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Abstract

This work applies vector-field-based limb control to physically simulated character
animation. Vector fields of joint torques, defined over joint angle space, have been
shown in the neuroscience literature to be able to generate simple reaching motions
in two dimensions when linearly combined with time-varying weights. In this work,
three-dimensional versions of such “basis” fields generate a similar diversity of realistic
motions, while maintaining tractable control through a concise parameter space. A
decomposition algorithm is presented that takes a set of limb motions and generates
a set of torque fields, whose various linear combinations can generate each member
of the input set, and other plausible motions. Unlike other motion extrapolators, the
system extrapolates torque control programs instead of the motion paths themselves,
retaining Newtonian physical correctness.
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Chapter 1

Introduction

1.1 What are torque fields?

In the context of this work, torque fields are functions that map a limb’s configuration

to a vector of joint torques (fig 1-1). The hypothesis of this thesis is that a small set

of torque fields can be linearly combined to actuate various realistic limb movements,

and that simple limb movements can be decomposed into linear combinations of a

shared set of fields.

A special case of such a definition is the linear angular spring, which linearly

maps a single joint’s configuration to its torque, relative to a neutral position. In the

general case, a torque field may define joint torques as nonlinear functions of multiple

joint configurations.

1.2 Motivation

The idea of modular torque generators is motivated by parallel efforts in both neu-

roscience and computer animation towards composable controllers of limb motion.

While a detailed review of these efforts is deferred until chapter 2, an overview of

torque fields is provided below.
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Figure 1-1: A torque field’s torques, sampled at various limb configurations.

1.2.1 Biological Precedent

Discoveries in the neuroscience literature suggest that the motor cortex drives limb

motions not by specifying individual muscle tensions, but through the temporally

coherent coactivation of muscle sets. The effect of such a set of muscle tensions on the

end effector can be modeled as a convergent spatial force field acting on it, driving the

limb to the neutral position dictated by those tensions. Co-activating multiple tension

sets or force fields drives the limb to an intermediate neutral position. Blending from

one force field to another results in a smooth movement of this neutral position from

the first field to the second. Blending force fields with temporally changing weights

is a low-dimensional and potentially more tractable method for controlling a desired

hand trajectory. This thesis explores how a set of such “basis” force fields can be

learned from a set of limb motions, so that the input motions and other plausible

motions can be recreated in simulation by various combinations of those force fields.
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1.2.2 Modular Control

In computer animation, physical simulation has been widely applied to modeling

minimally controlled phenomena, such as the motion of clothing [2], fluids [15], and

flame [34]. Using simulation to animate controlled movements is often difficult, as

tuning physical parameters such as friction and stiffness can be a highly unintuitive

and unpredictable means of choreographing motion. Nonetheless, there have been

great successes in executing acrobatic motions such as leaps, flips, and vaults in

simulation [18]. The motor programs for physically simulated characters are typically

written for a specific task, and require precise initial conditions. Modularity in these

control programs has been difficult to achieve. By contrast, torque fields generate

different motions by changing the weights of a shared set of torque generators.

1.2.3 Low-Dimensional Control

In the biological domain, a single force field encodes the balanced co-activations of

multiple muscle groups involved in driving a limb to the field’s particular neutral

position. This relieves the controller, be it the brain or a spine-stimulating electrode,

from individually specifying each muscle’s stiffness and neutral length. Natural look-

ing whole-limb movements can be orchestrated by simply blending from one torque

field to another using a smooth step function of time. This is in contrast to the

individual setting of stiffnesses and impedances in single-joint PD controllers such

as damped springs. This concise parameter space gives torque fields an advantage

over lower-level controllers when applying learning algorithms to determine control

parameters for a particular motion.

1.3 Objectives

In this thesis, the goal is to decompose motions into a set of torque fields that can

recreate those motions under simulation. Chapter 3 presents a simple parameter-

ization of convergent torque fields, and demonstrates a method for searching the
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parameter space for fields that will actuate a limb to approximate a given animation.

The algorithm is simply extended to decompose multiple animations into a mini-

mal “basis set” of torque fields whose various linear combinations recreate the input

animations.

1.4 Road map

• Chapter 2 situates torque fields in related work in neuroscience, robotics, and

computer animation.

• Chapter 3 describes the mathematical representation of torque fields used in

this work.

• Chapter 4 presents the results of distilling limb animations into torque field rep-

resentations, and of recreating those animations from the torque fields through

a physical simulator. Conclusions and future work are suggested.
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Chapter 2

Related Work

2.1 Introduction

Torque field motor control can be contextualized among its origins in neuroscience,

among other control primitives from robotics, or among other approaches to similar

applications in computer animation. The following sections introduce related work

from each of these three fields. The neuroscience section traces the emergence and

evolution of force field control theory from its origins in equilibrium-point control to

the present. The robotics section discusses field-based control among other popular

robot motor learning primitives. Finally, the animation section compares force field

primitives to other efforts at low-dimensional, physics-assisted animation.

2.2 Neuroscience

While some have proposed that limb control is performed by direct computation

of the inverse dynamics problem [21], it is somehow unappealing to believe that

anything as “wet and nonlinear” as the nervous system constantly churns through

pages of second-order differential equations in real time. The ease with which humans

and other animals seemingly solve the inverse dynamics problem has often inspired

neuroscience research to look for evidence of hierarchical or otherwise simplifying

representations.
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One proposal is that the nervous system has no model of dynamics, generating

joint torques instead as a function of the error between perceived and desired dynamic

states. Merton once even suggested [28] that movement was initiated not by direct

neural impulses to the muscle, but by first contracting the muscle’s stretch sensors,

creating a discrepancy between sensor tension and muscle tension that the muscles

then worked to correct.

While solutions based solely on feedback are attractive in their simplicity, they fail

to account for observed stability in the face of significant feedback delay [20], and the

surprisingly robust capacity for coordinated motion by deafferented1 subjects. Cats,

for instance, will continue to walk after being decerebrated2, despinalized3, and/or

deafferented. Polit and Bizzi even showed that a deafferented monkey can continue to

execute coordinated pointing movements [37]. This is particularly surprising in light

of the fact that the reaches were not conducted from a standard starting position,

and the monkey was prevented from seeing its own arm. With neither visual nor

proprioceptive feedback to let the monkey know where its arm started the reach

from, this strongly discourages the theory that motions are made by pre-computed

solutions to bounded-value problems. Polit suggested that the monkey controlled its

arm by inducing a set of muscle tensions such that the arm’s equilibrium position

was the desired end position, thus driving the arm towards the target independent

of perturbation or initial position. This echoed earlier suggestions of an “equilibrium

point theory” [13]. Supporting evidnece came by the fact that applying a constant

torque to the forearm caused the deafferented subject’s final forearm direction to miss

the target in the direction of the torque, but when the torque was released, the arm

corrected its direction immediately.

One problem with this theory is that reaching by simply turning on an equilibrium

point does not allow for trajectory control. The logical follow-up hypothesis, then, is

that the equilibrium position of the arm smoothly moves from the start position to

1Preventing all in-bound nervous signals from reaching the spinal cord by disconnecting the
afferent nerve roots on its dorsal side.

2Cutting through the midbrain.
3Cutting through the spinal cord at the thoracic level.
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the goal position over the course of the movement, rather than being set there from

the start. Bizzi et al. tested this [3] using the same experimental apparatus as above.

This time, at the onset of muscle activity, an external actuator quickly moved the

deafferented monkey’s arm to the goal position. If the equilibrium position had been

immediately placed at the goal position, the arm would have stayed there. Instead,

the forearm partially backtracked toward the initial position before moving again

to the goal. This suggested that when the arm was moved to the goal position,

the equilibrium position was still near the initial position, pulling the arm back.

Eventually, the equilibrium position reached the goal, bringing the arm with it. The

trajectory of the equilibrium position was termed a “virtual trajectory.”

Planning a virtual trajectory is an easier task than planning an actual trajectory,

as the virtual trajectory need not follow Newtonian mechanics. The flip side is of

course that the arm’s Newtonian trajectory will differ from the planned virtual one.

One way to reduce the discrepancy is by increasing the stiffness of the elastic force

around the moving equilibrium position. Flash [14] simulated the actual trajectory of

an arm executing a straight reach of moderate speed using a straight virtual trajectory.

The resulting actual motion showed inflections and curves that were encouragingly

similar to those observed in straight reaches by human subjects. However, the stiffness

required to keep the hand close to its equilibrium position scales with the square of

the speed, and later work by Bizzi et al showed that for fast forearm movements, the

required stiffness would far exceed the recorded range of the human arm’s dynamic

mechanical impedance at those speeds [4]. Given such upper limits on stiffness, an

alternative way to plan quick motions is to make the virtual trajectory itself curvy [19],

outrunning the actual limb position near the beginning of a reaching motion and

lagging behind it near the end. This is analogous to dragging a mass around by a

rubber band.

The virtual trajectory formulation had seemingly provided a coherent perspective

on the mechanics of muscles as biasable springs, the stability of animal movement,

and the search for a computation-light solution to the inverse dynamics problem. If

the virtual trajectory must assume a complex shape for quick, straight motions, the
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computational simplicity previously promised by virtual motion planning is lost.

Bizzi et al [5] introduced force fields to the biological motor control literature un-

der the banner of equilibrium point control. Spinalized frogs had already been known

to be capable of coordinated reflex movements. Bizzi found that stimulating certain

points in the spinal cord of such a spinalized frog caused a specific coactivation of leg

muscles, causing the leg to move to an equilibrium position with anisotropic stiffness.

By sampling the restorative force exerted by the leg at various positions around this

equilibrium position, Bizzi mapped what he called a convergent force field associated

with that spinal module. When multiple spinal modules were simultaneously stim-

ulated, the resulting force field was a simple vector sum of the modules’ individual

fields. This, the authors note, is “highly unexpected because of the complex nonlin-

earities that characterize the interactions both among neurons and between neurons

and muscles.” To emphasize this unexpectedness, they reported that random acti-

vation of available motor neuron pools produced stable convergent force fields only

5% of the time. Loeb et al [27] searched the space of binary (on or off) muscle acti-

vations of 16 frog leg muscles in simulation. Out of 65536 possible combinations of

active muscles, only 23 yielded force fields that were convergent, stable, and robust

to fluctuations in the activation levels of the muscles involved.

A year after the original force field paper, Bizzi et al reported results of recording

force fields as functions of time, starting from the onset of spinal stimulus. Figures

from the paper show how gradually adding one force field to another smoothly moves

the equilibrium point while maintaining a convergent field around the equilibrium

point at all times. This fulfills the criteria of a virtual trajectory. Subsequent studies

on reflex actions by spinalized animals such as rats and cats demonstrate that it is

likely that such coordinated reflex motions are parameterized and adjusted using force

field primitives [24, 23, 31, 43]. These studies also demonstrate that force field motor

control is not a fluke of amphibian evolution.

The discouragingly complex virtual trajectories that quick motions require might

now be interpreted as the outcome of controlling weights to built-in force field rep-
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resentations. Kargo and Giszter [24] show that weights for different torque fields

change in time according to a common temporal pulse, scaled by different magni-

tudes. This stereotyping of the temporal behavior of the weights further limits and

simplifies the control space. While their experiments were performed on spinalized

frogs, other work has suggested that humans also learn motor programs in a time-

invariant fashion, adapting to time-varying external forces using purely position and

velocity-dependent torque functions [8].

2.3 Robotics

Construction of motor control programs from independent primitives has been a re-

curring theme in robot control as well. Atkeson et al train locally windowed linear

functions of state variables to quickly learn various tasks such as balancing a pole on

end [1], and devil-sticking [41]. The local scope of these primitives helps avoid the

destructive interference common to motor learning paradigms with global primitives

such as sigmoidal neural networks [40].

Closer to this thesis is later work by Ijspeert, Nakanishi, and Schaal, who encode

desired trajectories using learned ratios of fixed dynamical primitives [22]. They

represent the velocity curves of individual degrees of freedom as linear combinations

of simple pulse functions, and show a method to evolve the weights of such pulses to

follow an example motion. By explicitly setting the velocity, however, their approach

does away with Newtonian mechanics, relying on a high-frequency PD controller to

enforce the velocities dictated by their algorithm. As such, their method relies on a

full specification of a natural-looking path in order to itself produce natural-looking

motion. The technique acts as an autonomous trajectory machine that plays back

animations in a perturbation-resistant manner.

By applying inverse dynamics to a given arm motion, one can find the torques

necessary to perfectly recreate that motion in simulation. An arm motion traces a

path through joint space, and inverse dynamics associates torque vectors to each point

along that path. Therefore, the problem of learning torque fields from arm motions is
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one of finding a vector field that smoothly interpolates between these configuration-

torque pairs. Furthermore, this torque vector field must be a sum of a minimal set of

basis vector fields. To this end, Mussa-Ivaldi devised a method for interpolating ar-

bitrary sample vectors with linear combinations of a fixed set of simple irrotational4

and solenoidal5 fields. In a companion paper, Mussa-Ivaldi and Giszter apply this

interpolation to the specific domain of a two-joint limb operating in a plane. Citing

Colgate and Hogan [6, 7], they argue that fields used to control a linked limb must

be irrotational in joint space as a precondition to stability. In the paper that most

directly inspired this thesis, Mussa-Ivaldi solves for the coefficients of a linear com-

bination of a fixed set of irrotational fields to actuate straight reaching motions in a

plane [30]. This thesis extends that work to three-dimensional movements, and learns

not just the torque field coefficients but also the parameters of the fields themselves.

2.4 Animation

One of the first cross-pollinations from robotics to computer animation was by Raib-

ert and Hodgins [39], who extended robotic gait controllers for telescoping legs to the

hopping of an animated planar kangaroo, actuating its angular joints with damped

angular springs. This damped-spring actuator model was successfully applied to

increasingly complex gymnastics in later work by Hodgins and Wooten [18, 46], gen-

erating animations of jogging, vaulting, and diving.

One drawback to their approach was that the control programs involved in actuat-

ing such coordinated movements are highly specialized, each requiring specific initial

conditions. Faloutsos et al [11] devised controllers that allowed a range of initial con-

ditions, in the service of a “virtual stuntman” that reacted to impacts and recovered

from falls using such flexible control. Another problem with control through actua-

tors is that controlling motion through low-level physical parameters such as spring

stiffness and damping is highly unintuitive, as parameter adjustments more often lead

4Irrotational fields have zero curl and nonzero divergence.
5Solenoidal fields have zero divergence and nonzero curl.
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to catastrophic failure than to an interesting change in style.

Less brittle control can be enacted through constrained optimization of a user-

specified penalty function that encodes the desired motion style. Witkin and Kass [45],

for example, solve for the joint torques of a “sluggish” leap by first constraining the

takeoff and landing positions on the floor, then minimizing the power exerted by the

actuators during the leap. A significant limitation of this approach is that optimizing

a function entails repeated evaluation of its gradient, and that this operation is typi-

cally O(D2), where D is the number of degrees of freedom. Witkin and Kass tested

their method on a Luxo lamp character with four degrees of freedom, but the method

was prohibitively slow for fully articulated humanoid characters.

Difficulties notwithstanding, the notion of animating by “fitting” physics to sparse

and intuitive user constraints remains appealing. Z. Popović and Witkin [38] edited

the motions of complex humanoid figures by first “projecting” the motion to a simpli-

fied model, then applying constrained optimization on the fewer degrees of freedom,

then “projecting” the modified motion back to the original character, filling in the

lost data using heuristics on the original animation. The resulting motion is not

strictly physically correct, but retains the perceptually salient characteristics of the

simplified model’s physically correct motion.

While constrained optimization is far more practical for animation than directly

manipulating physical parameters, optimization is still an iterative design tool. One

chooses a penalty function, optimizes with respect to it, observes the results, and

repeats as needed. Preferably, one would specify a rigid body’s trajectory directly,

letting a computer decide on the necessary simulation parameters. This, however,

is made difficult by a highly nonlinear and one-to-many mapping from trajectory to

passive dynamic parameters. J. Popović solves this problem for the case of colliding

rigid bodies, by locally linearizing the “simulation function,” or the function that

maps the simulation parameters to a body’s state at a given time. A user’s differential

changes to the body’s state can then be mapped to corresponding differential changes

in the simulation parameters. Degeneracy is resolved by user-set preferences and

stiffnesses on the parameter values.
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A recent paper by Fang and Pollard [12] demonstrates that commonly used phys-

ical constraints can be formulated so that calculating their gradient is linear in the

number of degrees of freedom, thus removing the previously prohibitive cost of opti-

mizing for any reasonable number of character DOFs.
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Chapter 3

Torque Fields

3.1 Introduction

A torque field is a vector field of joint torques, defined over the domain of limb

configurations. The torques vary smoothly over the domain, and converge to a single

point, the neutral configuration. As discussed in chapter 2, this force generator model

is motivated by the fact that vertebrates seem to move limbs with predefined muscle

co-contractions. Each of these co-contractions drives the limb to a neutral position

at which the net torques vanish. The aggregate effect of the activated muscles is

modeled as a convergent torque field around the neutral position, with anisotropic

stiffness.

Section 3.2 extends Mussa-Ivaldi’s concise parameterization [30] of such fields to

3-D limbs. Section 3.3 shows how the linear combinations are changed smoothly

in time. Section 3.4 defines a cost function over the parameter space that can be

minimized to solve for a set of torque fields that will approximately generate a given

limb motion.
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3.2 Parameterizing torque fields

3.2.1 Representing the neutral configuration

For an linked limb of n joints, the limb configuration can be represented as a stacked

vector η of axis-angle vectors vi:

ν =
[

v1x v1y v1z . . . vnx vny vnz

]T
(3.1)

Torque fields apply torques as a function of the distance from the limb’s current

configuration ν to the neutral configuration η, thus requiring a distance metric in limb

configuration space. Conveniently enough, taking the difference between axis-angle

orientations yields the smallest-angle rotation νd between them1:

νd = ν − η; (3.2)

One could make the torque field a linear spring in limb space by defining the

restorative force as −Kνd for some scalar K < 0. However, previous attempts at

force field reconstruction have favored localized basis fields to facilitate the learning

process. Poggio and Girosi [35, 36] note that using basis sets of Green’s functions

(localized radial wave-like functions that decay over distance), one can approximate

arbitrary continuous scalar fields arbitrarily well. Mussa-Ivaldi [32, 33, 30] chooses

the standard bulwark of localized bases, the radial Gaussian. Gaussians are used in

this thesis as well.

3.2.2 Representing the stiffness

A Gaussian basis scalar field G(ν) is defined by a neutral limb configuration η and

an inverse covariance matrix K:

G(ν) = exp

(
−1

2
νd
TKνd

)
(3.3)

1The reader is referred to section 3.3.5 in [9] for a proof.
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The simplest Gaussians require few parameters, and increasing the complexity of

K adds details in an intuitive manner. A radially symmetric Gaussian requires just

a n-dimensional neutral configuration and a scalar K, corresponding to equal, iso-

metric, and uncorrelated joint stiffnesses. Using diagonal K matrices allows different

weights to the different dimensions of ν − η, corresponding to different stiffnesses for

rotations around the x,y, and z axes. Making K block-diagonal in 3 by 3 blocks allows

different principal axes of stiffness, and a symmetric K allows the joint stiffnesses to

be correlated to each other. To be a valid distance metric, K must be positive definite.

One way to achieve this is to generate K as the product of a matrix with its trans-

pose, K = MTM . The experiments done in this thesis restrict K to be diagonal with

positive diagonal elements, which also enforces positive-definiteness. See figure 3-1

for planar examples of torque fields with scalar, diagonal, and symmetric K matrices.

To generate torque vector fields from these Gaussian potentials, we take their

gradient:

χ(ν) = ∇G(x) = −Kνd exp

(
−1

2
νd
TKνd

)
(3.4)

This defines an region of convergent torque around the equilibrium configuration

η, with an ellipsoidal shape defined by K.
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Figure 3-1: Torque fields with different K matrices. Left column: in joint angle space.
Lines show isocontours of torque. Torque vectors are perpendicular to contours,
pointing in. Right column: in Cartesian space. Lines show isocontours of the force
at the end effector. Forces perpendicular to contours, pointing in. Arm shown, with
shoulder joint at bottom. First row: scalar K. Second row: diagonal K. Third row:
symmetric K.
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Figure 3-2: Step function ψ(t) (equation 3.5) and pulse functionφ(t) (equation 3.6).

3.3 Combining torque fields

Limb movement is generated by a smooth change over time of the basis fields’ linear

combination weights. Experimental evidence by Giszter et al. [17] shows that these

changes are driven by a common function of time, resembling “a fixed half-cycle

oscillation, or a fixed impulse response, such as a cosine packet.” We use a smooth

step function and a smooth pulse function to guide weight changes during a movement

over a time duration λ:

ψ(t) =


0 (t < 0)

1
λ

(
t− λ

2π
sin
(

2πt
λ

))
(0 ≤ t ≤ λ)

1 (t > λ)

(3.5)

φ(t) =


0 (t < 0)

1
2

(
1− cos

(
2πt
λ

))
(0 ≤ t ≤ λ)

0 (t > 0)

(3.6)

The basis set of M torque fields χi are combined using scaled versions of equa-

tions 3.5 and 3.6, to form the joint torques F (t) as follows:

F (t) =
M∑
i=1

aiψ(t)χi(ν(t)) + biφ(t)χi(ν(t)) (3.7)
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ai and bi are constant scalars, which we constrain to be nonnegative in order to

ensure that the resulting field is locally convergent. We term those torque fields χi

with nonzero ai to be “step fields”, and those with nonzero bi “pulse fields”. The step

fields define the final equilibrium point, and the pulse fields modulate the equilibrium

point trajectory in transit.

3.4 Solving for torque field parameters

In this section we write F (t) from equation 3.7 as F (t, x), where x is a parameter

vector, containing the step weights a, pulse weights b, inverse covariance matrices K

and neutral configurations ν. Given a motion ν(t), we wish to solve for the parameter

set xν such that the torques F (t, xν) generate a similar motion. A straightforward

approach adopted here is to minimize a cost function Cν(x) that has a global minimum

at x = xν . We must first parameterize path ν(t), and define cost function C.

We represent motion ν(t) by sampling it at equal time intervals between t = 0

and t = λ, and stacking the sampled limb configurations into a column vector:

p =



ν(0)

ν(∆t)

ν(2∆t)
...

ν(λ)


(3.8)

We can calculate the exact torque T (t) needed to perfectly recreate motion ν(t)

using inverse dynamics (see appendix A). An obvious cost function then is the integral

of the squared difference between the “actual” torques T (t) and those generated by

the torque field model of equation 3.7, F (t):

C(x, ν(t)) =

∫ λ

t=0

‖T (t)− F (t)‖2 dt (3.9)

In practice, we use a discrete approximation of the above integral:
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C(x, ν(t)) =

λ/∆t+1∑
i=0

‖T (i∆t)− F (i∆t)‖2 ∆t (3.10)

We use Sequential Quadratic Programming with numerical derivatives to minimize

cost function C, subject to the following constraints:

• The torque field weights a and b must be nonnegative, to ensure that the torque

fields are still convergent after being scaled.

• The inverse covariance matrices K are forced to be diagonal with positive ele-

ments, to preserve positive-definiteness, and keep the parameter space small.

The solution xν returned by the SQP run is tested by simulating a limb actuated

by torque function F (t, xν), and seeing if the resulting motion is similar to input

motion ν(t).

SQP is a form of gradient descent, and cannot be applied to discrete variables.

One such variable in equation 3.7 is M , the number of basis fields χ. This is dealt

with in an ad-hoc manner by repeating the search for decreasing values of M starting

from some maximum, then choosing those value(s) of M whose solution generates a

motion similar to the input motion.

3.4.1 Solving for multiple motions

We can decompose multiple motions into a common basis set of fields by straightfor-

wardly extending the cost function to optimize:

C(x, ν1(t), ν2(t), · · · , νN) =

j=N−1∑
j=0

λ/∆t+1∑
i=0

‖Tj(i∆t)− F (i∆t)‖2 ∆t (3.11)

For M torque fields and N input motions, the parameter vector x will consist of

one K and one η for each torque field, and MN as and MN bs.
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Figure 3-3: Shifting from the upper left torque field to the lower right torque field,
using linear interpolation of the field weights. See 3-4 for resulting end effector force
fields.
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Figure 3-4: Force fields resulting from the torque fields of figure 3-3. Neutral arm
configuration displayed for each composite field.
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Chapter 4

Results

Testing the search method of chapter 3 involves two questions:

1. How robust is the searching algorithm against large parameter spaces?

2. How well does the searching algorithm match torque fields to torque functions

of arbitrary input motions?

We tested each question against synthetic input motions, generated either from

simulation or keyframed spline animations.

4.1 Determining the roughness of the search space

As Poggio and Girosi [35, 36] point out, the search for a Gaussian approximation

of a multivariate function entails a non-convex search space. Gradient descent must

therefore be augmented with stochastic search heuristics such as simulated annealing

or multiple initial guesses. To this end, it helps to get a first-order sense of how

far from the true solution one can start a search without getting trapped in a local

minimum of the cost function (equation 3.10).

One way of gauging this distance is to generate a limb motion using a set of

torque field parameters x, adding noise to x to make xguess, then using the xguess as

an initial guess to the optimization of equation 3.10. This experiment was performed
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for three single-torque-field motions, with increasingly bad xguess values, to find how

much noise could be added to each motion’s x before the optimizer failed to recover

the original motion. x was “noised” by multiplying each parameter in it by a random

number between 1 and r, where r varied between trials.

4.1.1 Experiment 1: Single torque field

Three single-field parameter sets were hand-crafted to generate a planar “come here”

lifting gesture (figure 4-1), a planar straight-elbowed lifting gesture (figure 4-2), and

a non-planar tucking motion (figure 4-3). The left image in each of the figures shows

the original motion. The other two images show the motion after x has been noised

and optimized, with different noise parameters r. Specifically, the center image shows

the motion for the greatest r value tried that still generated motion similar to the

original motion. The image on the right shows the motion from the next greatest r

value tried. Note that for all three motions, this failure case resulted in no motion at

all, not just incorrect motion. This was because the neutral configuration had moved

far away from the arm’s initial position, thus putting the arm out of the torque field’s

domain of influence. The torque field parameters for each motion in this set can be

seen in appendix B.

It is interesting to note that the torque field parameters of many of the noised

and successfully recovered motions are more than marginally different from those

of the original motion. It is common that pulse fields are introduced where there

were none, or that the values in the stiffness matrix K increase several times over.

Furthermore, the robustness of the optimization process to noise parameter r seems

to vary greatly with the particular motion being optimized. The non-planar tuck,

for example, survives scaling by random numbers between 1 and 4.2, while the stiff-

elbowed lift fails after being noised by r = 1.8.
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Figure 4-1: Left: A “come here” gesture. Center: The original gesture’s torque field
parameters were multiplied by random numbers between 1 and 2.6, then optimized
to fit the original trajectory. The motion resulting from these parameters is shown.
Right: When the original gesture’s parameters were scaled by random numbers be-
tween 1 and 3, then optimized, the new parameters produced no motion. The torque
field parameters for each figure are available in Appendix B.
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Figure 4-2: Left: A stiff-elbowed lift gesture. Center: The original gesture’s torque
field parameters were multiplied by random numbers between 1 and 1.4, then opti-
mized to fit the original trajectory. Right: When the original gesture’s parameters
were scaled by random numbers between 1 and 1.8, then optimized, the new param-
eters produced no motion. The torque field parameters for each figure are available
in Appendix B.
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Figure 4-3: Left: A non-planar “tuck”. Center: The original gesture’s torque field
parameters were multiplied by random numbers between 1 and 3.8, then optimized
to fit the original trajectory. Right: When the original gesture’s parameters were
scaled by random numbers between 1 and 4.2, then optimized, the new parameters
produced no motion. The torque field parameters for each figure are available in
Appendix B.

4.1.2 Experiment 2: two torque fields

The same experiment was performed on motions of two torque fields, planar and

non-planar. Figures 4-4 and 4-5 summarize the results. As in the previous examples,

failure is catastrophic and not incremental, and torque field parameters may change

significantly with almost no change to the resulting motion.
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Figure 4-4: Left: A planar straight-line motion with two torque fields. Center: Ges-
ture produced by the torque field parameters for the left figure after being multiplied
by random numbers between 1 and 2.2, then optimized to fit the original trajectory.
Right: Gesture produced by noising the original torque field parameters by random
numbers between 1 and 2.6, then optimizing.

Figure 4-5: Left: A non-planar backwards reach using two torque fields. Center: Ges-
ture produced by the torque field parameters for the left figure after being multiplied
by random numbers between 1 and 2.2, then optimized to fit the original trajectory.
Right: Gesture produced by noising the original torque field parameters by random
numbers between 1 and 2.6, then optimizing (no motion).
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Figure 4-6: The “tuck” motion from figure 4-1, noised, then solved with four torque
fields. Left: noise parameter r = 1.8. Center: r = 2.2. Right: r = 2.6. Note lessened
resistance to noise as compared to previous experiment, where only one torque field
was used.

4.2 Decomposing multiple motions into shared ba-

sis fields

Here again, we start from a known solution. The four torque fields responsible for the

planar “come here” (figure 4-1), the non-planar tuck (figure 4-3), and the non-planar

backwards reach (figure 4-5) were grouped as one parameter set x. Noised versions

of x were used as initial guesses to finding a single torque field basis set to all four

motions. The transition to failure becomes more gradual than in the previous trials,

but tolerance for noise, on the average, is reduced.

45



Figure 4-7: The “tuck” motion from figure 4-3, noised and solved with four torque
fields. Left: noise parameter r = 2.2. Center: r = 2.6. Right: r = 3.0. Note lessened
resistance to noise as compared to previous experiment, where only one torque field
was used.
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Figure 4-8: The backwards reach motion from figure 4-5, noised and solved with four
torque fields. Left: noise parameter r = 2.2. Center: r = 2.6. Right: r = 3.0. In this
case, the increase in the number of torque fields increased the motion’s robustness to
noise.

4.3 Decomposing motions not generated by torque

fields

Mussa-Ivaldi decomposes planar motions into planar torque fields by using a fixed set

of overlapping fields with evenly spaced neutral configurations, and optimizing solely

on their weights, leaving the the torque fields themselves unchanged [32, 33]. While

seeding the workspace with evenly spaced torque fields is a reasonable approach for a

2-DOF planar limb, in higher dimensions this becomes impractical. Even for a mini-

mal 4-DOF limb with a shoulder and an elbow, a regular grid of neutral configurations

placed at 3/4π intervals would require 34 = 81 torque fields.

In the following experiment, a three-keyframe spline animation was created to

resemble the “come here” animation of 4-1 and 1-1. This motion was decomposed

into torque fields using the four-torque-field “come here” from figure 4-6 as an initial

guess.

The search fails, perhaps explained by the fact that although the spline animation

resembles the “come here” animation, its torques differ significantly, as can be seen

by comparing figures 1-1 and 4-9.
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Figure 4-9: Left: a three-keyframe spline animation resembling the “come here”
animation from figure 4-6. Right: the four torque field basis set from figures 4-6, 4-
7, 4-8 was optimized to match the torques of the spline animation, with catastrophic
results (torques not shown).

4.4 Conclusions

The optimizing searches in the preceding sections started from known solutions and

worked outwards in parameter space, testing the extent of the well around the global

minimum of cost function C. While some single-torque-field motions (e.g. figure 4-3)

proved robust to very wrong initial guesses, others (figure 4-2) did not, and motions

generated from more torque fields tended on the whole to be less robust to noise.

It is clear that pure gradient descent is ill-suited to deducing multiple torque fields

from a set of motions, and the high dimensionality of the search space will thwart

random sprays of starting points. Some intelligent stochastic search method, such

as simulated annealing or gradient descent with momentum, is required for a more
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reliably successful solver.

Given an animation, there is no clear way to make initial guesses to the appropriate

torque fields. With regular, close-packed seeding of the parameter space ruled out

by the curse of dimensionality, the animator is forced to make loose guesses. This

combination of physical parameters with dependence on human expertise and labor

makes this method of motion design a baroque affair.

This is not to say that torque fields will never be a good idea for computer ani-

mation. The search method used in the experiments above is but the simplest, and

as discussed in the following section, there are many avenues of improvement. It is

the conclusion of this thesis, however, that torque fields are certainly not low-hanging

animation fruit to be plucked from an outside field. There is much climbing to be

done.

4.5 Future work

This work is an initial exploration, leaving many unexplored search algorithms, torque

field representations, data sets, and potential applications.

4.5.1 Search algorithms

Stochastic searches

Poggio and Girosi wrote [35, 36] on a problem similar to that in this work, namely that

of approximating a multivariate function f from sparse samples, using a linear com-

bination of Gaussians of various scales. (Approximating a scalar field with Gaussians

is equivalent to approximating a vector field with gradients of Gaussians, if the vector

field is irrotational.) They note that functionals of f are in general non-convex, and

attempts at gradient descent should include stochastic terms to avoid local minima.

In addition, they suggest that other iterative methods, such as “conjugate gradient,

simulated annealing, or variations of the Metropolis algorithm [16] may be better

than gradient descent and should be used in practice.”
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EM for vector fields

Mussa-Ivaldi takes the approach of using a fixed set of torque fields and solving only

for their optimal weighting to interpolate between given torque samples [33, 30]. An

interesting extension to this approach would be to iterate by solving for the optimal

weights, then updating the field centers and variances, in the manner of Expectation-

Maximization.

Path matching

The cost function of equation 3.10 only compares torques, and not lower-order values

such as velocity and position, which are the more salient qualities in the perceptual

comparison of two trajectories. This was motivated by an implicit assumption that

the input motion is driven by torque fields to be searched for, and the most direct

cost metric for such a search was a comparison of torques. Comparing trajectories

would also greatly increase the search time, as each iteration in the gradient descent

would require a full simulation using that iteration’s torque fields.

4.5.2 Representations

Variable phase

One admittedly arbitrary assumption made in this work is that the time-step and

time-pulse functions ψ(t) and φ(t) (equations 3.5 and 3.6) start at the onset of the

movement, and have periods equal to the duration of the movement. The general

case would be to associate with each torque field a step or pulse function with its own

start time and duration. Such a general treatment was avoided in this work to keep

the parameter space small, but future work that aims to accommodate more than

simple, discrete movements will likely need such flexibility.

Rotational fields

This thesis limits itself to Gaussian primitives for simplicity’s sake, but it may be

that using multiple types of primitives leads to a flexible solution that can do more
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with fewer parameters. In a study of primitive-based vector field approximation [32],

Mussa-Ivaldi shows that fields with a rotational component are poorly approximated

by even large numbers of irrotational primitives, while a small number of irrotational

and solenoidal basis fields reconstructs it accurately. As noted in Chapter 2, Mussa-

Ivaldi and Giszter have argued that torque fields must be irrotational for control

stability. It may be, however, that in the context of short, time-pulsed primitives,

such concerns for stability are outweighed by the flexibility in control.

Impedance

Starting with Bizzi’s original paper on force fields [5], measuring force fields has always

been a static task. The experimenter attaches the subject’s limb to an unyielding

force transducer, stimulates the subject’s spine, and records the force with which the

limb pushes against the transducer. Any velocity sensitivity of the primitive must

go unmeasured, as the technology does not exist to measure the dynamic impedance

of a limb in motion. As a result of this laboratory limitation, mathematical models

of torque fields are often without impedance. At best, they include an unspecified

function of velocity, as in [29]. In the absence of guidance from biology, future work

may use any number of stiffness models, chosen primarily on practical grounds from

an animation and control standpoint.

Cartesian force fields

Discussions of Cartesian force fields far outnumber those of angle-space torque fields in

the biological literature, which may lead the reader to wonder why this thesis concerns

itself with the less intuitive, higher-dimensional angle-space formulation. One answer

is that Cartesian force fields are the manifest result of coordinated coactivations of

muscle pairs, and it would be a mistake to let the force field itself drive the limb by

its end. Pushing around the end-effector with a force field underspecifies the joint

paths, and a limb modeled as a limp chain dragged by its end should not be trusted

to look like anything else.

That being said, one could define a force field that exerts forces on each joint,
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giving it control over the whole limb and not just its end. On first inspection, it

would seem that searching for the parameters of such a field would be more difficult

that with a torque field of equal dimensionality, as the geometry of a linked limb limits

the space of joint forces to be a subset of the set of all possible external forces. For

example, when applying an external force to the elbow, any force component parallel

to the upper arm will have no effect. Much of the force field space will be “redundant”,

complicating automated searches for particular trajectories. However, from a motion

design perspective, Cartesian force fields are considerably more intuitive to visualize,

potentially making them amenable to manual design. Visual design tools for vector

fields are increasingly visible in the computer graphics literature [42, 44], possibly

enabling such an approach. Cartesian force fields have the added advantage of being

able to simply counter external influences such as gravity, or accelerations of the

limb’s root.

4.5.3 Datasets

Spinalized frogs

Perhaps the most attractive motion dataset to which to apply this work is that of

frogs, specifically the limb motion of spinalized frogs having their spinal modules

stimulated. Comparing the torque field generated from analyzing such a frog’s motion

with the actual recorded torque field that caused the motion would be an invaluable

quality feedback loop.

Non-inertial frames

One class of motions that this work leaves untouched is that of limb motions with

acceleration at the root. Successfully dealing with non-inertial frames is crucial if

torque field motor control is to generate limb motion for animated characters.
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4.5.4 Applications

Motion filtering

Mussa-Ivaldi used a set of predetermined torque fields to generate planar reaches along

straight lines. The resulting motions demonstrated the same curves and inflections

characteristic of “straight” reaches as performed by humans and primates. In the

context of computer animation, this could be described as a motion filter that takes a

crudely specified motion (a straight line) and performs it in a more natural manner,

with Newtonian dynamics preserved. In three dimensions, the curse of dimensionality

may prevent us from applying a similar approach with uniformly spaced torque fields

in joint angle space. However, a set of torque fields trained on a particular class

of motions (for example, straight reaches,) may be primed to reconstruct crudely

specified motions of that class. In such an application, the path-based cost function

mentioned in section 4.5.1 may be particularly applicable.

Motion transfer

Torque fields represent the local stiffness resulting from co-contracting a particular

set of muscles, thereby encoding muscle group strength profiles in summary form.

If a set of torque fields trained on the motions of one person encodes enough of his

or her characteristic joint strengths, motions filtered through those torque fields (see

“motion filtering” above) may exhibit body language recognizable as belonging to that

individual. If the input motion is captured from another individual, this instance of

motion filtering may be termed motion transfer.
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Appendix A

Calculating the torques of an

animation

Given a series of frames ν[i] represented as axis-angle vectors, (see equation 3.1), we

would like to use inverse dynamics to calculate the torques needed to cause such a

motion. For this we need continuously evaluable expressions for the angular acceler-

ation at each joint. The obvious way to do this would be to use cubic interpolation

between the frames ν[i] to make a continuous, twice-differentiable path ν(t), then

use ν̇(t) and ν̈(t) to analytically evaluate angular acceleration. However, the map-

ping from derivatives of angle-axis vectors to angular acceleration is undefined when

ν(t) = 0, as shown below:

q =
[

cos (θ/2), sin (θ/2) ν̂
]

q̇ =
[
− θ̇

2
sin (θ/2), θ̇

2
cos (θ/2) ν̂ + sin (θ/2) ˙̂ν

]
θ =

√
ν · ν

θ̇ =
ν · ν̇√
ν · ν

(undefined when ν · ν = 0)

Alternatively, we could calculate the angular acceleration numerically from ν(t),

but inverse dynamics techniques require the desired trajectory to be specified by its

accelerations, and these accelerations must be very precise to produce the original
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motion when twice-integrated. Such precision requirements typically rule out numer-

ical evaluation of the angular acceleration. Instead, we start by converting the vectors

ν[i] into quaternions q[i]. These quaternions can be spherically interpolated with C1

continuity using a Hermite spline modified with the following changes:

Vector operations replaced with Quaternion operations

va + vb qbqa

va − vb qbq̃a

q̃ denotes the conjugate of unit quaternion q. For details on spherical cubic in-

terpolation of quaternions, see [10], [25]. For an introduction to Hermite splines,

see [26]1.

The Hermite spline formulation makes it easy to evaluate its first and second

derivatives q̇(t), and q̈(t) (again, see [26]). Using these, the angular velocity and

angular accelerations can be calculated as follows:

ω = 2q̇q̃ (A.1)

ω̇ = 2(q̇ ˙̃q + q̈q̃) (A.2)

Inverse dynamics can then be applied to ω̇(t) to yield the joint torques.

1Note that the original Hermite spline paper [26] contains errors regarding the accommodation
of irregularly placed keypoints. See [10] for details.
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Appendix B

Torque field parameters of

animations in section 4.1.1

B.1 Symbol key:

See equation 3.7 to see these in context:

a Step field weight

b Pulse field weight

K Stiffness matrix

I Identity matrix

η Neutral configuration

λ Pulse step duration
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B.2 Parameters of torque fields in figure 4-1

B.2.1 Parameters of left image (Original parameters)

a = 3

b = 0

K = I

η =


[
−π/2 0 0

]T
−π/2[
−π/4 0 0

]T


λ = 3

B.2.2 Noised parameters 1

These are the above parameters, multiplied by random numbers from 1 to 2.6

a = 5.94996

b = 0

K = 1.76955I

η =


[
−2.08069 0 0

]T
−3.0946[
−0.997603 0 0

]T


λ = 5.15485

B.2.3 De-noised parameters 1 (center image)

These are the above parameters, after being optimized to generate torques close to

those of the original motion.
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a = 1.16717

b = 2.32159

K = 1.03443I

η =


[
−1.5743 −1.55804× 10−7 −1.55804× 10−7

]T
−1.57132[
−0.706938 −1.55998× 10−7 7.82389× 10−8

]T


λ = 5.15485

B.2.4 Noised parameters 2

These are the original parameters of section B.2.1, multiplied by random numbers

between 1 and 3.

a = 10.5898

b = 0

K = 3.54581I

η =


[
−3.1249 0 0

]T
−2.65996[
−1.52254 0 0

]T


λ = 4.60259

B.2.5 De-noised parameters 2 (right image)

These are the above parameters, after optimization.
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a = 10.3837

b = 0.00109853

K = 6.42748I

η =


[
−3.13611 −6.44742e− 010 −6.44742e− 010

]T
−3.13018[
−3.14159 0 0

]T


λ = 4.60259

B.3 Parameters of torque fields in figure 4-2

B.3.1 Original Parameters (left image)

a = 2

b = 0

K = 3I

η =


[
−π/2 0 0

]T
0[

0 0 0
]T


λ = 3
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B.3.2 Noised parameters 1

a = 2.27977

b = 0

K = 3.53835I

η =


[
−1.98382 0 0

]T
0[

0 0 0
]T


λ = 3.02218

B.3.3 De-noised parameters 1 (center image)

a = 2.0007

b = 0.0169349

K = 2.99971I

η =


[
−1.57071 7.34373× 10−10 7.34437× 10−10

]T
−3.00353× 10−5[

3.74867× 10−6 −9.73763× 10−9 4.12577× 10−8

]T


λ = 3.02218
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B.3.4 Noised parameters 2

a = 3.56097

b = 0

K = 5.30907I

η =


[
−2.22229 0 0

]T
0[

0 0 0
]T


λ = 3.97692

B.3.5 De-noised parameters 2 (right image)

a = 0

b = 0

K = 3.13435I

η =


[

3.14159 2.68594× 10−9 2.68594× 10−9

]T
−3.14159[

0.673388 0.673388× 10−9 0.673388× 10−9

]T


λ = 3.97692
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B.4 Parameters of torque fields in figure 4-3

B.4.1 Original Parameters (left image)

a = 2

b = 0

K = 2I

η =


[

0 −π/2 0
]T

−pi/2[
−pi/4 0 0

]T


λ = 3

B.4.2 Noised parameters 1

a = 4.68243

b = 0

K = 3.17164I

η =


[

0 4.0218 0
]T

−4.76139[
−1.71223 0 0

]T


λ = 9.46756
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B.4.3 De-noised parameters 1 (center image)

a = 0.465545

b = 4.2936

K = 1.97861I

η =


[

0.00274648 1.57128 8.53986e− 005
]T

−1.57145[
−0.707378 0.000205817 −0.00100284

]T


λ = 9.46756

B.4.4 Noised parameters 2

a = 9.02322

b = 0

K = 7.43094I

η =


[

0 2.71553 0
]T

−4.48069[
−2.60628 0 0

]T


λ = 13.1937
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B.4.5 De-noised parameters 2 (right image)

a = 5.97473

b = 0

K = 4.73324I

η =


[

0 3.14159 0
]T

−2.845[
−3.14159 0 0

]T


λ = 11.0543
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