. Lu. Mechanisms of perceptual learning. Vision Research,

39(19):3197–3221, 1999.

[21] F. Dretske. Seeing, believing, and knowing. In D. N. Osherson, S. M. Kosslyn,

and J. M. Hollerbach, editors, Visual Cognition and Action, V.2, pages 129–148.

MIT Press, Cambridge, MA, 1990.

[22] Itiel E. Dror, Stephen M. Kosslyn, and Wayne L. Waag. Visual-spatial abilities

of pilots. Journal of Applied Psychology, 78 (5):763–773, 1993.

[23] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.

John Wiley & Sons, 2000.

[24] S. Edelman and H. H. Bülthoff. Orientation dependence in the recognition of

familiar and novel views of 3d objects. Vision Research, 32:2385–2400, 1992.

[25] Shimon Edelman. Visual perception. In S. Shapiro, editor, Encyclopedia of

Artificial Inelligence, pages 1655–1663. Wiley, 1991.

[26] I. Fine and Robert A. Jacobs. Perceptual learning for pattern discrimination

task. Vision Research, 40:3209–3230, 2000.

[27] Sally Floyd and Manfred Warmuth. Sample compression, learnability, and

Vapnik-Chervonenkis dimension. Technical Report UCSC-CRL-93-13, Univer-

sity of California, Santa Cruz, 1993.

[28] Basic Behavioral Science Research for Mental Health. A national investment. A

report of the national advisory mental health council. Technical Report 96-3682,

NIH, 1995.

[29] Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition. Academic

Press, 1990.

[30] C.R. Gallistel and John Gibbon. Time, rate and conditioning. Psychological

Review, 107:289–344, 2000.

165

[31] S. Geva and J. Sitte. Adaptive nearest neighbor pattern clasification. IEEE

Transactions onNeural Networks, 2:318–322, 1991.

[32] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee. Using adaptive tracking

to classify and monitor activities. In Comp. Vis. and Pattern Rec., pages 22–29,

Santa Barabara, CA, 1998. IEEE.

[33] P. E. Hart. The condensed nearest neighbor rule. IEEE Transactions on Infor-

mation Theory, 14:515–516, 1968.

[34] Pengyu Hong, Matthew Turk, and Thomas S. Huang. Constructing finite state

machines for fast gesture recognition. In 15th International Conference on Pat-

tern Recognition, Barcelona, Spain, 2000.

[35] David M. Howard, Stuart Rosen, and Victoria Broad. Major/minor triad identi-

fication and discrimination by musically trained and untrained listeners. Music

Perception, 10 (2):205–220, 1992.

[36] Y. A. Ivanov and A. F. Bobick. Recognition of visual activities and interactions

by stochastic parsing. IEEE Transcations on Pattern Analysis and Machine

Intelligence, 22(8), August 2000.

[37] Y. A. Ivanov, C. Stauffer, A. F. Bobick, andW. E. L. Grimson. Video surveillance

of interactions. In CVPR’99 workshop on Video Surveillance, Ft. Collins, CO,

1999.

[38] T. Jaakkola and D. Haussler. Exploiting generative models in discriminative

classifiers. In In Advances in Neural Information Processing Systems 11. MIT

Press, 1998.

[39] Frederick Jelinek. Statistical Methods for Speech Recognition. Language, Speech,

an Communication series. MIT Press, Cambridge, Massachusetts, 1999.

[40] F. V. Jensen. An Introduction to Bayesian Networks. Springer, New York, NY,

1996.

166

[41] Michael I. Jordan. Learning in Graphical Models. MIT Press, Cambridge, MA,

1998.

[42] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning

and acting in partially observable stochastic domains. Artificial Intelligence, 101,

1998.

[43] L.P. Kaelbling, L.M. Littman, and A.W. Moore. Reinforcement learning: a

survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[44] M. Kudo, J. Toyama, and M. Shimbo. Multidimensional curve classification

using passing-through regions. Pattern Recognition Letters, 20:(11–13):1103–

1111, 1999.

[45] A. Likas. Reinforcement learning approach to online clustering. Neural Compu-

tation, 11:1915–1932, 1999.

[46] S. R. Lindsay. Applied Dog Training. Iowa State University Press, Ames, Iowa,

2000.

[47] Z. Liu and D. Weinstall. Mechanisms of generalization in perceptual learning.

In Advances in Neural Information Processing Systems, 1999.

[48] Gábor Lugosi. On concentration-of-measure inequalities. Seminar notes, 1998.

[49] Michael P. Lynch, Rebecca E. Eilers, and Marc H. Bornstein. Speech, vision,

and music perception: Windows on the ontogeny of mind. Psychology of Music,

Special Issue: Child development and music, 20 (1):3–14, 1992.

[50] A.K. McCallum. Reinforcement learning with selective perception and hidden

state. Ph.d., University of Rochester, Rochester, NY, 1995.

[51] Herzog M.H. and M. Fahle. A recurrent model for perceptual learning. Journal

of Optical Technology, 66:836–841, 1999.

[52] A. Mignault and A. A. J. Marley. A real-time neuronal model of classical condi-

tioning. Adaptive Behavior, 6(1):3–61, 1997.

167

[53] Thomas P. Minka. Expectation-maximization as lower bound maximization.

Tutorial note, 1999.

[54] Radford M. Neal and Geoffrey E. Hinton. A view of the EM algorithm that

justifies incremental, sparse and other variants. In Michael I. Jordan, editor,

Learning in Graphical Models, pages 355–368. MIT Press, Cambridge, MA, 1998.

[55] Kamal Nigam, Andrew McCallum, Sebastian Thrun, and Tom Mitchell. Text

classification from labeled and unlabeled documents using EM. Machine Learn-

ing, 39(2/3):103–134, 2000.

[56] Edgar Osuna, Robert Freund, and Federico Girosi. Training support vector

machines: An application to face detection. In CVPR, Puerto Rico, 1997.

[57] I. P. Pavlov. Conditioned Reflexes. Oxford University Press, Oxford, UK, 1927.

[58] Vladimir Pavlović and James M. Rehg. Impact of dynamic model learning on

classification of human motion. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 788–795, Hilton Head, SC, 2000. IEEE.

[59] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San

Mateo, CA, 1988.

[60] Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University

Press, Cambridge, UK, 2000.

[61] L. R. Rabiner and B. H. Juang. Fundamentals of speech recognition. Prentice

Hall, Englewood Cliffs, 1993.

[62] R. Redner and H. Walker. Mixture densities, maximum likelihood, and the EM

algorithm. SIAM Review, 26(2):195–239, 1984.

[63] R. A. Rescorla and A. R. Wagner. A theory of pavlovian conditioning. variations

in the effectiveness of reinforcement and non-reinforcement. In A. H. Black and

W. F. Proskay, editors, Classical Conditioning, volume 2, pages 54–99. Appleton-

Century-Crofts, New York, 1972.

168

[64] Deb Roy and Alex Pentland. Multimodal adaptive interfaces. Technical Report

438, MIT Media Laboratory, Perceptual computing Section, 1997.

[65] Max Rudolf. The Grammar of Conducting. A Comprehensive Guide to Baton

Techniques and Interpretation. Schimmer Books, New York, 1994.

[66] Philip N. Sabes and Michael I. Jordan. Reinforcement learning by probability

matching. In NIPS 8, 1996.

[67] Nestor A. Schmajuk. Animal Learning and Cognition: A Neural Network Ap-

proach. Cambridge University Press, New York, 1997.

[68] E. S. Spelke. Origins of visual knowledge. In D. N. Osherson, S. M. Kosslyn,

and J. M. Hollerbach, editors, Visual Cognition and Action, V.2, pages 99–128.

MIT Press, Cambridge, MA, 1990.

[69] A. Stolcke. Bayesian Learning of Probabilistic Language Models. PhD thesis,

University of California at Berkeley, 1994.

[70] A. Stolcke. An efficient probabilistic context-free parsing algorithm that com-

putes prefix probabilities. Computational Linguistics, 21(2):165–201, 1995.

[71] A. Stolcke and S. Omohundro. Inducing Probabilistic Grammars by Bayesian

Model Merging. In Grammatical Inference and Applications, pages 106–118.

Springer, 1994.

[72] C. Stone. Consistent nonparametric regression. Annals of Statistics, 5:595–645,

1977.

[73] R. S. Sutton. Learning to predict by the method of temporal difference. Machine

Learning, 3:9–44, 1988.

[74] R.S. Sutton and A.G Barto. Reinforcement learning: An introduction. MIT

Press, Cambridge, MA, 1998.

[75] M. Tarr and S. Pinker. Mental rotation and orientation-dependence in shape

recognition. Cognitive Psychology, 21:233–282, 1989.

169

[76] M. A. L. Thathachar and P. S. Sastry. A new approach to the design of rein-

forcement schemes for learning automata. IEEE Transactions on Systems, Man

and Cybernetics, 15:168–175, 1985.

[77] E. Thorndike. Animal Intelligence. Hafner, Darien, CT, 1911.

[78] Keiji Uchikawa and Robert M. Boynton. Categorical color perception of japanese

observers: Comparison with that of americans. Vision Research, 27 (10):1825–

1833, 1987.

[79] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[80] Vladimir N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[81] Andrew J. Viterbi. Error bounds for convolutionalcodes and an asymptotically

optimal decoding algorithm. IEEE Transactions on Information Theory, 13:260–

269, 1967.

[82] C. J. C. H Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279–292,

1992.

[83] Chris Watkins. Dynamic alignment kernels. Technical Report CSD-TR-98-11,

Department of Computer Science, Royal Halloway, University of London, 1999.

[84] J. Weng, C. Evans, W. S. Hwang, and Y. B. Lee. The developmental approach

to artificial intelligence: Concepts, developmental algorithms and experimental

results. In NSF Design and Manufacturing Grantees Conference, Queen Mary,

Long Beach, CA, January 5-8, 1999.

[85] Ronald J. Williams. A class of gradient-estimating algorithms for reinforcement

learning in neural networks. In IEEE First International Conference on Neural

Networks, San Diego, CA, 1987.

[86] A. D. Wilson. Adaptive Models for the Recognition of Human Gesture. PhD the-

sis, Massachusetts Institute of Technology, Cambridge, Massachusetts, Septem-

ber 2000.

170

[87] D. H. Wolpert and W. G. Macready. No free lunch theorems for search. Technical

Report SFI–TR–95–02–010, Santa Fe Institute, 1995.

[88] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-time track-

ing of the human body. IEEE Trans. Pattern Analysis and Machine Intelligence,

19(7):780–785, 1997.

[89] Lei Xu and Michael I. Jordan. On convergence properties of the EM algorithm

for gaussian mixtures. Neural Computation, 8(1):129–151, 1996.

[90] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation. In

Advances in Neural Information Processing Systems, pages 689–695. MIT Press,

2000.

[91] Heinrich Zollinger. Categorical color perception: Influence of cultural factors on

the differentiation of primary and derived basic color terms in color naming by

japanese children. Vision Research, 28 (12):1379–1382, 1988.

171

