
Observation-based Expectation
Generation and Response for

Behavior-based Artificial Creatures

by

Christopher John Kline

B.S., Computer Science
College of Engineering

Cornell University, Ithaca, NY
May 1997

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE IN MEDIA ARTS AND SCIENCES

at the
Massachusetts Institute of Technology

September 1999
c© Massachusetts Institute of Technology, 1999

All Rights Reserved

Signature of Author
Program in Media Arts and Sciences

August 6, 1999

Certified by
Bruce M. Blumberg

Asahi Broadcasting Corporation Assistant Professor of Media Arts and Sciences
MIT Media Laboratory

Thesis Supervisor

Accepted by
Stephen A. Benton

Chairperson, Departmental Committee on Graduate Students
Program in Media Arts and Sciences

MIT Media Laboratory



Observation-based Expectation Generation and Response for

Behavior-based Artificial Creatures

by

Christopher John Kline

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on August 6, 1999
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MEDIA ARTS AND SCIENCES

Abstract

This thesis seeks to address the incorporation of a low-level cognitive ability into reactive,
behavior-based artificial intelligence architectures. Specifically, it addresses the need to
generate short-term, observation-based expectations about the world and react appropri-
ately to the violation of those expectations. In it I discuss the motivation for incorporating
expectations into a reactive behavior-based architecture, outline the qualitative properties
of expectations and the conditions under which they may be violated, propose a model
for generating expectations and responding to their violation, detail one implementation of
such a model, and finally propose this work as a starting point from which future work on
higher-order cognition and behavior might begin.

Thesis Supervisor: Bruce M. Blumberg, MIT Media Laboratory
Title: Asahi Broadcasting Corporation Assistant Professor of Media Arts and Sciences

2



Observation-based Expectation Generation and Response for

Behavior-based Artificial Creatures

by

Christopher John Kline

The following people served as readers for this thesis:

Reader:
Aaron F. Bobick

Associate Professor of the College of Computing
Georgia Institute of Technology

Reader:
Marvin L. Minsky

Professor of Electrical Engineering and Computer Science
Toshiba Professor of Media Arts and Sciences Emeritus

Massachusetts Institute of Technology

3



Acknowledgments

My advisor, Bruce Blumberg, provided invaluable advice, encouragement, and friendship

throughout my time at MIT. In return, I taught him one very important lesson: never, ever

disable all of the processors on a multiprocessor machine.

I feel privileged to have had the opportunity to work with such a talented and fun team

for the past two years. For their inspiration, friendship, and hard work I would like to

thank the Synthetic Characters group: Marc Downie, Michal Hlavac, Michael P. Johnson,

Delphine Nain, Kenneth Russell, Dan Stiehl, Bill Tomlinson, Jed Wahl, and Song-Yee Yoon.

Sumit Basu, Yuri Ivanov, Tony Jebara, Andrew Wilson, Chris Wren, and the rest of the

Vismod crew have my gratitude for helping with all things statistical. Andrew Wilson has

my special thanks for sharing his friendship, great advice, and thousands of cups of coffee.

Whitman Richards saw an early version of this work and challenged me to formalize some

of my ideas. This forced me to rewrite nearly everything from scratch, but results are the

better for his suggestions. Aaron Bobick, in addition to being one of the readers for this

thesis, also gave me many helpful suggestions in the early stages of development.

I would also like to acknowledge my parents, Ronald and Carole, and my sister Melinda,

for twenty-five years of constant love and support.

And to all of my friends, past and present—thank you. You know who you are.

4



Contents

1 Introduction 8

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 The problem of perception . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.2 The need for assumptions . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.3 Expectations and the importance of being wrong . . . . . . . . . . . 11

1.2 Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 A Theory of Expectations and Expectation Violations 15

2.1 Assumption model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Properties of assumptions . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Observations, assumptions, and confidence . . . . . . . . . . . . . . 17

2.1.3 Assumptions about the present are not enough . . . . . . . . . . . . 20

2.2 Expectation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Expectation violations . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 How violations affect behavior . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Violation dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Review of major concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Reference Implementation 31

3.1 The synthetic character architecture . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Expectations of a synthetic character . . . . . . . . . . . . . . . . . . 33

3.1.2 The four components of a value-based framework . . . . . . . . . . . 38

3.1.3 From components to subsystems . . . . . . . . . . . . . . . . . . . . 40

3.2 Integration of expectation generation and response . . . . . . . . . . . . . . 43

3.2.1 The ObjectPersistence module interface . . . . . . . . . . . . . . . 43

5



3.2.2 High-level overview of the algorithm . . . . . . . . . . . . . . . . . . 46

3.2.3 Creating new expectations . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.4 Updating existing expectations . . . . . . . . . . . . . . . . . . . . . 48

3.2.5 Expression of expectation violations . . . . . . . . . . . . . . . . . . 54

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Future Work 59

4.1 Immediate issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Problems with the theory . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.2 Problems with the implementation . . . . . . . . . . . . . . . . . . . 60

4.2 Areas for further exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Expectations and inductive reasoning . . . . . . . . . . . . . . . . . 61

4.2.2 Use in reinforcement learning . . . . . . . . . . . . . . . . . . . . . . 63

5 Conclusion 65

6



List of Figures

2-1 The sensory grounding function . . . . . . . . . . . . . . . . . . . . . . . . . 20

3-1 Two of the characters in Swamped! . . . . . . . . . . . . . . . . . . . . . . . 33

3-2 Three of the characters in (void *) . . . . . . . . . . . . . . . . . . . . . . 34

3-3 An accumulator-based motivational drive . . . . . . . . . . . . . . . . . . . 41

3-4 An accumulator configured as an emotion . . . . . . . . . . . . . . . . . . . 42

3-5 Pseudo-code for persistent object creation . . . . . . . . . . . . . . . . . . . 48

3-6 The test environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3-7 Annotated example of the implementation in action . . . . . . . . . . . . . 58

7



Chapter 1

Introduction

This thesis seeks to address the addition of a low-level cognitive ability into an architecture

for building reactive, behavior-based artificial creatures. Specifically, it addresses the need

to generate short-term, observation-based expectations about the world and react appro-

priately to the violation of those expectations.

This work has been informed by the study of ethology, cognitive science, and other

fields, as well as a great deal of introspection into my own behavior and that of the animals

I observe on an everyday basis. As such, I would be quite pleased if its major concepts are

or have been born out by rigorous cognitive or ethological studies. However, I would like to

stress that the ideas proposed herein are not an attempt at a cognitive theory of expectations

in humans or other real animals. Rather, they are attempt at providing a foundation for

constructing synthetic creatures whose behavior seems reasonable, explicable, and believable

in the eyes of human observers.

In the following sections of this chapter I will motivate this work by explaining how it re-

lates to problems extant in behavior-based architectures and then introduce the expectation-

based approach with which I have addressed these problems. In subsequent chapters I will

propose a model for the generating expectations and responding appropriately to their vi-

olation, detail one implementation of such a model, and finally discuss some ways in which

this work might serve as a starting point from which future work on higher-order cognition

and behavior might begin.
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1.1 Motivation

Humans expect a certain degree of sophistication in the behavior of real animals, and

therefore if our goal is to build an artificial animal whose behavior seems plausible and life-

like in the eyes of human observers, that animal should be capable of such sophistication.

To date, behavior-based artificial intelligence research has approached this problem by

focusing on the issues of adequacy, relevance, and coherence [Bro91a]. Adequacy ensures

that a creature’s behavioral repertoire is sufficient for achieving the creature’s goals. Given

that adequate behaviors exist, relevance involves achieving the appropriate balance between

the competing influences of internal motivations and external stimuli such that the creature

chooses the most appropriate behavior. Often more than one behavior is appropriate at any

given time, so the creature must not only choose the correct action at the correct time, but

also take care that behaviors exhibit the right amount of persistence and do not interfere

with each other or hinder progress towards the goal by alternating too rapidly; this is known

as coherence.

Though behavior-based AI has yielded impressive results in action-selection simulations

and utilitarian robotics, attempts at building creatures that are meant to seem like real

animals—three-dimensional, embodied creatures exhibiting complex, coherent and relevant

behavior in “real-time” over extended periods—reveal that these issues are far from having

been resolved. The root of these unresolved problems, as detailed in the following sections,

lies in attempting to use reactive behavior-based architectures to build these creatures

without giving them even the most basic type of action-oriented reasoning that real animals

use to compensate for the limitations of perception.

1.1.1 The problem of perception

From the standpoint of behaviorists, animal behavior does not require cognition at all;

instead, complex behavior is treated as a property emerging from the activity of many simple

behaviors whose control structure is tightly coupled to a dynamic external environment.

In some cases this makes sense. As Agre and Chapman point out [AC87], much of

everyday behavior is spent in generic “routines”: notice an obstacle, step around it; hear

a sound, turn to look; taste something bad, spit it out. See, react, repeat. In these cases,

because the behavior is so directly and reflexively coupled to the stimulus, the world is often
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“its own best model” [Bro91b] and reasoning is not necessary, efficient, or even desirable.

But if you are simply reacting to what you observe, what happens when you cannot

make an observation? Noises are fleeting, odors blow away in the breeze, and objects in the

world are constantly moving in and out of occlusion. Perception is noisy, and any creature

with a plausible model of perception must continually make decisions based on incomplete

information about its current situation.

To illustrate why realistic perception is a problem for behavior-based AI, imagine a

behavior-based creature in the form of a hungry cat that is chasing an agile mouse. As

the mouse dodges left and right, the cat will continually adjust its motion (“see, react,

repeat”) to move in the direction of the prey. But the instant the mouse jumps behind a

wall, the cat will stop the chase and begin the next most appropriate activity, such as sitting

down to rest. Why would the cat engage in such unnatural behavior when the mouse was

“obviously” only a short distance away? Because our feline friend has no understanding

of its environment beyond the moment-to-moment stimuli it receives from its senses—from

the cat’s point of view, the mouse no longer exists! A similar thing would happen if the

mouse ran in and out of the cat’s field of view, causing the cat to spasmodically jump up

and sit down over and over again as if it were in the throws of a neurological malfunction.

This problem inevitably crops up in stateless reactive behavior-based systems because

they have no way of coping with the fleeting nature of real-world perception. Every moment

is startlingly new because they have no concept of the past or the future. Because they

do not have the capability for even the simplest forms of action-oriented reasoning, they

cannot achieve the robustness and complexity of real organisms.

1.1.2 The need for assumptions

As we have just seen, the world can only be its own model when it is directly perceivable,

and this presents a serious impediment to building robust creatures. Take a moment to

contemplate your own everyday behavior. When you wake up in the morning, how do you

find the bathroom? While driving, how do you avoid hitting the cars around even though

you can only catch fleeting glimpses of their movement? When you chase someone who runs

behind a wall, how do you know to catch him when he comes out the other side?

The answer is that we work from assumptions, extrapolating from observations made

in the past to arrive at a “best guess” of the present and future. You assume that the
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bathroom in your house is down the hallway on the left because you have no reason to

assume otherwise; that is where it was every time you had ever seen it. The cars were

moving parallel to you when you last saw them, so you assume that they kept traveling in

the same general direction. The same holds for chasing someone behind a wall.

This kind of basic “common sense” reasoning is incredibly important because all but

the simplest of intelligent organisms base the vast majority of their daily routines upon

observations that either happened in the past or have yet to occur. Any creature that

needs to function in a dynamic world with limited perception must make assumptions in

order to achieve behavior that is adequate, relevant, and coherent.

1.1.3 Expectations and the importance of being wrong

An important thing to note is that, from the standpoint of building artificial animals, the

limitations of perception should not be looked upon as a curse or flaw. These limitations are

part of what makes animals behave in an “animal-like” way. An omniscient creature would

not behave like a real animal at all, because real animals are not omniscient. The right

approach is to strive for an understanding of how real animals cope with these limitations,

and then integrate these coping mechanisms into our architectures. One way in which we

will know that we have succeeded is that our synthetic animals will make the same mistakes

as real ones.

But before discussing mistakes I need to talk a bit about how expectations fit into

the picture. Expectations differ slightly from assumptions, and I differentiate them by

saying that expectations are assumptions about the future state of the world. So why

are expectations important? One reason is that real animals spend a lot of time dealing

with the future. When deciding among several adequate behaviors in which to engage, the

most relevant behavior is often the one that has the highest chance of being successful or

being maximally efficient. For example, when crossing the street, I could either wait for all

the cars to pass, or I could begin walking immediately under the assumption that, if my

expectations prove correct, I will finish crossing before the cars are anywhere near me.

As essential as expectations are to making decisions, it is equally if not more important

for life-like behavior that a creature respond in a believable manner when those expectations

are not met; cognitive scientists call these failure conditions expectation violations. If, while

crossing the street, a car suddenly appears closer to me than I had anticipated, I should be
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surprised. If a cat chases a mouse behind a wall but the mouse is nowhere to be seen when

the cat goes behind to take a look, the cat will be confused.

The expression of an expectation violation is one of the important clues humans use to

gain insight into what humans and other animals are thinking, and we have come to expect

characteristic responses to common types of violations such as confusion, surprise, and

disbelief. In fact, because humans project their own cognitive processes onto the animals

they observe, if a synthetic animal does not respond in the expected way to a typical

violation scenario then the illusion of life is ruined. That in itself is an important reason

to incorporate violations into any model of reasoning. But expectation violations do more

than change the message animals convey to observers—they also have an important effect

on a creature’s behavior. The more our expectations fail to match the eventual reality and

the greater the discrepancy between the two (i.e., the less predictable something becomes),

the less we trust in our assumptions, changing our behavioral choices.

So now let us get back to the point I skipped over earlier. Both classical and behavior-

based AI have spent years learning how to build systems that know how to “do the right

thing” based on their internal motivations and the state of the world around them. His-

torically, classical AI systems have been criticized for being competent in narrow and well-

defined domains but somewhat confounded by quickly-changing environments. On the other

hand, behavior-based AI has had success at creating systems which are good at adjusting to

unpredictable environmental changes, but these systems seem “short-sighted” when pursu-

ing goals and experience coherency problems due to perceptual restrictions. These problems

are well known, and there have been attempts to build architectures which incorporate the

best of both worlds [Fir87, Mae90].

With respect to building believable, life-like creatures with which humans can empathize,

past work in both fields of AI has failed to identify the single most important reason for incor-

porating an expectation mechanism: without expectations, animals cannot make mistakes .

So why in the world would we want to try building a creature that makes mistakes if we

can’t even build one that can “do the right thing”? Because much of what makes animals

“animals-like” are the mistakes they make.

Think of a puppy . . . part of what makes playing with a puppy so compelling is that the

puppy is capable of being confused, misled, surprised, and teased. Why else would humans

spend hours watching a dog sprint after a ball that they had only pretended to throw?
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Why else would deception play such a major role in the behavior of real animals unless real

animals were gullible?

In this respect expectations are the key because they provide a legitimate grounding

(or perhaps “excuse”) for the behavior of the creature. One of the reasons why artificial

intelligences built to date seem so inept and unnatural is because the “mistakes” they make

are the kind of errors that no real animal would ever make1. That is, animals do not make

arbitrary mistakes—real animals only do the “wrong” thing, speaking objectively, when it

is done for the “right” reason2. These true mistakes are the result of choosing a course of

action based upon a set of incorrect assumptions about the present or future condition of

those parts of the world which cannot presently be directly perceived.

1.2 Proposed solution

I hope that I have made a strong case for the necessity of expectations and expectation

violations when building life-like synthetic animals. Now, so to speak, I need to sell you on

the product.

I propose that the first step, overcoming the limitations of perception, can be achieved

by giving the characters the ability to use assumptions to fill in gaps in observational data,

thereby reducing the behavioral discontinuities characteristic of existing behavior-based AI

architectures. This means endowing them with an understanding of object persistence—

the notion that objects in the world are separate entities that continue to exist when not

directly perceivable—which developmental psychologist Jean Piaget has theorized to be

the foundation of intelligence [Pia52, Pia54]. The various components implicitly necessary

for object persistence will be discussed, such as temporally-based assumptions, assumption

confidences, and sensory grounding of observations.

However, object persistence in itself is meaningless without a concept of expectations—

after all, what does it mean to “understand that a hidden object still exists” without the

expectation that the object will still be there when the occluder is removed? Therefore,

1For this reason I believe that a reverse Turing test—trying to appear more machine-like to a human
than an actual machine—would be as difficult for a human to pass as the original test has been for machines.

2This is not to say that animals use the same reasoning processes as humans. In fact, real animals
often lack certain reasoning abilities that most humans would consider trivial. Krushinskii’s [Kru62] well-
documented (though relatively unknown) experiments on expectations (which he, being a behaviorist, called
“extrapolation reflexes”) in pigeons, ducks, fowls, crows, and rabbits show a remarkable and often amusing
variation in the level of reasoning sophistication in each species.
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as a second step, I propose a mechanism by which the aforementioned components form

the foundation of a notion of expectations and the conditions under which they may be

violated, and discuss how these violations lead to changes in the behavior of the associated

creature. These expectations in effect bootstrap the creature with some of the reasoning

abilities3 associated with the traditional Piagetian developmental stages, and allow it to

overcome many of the problems identified discussed in this chapter4.

I also hope to show that the addition of expectations is not wholly at odds with the

behavior-based approach. Essentially, my approach allows behavior-based creatures to re-

act to two separate but causally-related worlds—the perceived state of the world and the

assumed state of the world.

Some might call this “imagination”.

3I am referring to the ability of a creature to reason about the autonomous behavior of objects, as
opposed to reasoning about the effects of its actions upon those objects. For a very thorough attempt at
computationally reverse-engineering all aspects of Piagetian development, and an excellent discussion of
Piagetian theory in general, I point the reader to the work of Gary Drescher [Dre91].

4At first glance it may seem that I am attempting to add some form of classical AI “capital-P” Planning
capability to a reactive system, but this is not the case. My approach to expectations and the use of pre- and
post-conditions in Planning differs as follows: Planning involves using assumptions about how the state of
the world will change as a result of the creature’s actions upon it, whereas my expectations are predictions
of the future state of the world without any intervention by the creature. The approaches also differ in the
way expectations are generated (top-down versus bottom-up); this will be discussed in Section 4.

My expectations avoid the “frame problem” [MH69]—understanding what aspects of a situation will not
change as a result of a particular action or event—because they do not attempt to predict how the actions
of the creature will affect the future, nor do they attempt to account for the implications of one expectation
upon another. Though this might cause seizures in more than one AI researcher, the idea is “give me just
enough reasoning so that I can act intelligently when I have incomplete information, and if anything more
complex comes up my reactive behavior will handle it.”
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Chapter 2

A Theory of Expectations and

Expectation Violations

The chapter seeks to answer the question “what are expectations and expectation violations”

in an intuitive yet somewhat more formal manner than that of Chapter 1. The intent is

to provide the reader with a description of the qualitative behavior of expectations that is

adequate enough to begin construction of such a system.

2.1 Assumption model

For the purposes of this work, an assumption is defined as a triple

A = < S(O), c, t >

defining the state S of an object O at some time t, hypothesized with confidence c. The

confidence is a continuous value in the range [0, 1]. When discussing time I will designated

the present as t = tnow.

A state is a collection of n features

S = { f0, f1, . . . , fn−2, fn−1 }

where a feature is some observable property of an object. Each feature fi may in itself be

a state; in this way object states can be hierarchically organized. For example, my current

15



state might consist of three features: my name, my position, and my clothing, the last of

which consists of two features—my shirt and my pants—which are further defined by their

color and cleanliness.

2.1.1 Properties of assumptions

The purpose of these assumptions is to enable creatures to function properly in the absence

of complete information. As such, it is advantageous from the standpoints of plausibility

and design that assumptions exhibit two fundamental properties:

1. transparency: an assumption should be indistinguishable, in terms of structure

and method of manipulation, to an equivalent real-world observation made by the

creature’s sensory apparatus

The principle behind transparency is that reasoning with assumptions should utilize

the same processes as reasoning from observations. In this sense I am presuming that real

animals have not evolved completely separate mechanisms for reasoning with assumptions;

while objectively the animal may have some notion that these assumptions are not “real”,

in the majority of instances this should not make a difference. Additionally, this symmetry

makes it easy for creature designers to understand the role of assumptions and how they

might be incorporated into an expectation architecture.

2. saliency: an assumption should have the capacity to elicit an appropriate behavioral

response; in the absence of any disparaging information about the likelihood of a

particular assumption (i.e., c = 1), the assumption should be capable of eliciting the

same behavior response as the equivalent physical percept

Whereas transparency ensures that assumptions are capable of being processed by the

same machinery as observations, saliency insures that assumptions and observations are

evaluated in the same “common currency” when making behavioral decisions. For example,

if I assume that there is a particularly tempting piece of food under the box in front of me,

yet my thesis is due in two hours, the decision of whether to eat or to write should be as

difficult as if the food were plainly visible.
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2.1.2 Observations, assumptions, and confidence

Perception is only an approximation of reality—our eyes are capable of detecting only

discrete differences in a very small band of all incoming radiation, the spatial resolution of

touch is limited by the distribution of exteroceptors, sensing in general is temporally limited

to the response time of individual neurons, etc. When one “sees a slug”, for example, what

has actually occurred is that a noisy measurement was made of the state of an object

which, given the value of its features, fit the concept of a slug. That measurement was

made at a specific time and the observer now has some confidence in the accuracy of that

measurement. So in some sense reasoning is based completely upon assumptions.

In my model an assumption is created immediately upon the first observation of an

object; its timestamp is set to the time of observation, its features are initialized to the value

of the corresponding measurements, and the assumption is assigned an initial confidence1.

This confidence is the primary means by which the saliency of an assumption is determined.

For example, when t = tnow and c = 1 the creature has complete faith that the assumption

is an accurate reflection of the current state of the corresponding object. Sometimes an

observation is less trustworthy, such when one catches a brief glimpse of a housefly. In this

case the confidence would be lower and the distinction between assumptions and reality is

more explicit; rather than saying “it was a fly” one might say “I had the impression that

it was a fly” or “I assume that it was a fly”.

In this system there are three fundamental ways in which the confidence in an assumption

varies over time according to the availability and nature of subsequent measurements:

1. Temporal variability. Confidence should rise over time so long as there are new

measurements available; similarly, it should decline while there are no measurements

to reinforce the assumption.

A good illustration of temporal variability is the sighting of a ghost. The initial

sighting of the ghost generates the assumption that there is a spooky translucent

spectre floating in front of you; though skeptical at first, your confidence grows the

longer you examine it. Were it to disappear, however, the strength of your conviction

would rapidly decline.

1The initial confidence is influenced by a variety of factors, some of which might include top-down “hints”
derived from on past experience, the current emotional state of the creature, the creature’s focus of attention
at the time of the observation, etc.
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2. Temporally normalized decay. Suppose your only observations of the ghost’s state

occur when you see it float past a doorway. Furthermore, suppose the duration during

which observations can be made is very brief (0.5 seconds) and the time between them

quite long (60 minutes). In this scenario your confidence should decay quickly between

each observation. However, if the ghost moved past the doorway slowly and often,

so that observations were long (10 seconds) with little delay in between, then your

confidence should remain high throughout the encounter because it would decay slowly

between observations.

Temporally normalized decay means that the rate at which a confidence decays is

related to the ratio of the combined observation time to the total amount of time that

the observed object is presumed to have existed.

More formally,

dc

dt
∼




∫ tf

t0
f(t) dt

tf − t0
− 1


 (2.1)

f(t) =
∑
ti

δ(t − ti)

where t0 is the time of the initial observation, tf is the time of the final observation,

δ(t) is the impulse function, and each ti is a time for which a measurement was

available.

3. Grounding errors. Imagine that the ghost floats through the doorway and is hidden

from your sight. On one hand, you cannot see the ghost anymore, so you should be

less confident that it is actually in the next room. On the other hand, the fact that

you cannot make additional observations is perfectly reasonable since you cannot see

through walls. But your confidence should certainly take a rapid plunge if the ghost

disappears before your eyes, because “things just don’t disappear”.

This requires a notion of sensory grounding, which answers the question “given my

understanding of the way the world works and my assumption of the object’s state,

does it ‘make sense’ that I can (or cannot) currently make a measurement of the

object’s state?” Another way of looking at this is to say that “unless something

18



inexplicable has happened, either I can make a measurement of the object’s state or

I know why I cannot make such a measurement”.

The basis for this grounding is a combination of one or more sensory/cognitive systems

such as vision or touch. Though it may be augmented by later experience (and I will

discuss this in Section 2.2.2), what I am referring to here is the kind of extremely

low-level “common sense” understanding about one’s self and the world that is either

innate or acquired during the very early stages of development.

You can think of sensory grounding as a function of two boolean inputs, the first of

which states whether or not a measurement can be made while the second indicates if

that measurement should be able to be made. The function returns a boolean result

indicating either acceptance or rejection of the perceived state of the world, as shown

in Figure 2-1. The two accept cases indicate normal situations such as when your

car is in front of you and you are able to determine its color (accept-2), or when

your car is parked around the corner and you cannot see it (accept-1). The reject

cases occur when something inexplicable has happened, such as if your car suddenly

disappeared without a trace while you were staring at it (reject-1), or if there was

a giant pink elephant2 in your bathtub one morning (reject-2). These reject cases

are called grounding errors.

The fact that confidence decays rapidly in the face of grounding errors is something

I like to call the “mirage effect”. A traveler spots what appears to be an oasis while

wandering aimlessly through the scorching desert. Over the course of an hour he

wanders towards it, watching the camels bend their heads to drink from a pool of

water and anticipating the shade of the palm trees. Given the continuous visual

contact over a long period of time, the traveler has every reason to believe that this

vision is in fact a reality. But as he reaches down to draw water from the pool, the

touch of his hand upon dry earth instantly discredits the oasis and his confidence

2 It should be noted that the theory presented in this document do not yet properly handle the reject-2
condition wherein a measurement can be made of something for which measurement should be impossible. It
is capable of detecting the simple case of when you can see something which, given your assumption, should
not be visible. However, the pink elephant situation described above requires a higher level of reasoning,
implying that the observer can quickly determine that a given percept is either 1) possible or 2) impossible in
the current context, both of which are problems of equally mind-boggling complexity. Regardless, successful
organisms seemingly make use of the latter test, which Minsky [Min86] refers to as negative knowledge, on
an everyday basis.
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Figure 2-1: The sensory grounding function

rapidly disappears.

2.1.3 Assumptions about the present are not enough

In the previous section I identified the core properties of assumptions, transparency and

saliency, and discussed the basic principles behind changes in assumption confidence; I hope

that those properties and principles now seem intuitively obvious to the reader. Unfortu-

nately, though building assumptions may help a creature deal with gaps in perceptual data,

the theory described so far is inadequate for building artificial creatures with the level of

robust and life-like behavior that real animals possess.

First, the astute reader may have noticed that I have avoided any mention of how an

assumption’s state, S(O), changes with each new observation. S(O) is an approximation

of the actual state of object O, and in theory the accuracy of this approximation should

improve with each new measurement and degrade with each missing one. Using the housefly

example of Section 2.1.2, the first observation of the fly might allow only a poor estimate to

be made of its position, but each successive observation should improve that estimate. In

practice the integration of new observations might be implemented in any number of ways,

some examples of which will be discussed in Chapter 3.

Second, in order to build creatures capable of having reactions such as surprise and

confusion, they must fundamentally have some way of knowing when their assumptions

do not agree with reality. This can be done in three ways: 1) by making an assumption

about the present and then evaluating it at some point in the future (“hindsight”); 2) by
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comparing an assumption about the present with an observation of the present (“direct

observation”); 3) by making an assumption about some point in time in the future and

then evaluating that assumption through observation when the time arrives (“prediction”).

In a reactive system hindsight is not useful because reactive creatures never reflect upon the

past. The second approach is invalidated on the grounds that, if direct observation were

possible, the creature would not need to use an assumption. This leaves prediction as only

usable means for evaluating the accuracy of assumptions in a reactive system.

Third, not only must a creature be able to compare an assumption with reality, it

must also know whether or not the difference between them “makes sense”. In this regard

basic assumptions are inadequate because they incorporate only a static model of obser-

vational plausibility (through sensory grounding). The ghost of Section 2.1.2 provides a

good example—the sighting of a ghost is plausible if the assumed position of the ghost is

non-occluded; in the event that the ghost is not visible at the assumed position, the lack

of an observation is plausible only when the position is occluded. In other words, either

you should be able to see the ghost or you should not, and those conditions are fixed. But

when you spend a lot of time around ghosts you begin to learn that they have a habit of

disappearing in front of your eyes. Given this new knowledge, why would you be surprised

if it happened again?

How do you decide whether to believe your senses or to ignore your senses and trust

your assumption? Strangely enough, the answer often lies in the assumption itself! For

example, if a desk were to disappear before your eyes you would be quite surprised3, not

only because your senses are telling you that this is implausible, but also because in all your

experience you have never seen a desk do that. But, assuming that you eventually came

to accept this strange behavior of desks, you will be less prone to surprise the next time

it happens. In this way past history is important as sensory grounding for assessing the

plausibility of observations4.

What lies at the bottom of these problems is an understanding of the relationship

between the past, present, and future. In the next section I overcome this limitation by

3It is interesting to note that being surprised when something disappears requires a different path of
reasoning than being surprised when something appears unexpectedly, because in the latter case there is no
prior assumption and the creature must have had an awareness of what was not part of the greater context
just prior to the appearance.

4Many thanks to my advisor, Bruce Blumberg, for pointing this out.
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introducing a special kind of assumption that I call an expectation.

2.2 Expectation model

At the syntactic level an expectation is not much different from a basic assumption: an

expectation E is defined as an assumption with the restriction that t = tnow + δ for δ > 0,

meaning that it is an assumption about the future state of an object O. But what it implies

is that the creature is not only approximating S(O) from noisy sensor data, but also making

a prediction of that state at some time in the future. For behavior-based architectures this

means that the creature is no longer reacting to the present; it is instead living in the near

future.

In a dynamic environment this policy of staying “one step ahead” of the world around

you makes a great deal of sense. The smaller the value of δ the closer the prediction is to

the current actual state of the object, and the accuracy of the expectation improves with an

increase in the rate of expectation updates. Therefore in the best case the prediction is 1)

not very different from the present, and 2) pretty close to the future. In terms of behavior,

this gives the creature the ability react appropriately while still being able to to anticipate

reasonable changes in the environment.

More importantly, because the creature is generating beliefs about the future, it now

has some metric by which to identify when something unexpected has happened.

2.2.1 Expectation violations

The reaction to an unusual observation is known as an expectation violation (EV). For

future clarity, I will define an unexpected observation as one which is potential cause for an

expectation violation.

From the standpoint of building believable artificial animals, violations are important

because they let the observer know that the animal is intelligent—a reaction to something

unusual shows that the animal has an certain level of awareness about the kind of behavior

that is to be expected from objects in the world5. From the purposes of facilitating robust

behavior, EVs are a good indication that the current level of confidence in (and thus the

5Cognitive psychologists use these reactions as indicators of expectation violations, thereby being able to
test animals for particular classes of expectations.
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salience of) an assumption is unwarranted and should be changed.

An unexpected observation can occur in two situations, the first of which is when an

observation causes a grounding error. An example of this would be watching a ball roll

behind one end of a wall but failing to observe it roll out the other side. The second occurs

when the difference between the expected value of a feature and the measured value is

highly unlikely, like if your supervisor walked into work naked one morning.

In the latter case there are two implicit prerequisites. First is the classic correspondence

problem of how to associate a prior observation with a new one. Intuitively, this boils down

to a way in which the creature can answer questions like “is this red ball the same red ball I

saw before?” One way to deal with this is to essentially ignore the problem and assume that

it is handled at a very low level by the underlying architecture; for example, by comparing

object pointers in a software implementation or relying on a hardware primitive to provide

a unique identifier for each object. A more psychologically-plausible approach would be to

perform a rough comparison between the features in the expected and observed states. A

significant difference between the two, or a grounding error resulting from the assumption

that the observation corresponds to the expectation, would provide a strong indication that

the observed object is not the one corresponding to the expectation.

Second, there needs to be some definition of what it means for the discrepancy between

the prediction and the observation to be “unlikely”. In practice this could be implemented

in a myriad of different ways; if feature values were modeled probabilistically a good measure

might be how many standard deviations out the observation was from the predicted mean

(“how did that object get all the way over there?”). For boolean features any change at all

might be cause for violation (“well, he used to have a head, but now it’s gone!”). Another

approach would be to look for discontinuities as the value of the feature changes. It is my

suspicion that in real animals this is implemented in a very messy, efficient, feature- and

task-specific manner.

Chapter 3 talks about how these two requirements are handled in my implementation;

for now, let us assume that they exist and are somehow available to the underlying imple-

mentation (be it biological or algorithmic).

Assuming that the creature has experienced an unexpected observation, the first thing

to do is determine whether or not that observation warrants a violation and, if so, what

type of violation has occurred. In this work I have concentrated on three types of violations:
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confusion, surprise, and disbelief.

Confusion

Confusion occurs whenever an observation is unexpected and the creature is at least min-

imally confident in the expectation. It is the most frequently encountered expectation

violation because the conditions under which it occurs are the same as those commonly

found in the initial stages of learning; i.e., little experience and inconsistent success.

One scenario for confusion would be a creature observing an object whose rapid motion

it has so far been unable to predict in a reliable fashion. Another would be the previous

example of seeing a ball roll behind a wall but not observing it roll out the other side.

Surprise

If an observation is physically available, surprise requires a medium level of confidence in

the expectation. In effect, the creature is saying “I am fairly confident that I understand

the behavior of the observed object; therefore what it just did is either unnatural or the

result of some ability that was previously unknown to me.”

However, if the observation is implausibly missing the creature must have a high level

of confidence before surprise will occur. The reason for the high confidence requirement is

because confusion is more appropriate under conditions of low confidence. Intuitively, it is

the difference between “I guess I didn’t understand that object as well as I thought” and

“something weird has occurred, because that object should have been visible.”

Disbelief

Disbelief occurs whenever there is an extremely high level of confidence associated with an

unexpected violation. In this case the creature is so confident in its model of the object

that it is unable to accept the observation (either the measured value or the lack of a

measurement) as being based in reality. Discovering five billion dollars in your normally

subsistence-level bank account is a perfect candidate for a disbelief violation, as is walking

to work and finding that your office building has vanished without a trace.

Disbelief is somewhat unique in how it influences the way that the model underlying

the expectation is updated; this is discussed in Section 2.2.3.
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2.2.2 How violations affect behavior

We mentioned earlier that expectation violations affect the behavior of a creature in two

ways: first by influencing the confidence in an expectation, and second by potentially trig-

gering behaviors indicative of the violations. In the following two sections I elaborate on

each of these in turn.

Violations and salience

Imagine that you are building an artificial dog that lives in an artificial house, and that you

have built into your dog a desire to eat on a regular basis. Perhaps there are several bowls

of food distributed around the house, all of which the dog has come into contact with with

varying frequency in the past. So . . . when your dog wakes up famished from an afternoon

nap, where should he look for food? The kitchen is very close, but it has been almost a day

since he last visited that area, so there is a fair chance that the bowl there may be empty.

On the other hand, your dog saw an open bag of dog food near the back door earlier this

morning; unfortunately, reaching the back door requires descending two flights of stairs.

This illustrates how expectations influence the behavioral decision-making process. Whereas

before the only factors in the “common currency” of behavior-based AI were internal mo-

tivations and sensory stimuli, creatures are now able to balance long-term goals and short-

term opportunistic behavior through a form of cost-benefit analysis based on expectation

confidence6.

As your dog wanders around the house he is constantly updating the confidence in his

expectation of whether or not each bowl contains food. As he observes each bowl the

confidence in the corresponding expectation rises; in between observations his confidence

decays because he cannot be sure how the bowl’s state has changed. This is the principle of

temporal variability discussed in Section 2.1.2. Until now, however, the rate at which the

confidence changes has not been discussed.

When deciding on a policy for determining an appropriate rate of change in confidence

there several factors to consider. First, when observations are unavailable or have cause vi-

olations, the confidence should decrease at rate commensurate with the probability that the

expectation will eventually be borne out. The confidence in a passing observation is likely

6An obvious analog to this is the concept of a “discounting factor” commonly used in machine learning
techniques
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to decay much more quickly than something a creature experiences on a continuing basis,

for example, because the latter example has been reinforced by a history of interactions.

Likewise, the confidence’s rate of restitution should reflect the creature’s faith that

the model underlying the expectation is a good one. This means that confidence should

recover slowly when the expectation has been undependable in the past—the “once bitten,

twice shy” principle—and it should also bounce back quickly after a temporary setback in

otherwise good track record.

What we really need is a notion of reliability, meaning an estimate of how good the

underlying expectation model is at predicting the future state of the object. Given a

reliability 0 ≤ r ≤ 1 and a confidence c:

ct = ct−1 + k ∗ r ∗ dt (2.2)

where

k =




−α no violation; measurement available,

−β no violation; measurement unavailable,

+γ violation; measurement available,

+η violation; measurement unavailable

(2.3)

α, β, γ, and η are scaling factors controlling the relative conservatism of the creature under

various conditions.

It is important to note that a decrease in reliability is not justified simply because an

expectation is not met. If I expect my mother to be wearing a blue blouse when I come home

to visit, but instead she is wearing a red blouse, is the underlying expectation model less

reliable? Probably not, because the likelihood of the observation was within some epsilon

of acceptability. But if she were wearing an African dashiki or something equally out of

character, then perhaps I should adjust my model.

One way to accommodate this is the notion of an expectation-based reliability metric:

re =
(T − V )

T
(2.4)
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where T and V are the total number of times the expectation for this object has been

updated and the number of updates for which a violation occurred, respectively7. Note

that T includes the updates in which a measurement could not be made.

The expectation-based reliability concept is useful because it achieves the objectives of

a confidence policy while “punishing” expectation-observation mismatches very selectively.

Another way of looking at it is that re does not decrease with every mismatch, but rather

only decreases in it situations for which the creature considers the expectation to have

failed.

Violations and plausibility

Section 2.1.2 described the principle of grounded plausibility, by which a creature’s senses

determine the plausibility of an observation and thereby influence the confidence of an

assumption. Later, in Section 2.1.3, we learn how basic observational plausibility can be

overridden by past experience. So how does one reconcile both of these properties when

dealing with expectations?

A simple example will help illustrate the solution. Imagine you are standing outside

in an empty field at dusk watching a tiny glowing light approach you. Intuitively you

recognize this to be a firefly. Ordinarily you might be surprised were its light to turn off

because of a grounding error (you should be able to see the fly, given the assumption that

it was right in front of you, but your eyes would be unable to make a measurement). But

from past experience you have become accustomed to the fact that fireflies blink in and out

of visibility; therefore only a drastic change in state, like seeing the firefly suddenly explode

into a scorching ball of fire, would seem implausible.

The upshot of that story is that when you come to develop expectations about the

behavior of objects in the world, expectations violations supersede sensory grounding as

the primary arbiter of plausibility. This behavior comes about naturally as a result of the

effect that violations have on salience—with each violation comes a corresponding decrease

in reliability, which exerts a negative influence on expectation confidence, resulting in a

lower likelihood of subsequent violations, causing the creature to become habituated to

7Though it approaches the true reliability as T → ∞, re is actually only an approximation of the true
reliability of the model. The difference can be quite significant for small values of T , but the approximation
can be improved through statistical methods.
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unusual observations.

The exception to this rule is when a measurement is not available to confirm an existing

expectation (e.g., your car is around the corner and you cannot see it). In this case no com-

parison can be made between prediction and observation and therefore sensory grounding

is used to determine whether or not it makes sense that a measurement cannot be made

(Section 2.1.2).

Violations and expression

So far we have discussed expectation violations with respect to the creature’s internal rea-

soning and behavior selection processes, but another way by which humans assess the in-

telligence of living organisms is through the ways they stereotypically express expectation

violations8. Obvious examples of these types of behavior include: rubbing of the eyes for

disbelief; expressing surprise by double-takes, raising of the eyebrows, widening of the eyes,

and reflexively backing away from an object; head scratching as a sign of confusion, etc.

Though causally related, a violation expression is distinctly different from underlying

expectation violation events. One way of thinking about this is that a brief moment of

confusion is not enough to make someone act confused; because our expectations are not

perfect, we are used to experiencing transient violations. Take the earlier example of the

ball rolling behind a wall . . . though you might be imagining the path that the ball travels

while is is occluded, it is unlikely that you would act confused if the ball did not appear

in the exact same instant you expected it to. You would probably be willing to wait some

small amount of time until it is clear that the current violation events are indicative of

something more than transient noise.

A reasonable way to estimate the length of this delay would be to assume that the

amount of time a creature is willing to forego the expression of a violation is proportional

to the confidence it has in the expectation. Then one could integrate the value of the

violation event (e.g., 1 if there is a violation, 0 otherwise) over time and only trigger the

expression of the violation when the integrated value has reached some threshold.

However, both the length of this “benefit of the doubt” period and the way a creature

8One such test is the preferential looking time procedure of [Spe85], which takes advantage of the fact
that animals tend to stare longer at objects which have violated expectations. A nice example of this can
be found in Marc Hauser’s work on expectations in nonhuman primates [Hau98].
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eventually expresses a violation are very much up to the designer, providing a convenient

way to create the impression of various personality types such as skittishness, näivité, and

slow-wittedness.

2.2.3 Violation dynamics

Quite often more than one type of violation will be triggered by an unexpected observation.

For example, if you were watching some normally peaceful monkeys at a local zoo when,

without warning, they began going absolutely berserk, you would most likely experience

surprise at the initial transition but then quickly become confused.

These terracing effects are a natural result of the way temporal variability in expectation

confidences are handled, because each new violation lowers the reliability re. Consequently,

when a reduced re is used in Equation 2.3 it has a depressing effect on the overall future rate

of change in the confidence. As the confidence decreases, violations with higher confidence

requirements such as surprise can no longer be sustained. Assuming that the state of

the world does not change (i.e., the source of the violation remains unchanged) a state of

simultaneous disbelief, surprise and confusion would quickly give way to one of combined

surprise and confusion, which in turn would become only confusion and then eventually

nothing. An observer might ascribe this effect to the character “gradually accepting the

reality of the observation”.

Another interesting interaction occurs between disbelief violations and the model un-

derlying the expectation, because when a creature is in a state of disbelief it quite literally

“doesn’t believe what it is seeing”. What this means is that in this situation the creature

ignores the current observation, even if a measurement is available, and updates the model

as if no measurement could be made. The immediate result is to cause the confidence to

begin decaying as described above. Depending upon how the likelihood of an observation

is determined, this may also cause the model to “loosen up” until the observation becomes

more likely. In this situation an observer might say that the character is adjusting its

expectations to account for the observed unpredictability (a form of habituation).
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2.3 Review of major concepts

Before moving on it may be useful to recapitulate the major concepts presented in this

chapter.

First I described the properties of assumptions which allow them to be used as place-

holders for incomplete sensory information. Of particular importance was the discussion of

how the saliency of an assumption is determined by its confidence; the level of confidence is

subject to temporal variability and temporally normalized decay, as well as the occurrence

of any grounding errors.

In order to address the shortcomings of assumptions I introduced the concept of expecta-

tions, in which assumptions are treated as predictions of the future. In order for a creature

to behave realistically, it must react appropriately when its expectations are not met; these

conditions are known as expectation violations and are related to both the confidence in the

expectation and the likelihood of the corresponding observation.

Three such violations are confusion, surprise, and disbelief, and they affect the creature

both internally and externally. Internally, violations change the reliability of an expecta-

tion; this in turn affects the rate of change in the expectation’s confidence. The dynamics

of this relationship can generate complex phenomena, such as stereotypical transitions in

violation types (e.g., surprise degenerating into confusion) and the habituation of creatures

to implausible behavior.

Finally, the external characteristic expression of violations provides a way for humans to

gain insight into the reasoning processes of the creature. It is important that the creature

wait the appropriate amount of time between a violation event and the violation expression

because often times an isolated violation is not indicative of anything other than transient

noise. It is suggested that the length of this waiting period be proportional to confidence

in the associated expectation, though by adjusting the delay a designer could make the

creature appear to possess a distinct personality type.
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Chapter 3

Reference Implementation

The ultimate goal of my research and that of my colleagues is to learn how to build systems

which exhibit intelligence at the level of real animals. The way we have chosen to pursue

this goal is to build three-dimensional, animated, embodied artificial animals, paying careful

attention to how emotion, motivation, movement, and learning work together to create the

appearance of life. We call these creatures synthetic characters.

This chapter is organized into two major sections. The first section describes the

behavior-based AI architecture constructed by the author; this has served as the under-

lying infrastructure for our research to date. The second section details how the theory of

observationally-grounded expectation generation and response described in Chapter 2 was

integrated into that system.

My implementation of expectations is not limited to the architecture in which it was

tested. Therefore, readers who are familiar with reactive behavior-based architectures

should feel free to treat the following architecture description as a reference and skip im-

mediately to Section 3.2.

3.1 The synthetic character architecture

Synthetic characters are an excellent platform for testing theories of intelligence, in part

because humans are intimately familiar with the behavior of real animals—any flaws in our

theory are instantly noticeable by humans because the resulting behavior of the character

appears “wrong”. Another compelling reason for choosing this domain is because we can

draw upon a wealth of insight from traditional animation, a field which has already achieved
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great success in understanding the principles behind the illusion of life.

Ultimately, a synthetic character should be both compelling, in the sense that people

can empathize with it, and understandable, in that its actions can be seen as attempts to

satisfy its desires given its beliefs. In the process of learning to build this kind of character

we have often found ourselves struggling with two fundamental problems. First, what kinds

of properties or qualities have we, as observers, come to expect from a believable character?

Second, given these expectations, what is the “right way” to go about implementing them?

This section presents an overview of the lessons we have learned from our experience to

date. It begins by discussing a theory of how people go about understanding characters and

then identifies some subsystems that we have found to be important for building characters

that are compelling and easy to understand. Next, I will provide an overview of several

approaches to these subsystems and show how, by separating out the semantic differences

of each approach, we can arrive at the basic activity of each. I then describe the simple

value-based framework we have developed for character construction, showing how each

subsystem can be implemented with the four components of our framework.

The concepts presented here have been used to build many successful interactive ex-

periences over the past two years. Our architecture made its debut at SIGGRAPH 98 in

Swamped!, an interactive cartoon experience focusing on autonomous and semi-autonomous

characters (Figure 3-1). In this exhibit the participants used a sympathetic interface

[JWB+99] to influence the behavior of a chicken character with the intent of protecting the

chicken’s eggs from being eaten by a hungry raccoon. The raccoon character was arguably

one of the most complex fully autonomous synthetic characters at the time, comprised of

84 distinct behaviors influenced by 5 separate motivational drives and 6 major emotions. In

addition, the continuously changing emotional state of the raccoon was conveyed through

dynamic multi-dimensional interpolation of its motion and facial expressions.

Our most ambitious project to date premiered at SIGGRAPH 99 as part of (void *)1,

an exhibit in which participants interact with three very different autonomous characters

who are dining in a cafe (Figure 3-2). Inspired by Charlie Chaplin in the film The Gold Rush,

participants were able to compel each of the characters to begin dancing by manipulating

a novel interface consisting of small dinner rolls with forks stuck into them; the experience

centered around the ways in which characters learned from and responded to the actions

1Pronounced “void star”, the complete title is “(void *): a cast of characters”
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of the user and of each other. This exhibit highlighted new work in the areas of emotion-

based learning and motion interpolation, autonomous camera control, and dynamic music

generation.

Figure 3-1: The raccoon and the chicken are two of the creatures in Swamped!

3.1.1 Expectations of a synthetic character

To learn how to build believable characters we can look back upon the rich history of

traditional character animation. When looking at a character brought to life by a great

animator we know exactly what that character is thinking and feeling at every instant

and, while we may not know exactly what it is about to do, we can always call upon our

perception of its desires and beliefs to hazard a guess. Even when our guess is wrong, the

resulting behavior nearly always “makes sense”.

Classics like The Illusion of Life [TJ81] explain the art of creating believable characters,

which is fundamentally the art of revealing a character’s inner

thoughts—its beliefs and desires—through motion, sound, form, color and staging. But

why do these techniques work? The American philosopher Daniel Dennett believes that

they work because, in order to understand and predict the behavior of the animate objects

around them, people apply what he calls the intentional stance [Den87]. The intentional

stance, he argues, involves treating these objects as “‘rational agents” whose actions are
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Figure 3-2: Three characters in the diner environment of (void *)

those they deem most likely to further their ‘desires’ given their ‘beliefs’” [Den98].

Desires are the key to understanding and identifying with a character. When you see

the wolf look “longingly” at Little Red Riding Hood, perhaps licking his lips, you conclude

that the wolf is hungry and wants to eat the heroine. How did you arrive at this conclusion?

By applying the intentional stance, of course! Why else would he be acting hungry unless

he was hungry?

Beliefs are what turn desires into actions, reflecting influences such as perceptual input

(“If I see a stream, then I believe I will find water there”), emotional input (“Because I am

afraid of that person, I will run away from him”), and learning (“The last time I was in this

field I saw a snake, therefore I will avoid the field today”). People understand the actions

of characters by inferring how their beliefs influence the ways they attempt to satisfy their

desires.

How can one apply both the insights of skilled animators and knowledge of the inten-

tional stance to build a synthetic character that people find compelling and understandable?

From the standpoint of engineering, these expectations can be broken down into a short list

of functional subsystems:

• Motivational Drives: For a character to appear properly motivated it must con-

tinue to work towards satisfying its desires while gracefully handling unexpected situ-

ations. For example, a creature that is starving may temporarily ignore its hunger in
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order to flee from an approaching predator. Once the danger has passed, however, the

creature should resume searching for food. By biasing action selection towards behav-

iors that will satisfy the internal needs of the creature, motivational drives provide a

way to achieve goal-oriented behavior.

Several researchers have addressed the problem of motivations in the context of build-

ing creatures. One example is the work of Blumberg [Blu96], who used temporally

cyclic “internal variables” in the design of a virtual dog to bias action selection and

facilitate external direction of synthetic actors. In another domain, Breazeal [Bre98]

has developed a motivational system for regulating interactions between a robot “in-

fant” and its human caretaker, with the goal maintaining an environment suitable for

learning.

Most approaches agree on the general behavior of drives. Most importantly, they are

cyclical and homeostatic—positive or negative deviations over time from the base state

of “satisfaction” represent under- and over-attention, respectively, to a corresponding

desire. These desires can be attended to by the successful execution of attentive be-

haviors like eating, or by changes in external stimuli, such as temperature fluctuations

or interactions with other creatures. When unattended to, drives slowly increase over

time; the effect of attentive actions is to shift the value of the drive back towards its

homeostatic base state.

• Emotions: Emotions bias action selection in much the same way as drives. For

example, a creature that is angry may be more prone to violent behavior than one

who is happy. However, emotions also bias the quality of the character’s motion. If

the creature is sad it should walk sadly; if it is fearful it should reach for objects in

a manner which conveys its fear. In this way emotion helps observers to form an

empathic bond with the creature and makes its behavior appear properly motivated

[TJ81].

There are many approaches in the literature to the modeling of emotions and other

affective phenomena. In so-called “appraisal” theories of emotion the individual is

said to make a cognitive appraisal of their current state relative to a desired state.

For example, Reilly [Rei96] proposes that fear might be modeled as proportional to

“the likelihood of failing to achieve the current goal” multiplied by “the importance of
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not failing”. Others such as LeDoux [LeD96] argue that emotions can act at a level far

below the cognitive, since animals can feel emotions without consciously understand-

ing why. Combining these approaches, Velasquez [Vel98] presents a framework that

models how emotional systems interact with the perceptual, motivational, behavioral,

and motor systems.

The general consensus of these models is that, instead of increasing slowly over time as

do drives, emotions typically exhibit a large impulse response followed by a gradual

decay back down to a base state. By altering the decay term and the gains on

stimuli one can adjust the magnitude and slope of the impulse response, shaping the

characteristic response of the emotion. Adjusting these parameters across the space

of emotions is equivalent to shaping the “temperament” of the creature. Similarly,

by altering the bias term on each emotion predisposes the creature to a particular

emotional state, setting its “mood”. These decay, bias, and stimulus terms represent

the influences of a variety of systems2, which in turn are affected by the current

emotional state.

It is perfectly appropriate to model the influences of multiple emotions upon internal

processes such as action selection, but it is difficult for human observers to visually

perceive more than one emotion at a time. This is why animators tend to emphasize

the most important emotion of a character, avoiding “mixed emotions”. Because we

are designing characters for humans to interact with, it is important for the underlying

emotional model to support some notion of a “dominant” emotion. This dominant

emotion can then be used to parameterize motion and expression, giving the observer

insight into the internal desires and beliefs of the character.

One example of such a parameterization is the animation system of Rose, Cohen,

and Bodenheimer [RCB98], in which motor commands are specified in terms of verbs

(“walk”, “reach-for”) and adverbs (“sadly”, “impatiently”). Through the use of multi-

dimensional interpolation, this system can be used to continuously modify a charac-

ter’s motion in order to represent the changing state of one or more emotions (for

example, making a character move as if it is mostly happy, but slightly impatient and

2E.g., factors include the neurobiological (e.g., hormones), motivational (intense hunger), cognitive (an
impending conference deadline; the perception of a predator), and sensorimotor (posture)
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somewhat tired).

• Perception: Fundamentally, a situated, embodied agent needs a way to “make

sense” of the world in which it is situated. By this I mean two things. First, the crea-

ture needs a method of sensing the world around it; second, it must have a mechanism

for evaluating the salience of incoming sensory information. The combination of a sen-

sory stimulus and its corresponding evaluation mechanism is known as a perceptual

elicitor or what ethologists refer to as a releasing mechanism [Lor73, McF73].

Sensory information can be provided to a synthetic creature many forms, most of

which fall into the three basic categories: real-world physical sensing, synthetic vision,

and direct sensing. Physical devices like the temperature sensors in the motors of the

Cog robot [Bro96] and the infrared sensors on the mobile robots of Mataric [Mat94] are

typical of real-world sensors. Synthetic vision techniques attempt to extract salient

features from a physical scene rendered from the viewpoint of the creature; examples

include the ALIVE system of Maes [MDBP94, MDBP96] and the artificial fish of Tu

and Terzopolous [TT94]. In direct sensing, creatures gain information by directly

interrogating the world or an object within the world include; this is the approach

taken by the boids of Reynolds [Rey87] and many video games.

One of the important contributions of Blumberg, building on ideas from Lorenz

[Lor73], Baerends [Bae76], and McFarland [McF73], is the notion that external percep-

tual influences must be reduced to a form that is compatible with internal influences

such as motivations and emotions. Using a consistent internal “common currency”

is essential for addressing the issue of behavioral relevance—a piece of rotting food

should be as compelling to a starving creature as a delicious-looking slice of cake is

to a creature that has already eaten too much. Given this representational paradigm,

opportunistic behavior is simply a side effect of the relative difference in weighting

between external and internal influences.

• Action Selection: Regardless of the particular implementation, the fundamental

issues for any action selection scheme to address are those of adequacy, relevance,

and coherence [Bro91a]. Adequacy ensures that the behavior selection mechanism

allows the creature to achieve its goals. Relevance, as noted above, involves giving

equal consideration to both the creature’s internal motivations and its external sensory
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stimuli, in order to achieve the correct balance between goal-driven and opportunistic

behavior. Coherency of action means that behaviors exhibit the right amount of

persistence and do not interfere with each other or alternate rapidly without making

progress towards the intended goal (i.e., behavioral aliasing).

In an effort to achieve these goals in noisy and dynamic environments, the last two

decades of agent research have seen a shift away from cognitivist “Planning” ap-

proaches towards models in which behavior is characterized by the dynamics of the

agent-environment interaction. In these environments, nouvelle AI researchers argue,

collections of simple, competing behaviors that are tightly coupled with sensors and

actuators can be more effective than complex planning mechanisms, while exhibiting

many of the same capabilities. Examples of these approaches include the Pengi system

of Agre and Chapman [AC87], the subsumption architecture of Brooks [Bro86], the

spreading activation networks of Maes [Mae90], and the “Society of Mind” theories of

Minsky [Min86].

In an attempt to leverage the advantages of both approaches, some hybrid systems

like that of Firby [Fir87] have used a planner to make high-level behavioral decisions

while using a reactive system for low-level control during behavior execution.

Inspired by ethological theories of behavior, some systems use a hierarchical organiza-

tion to break complicated tasks down into specialized cross-exclusion groups [Min86] in

which mutually-exclusive behaviors compete for dominance, using mutual and lateral

inhibition to control arbitration [Lud76]. These include most notably the Hamsterdam

system of Blumberg [Blu94] and the work of Tyrrell [Tyr93]

3.1.2 The four components of a value-based framework

In the previous section I talked about some of the important building blocks of a character

that acts and emotes in a way that people find understandable and compelling. But how

should one go about implementing these subsystems? In our experience we have found it

useful to try a variety of approaches; this continual improvisation is made easier when the

underlying framework makes it easy to implement and integrate different models.

The traditional approach to building creatures has been to focus on each of these sub-

systems individually. However, if we step back for a moment and consider them as a whole,
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two important regularities become apparent. First, there is a high degree of interdepen-

dence among subsystems—perception, emotions, and drives influence action selection, and

the results of action selection in turn affect the external state of the world and the internal

state of the creature. Second, the function of each can be interpreted as a quantitative

mechanism. For example, the changing value of emotions and drives indicate the state of

internal needs, perceptual elicitors determine the relevance of percepts, and action selection

mechanisms choose the most appropriate behavior from among multiple competing ones.

What this suggests is that there is a great deal of common functionality among these

subsystems. In many cases the functions performed by these subsystems can be seen as sim-

ply different semantics applied to the same small set of underlying processes. Consequently,

instead of struggling to integrate multiple disparate models for each subsystem, it makes

more sense to build them all on top of a framework that provides these shared constructs.

We have constructed this type of framework from four basic underlying components. The

coherency of the framework comes from the fact that the primary internal representation

is the floating-point value. In addition to being an intuitive way to think about emotions,

drives, and sensory input, value-based frameworks have a number of other advantages.

They are relatively easy to implement and fast at run-time, have useful parallels with

reinforcement learning and neural networks, and are easily extendable because external

semantics are kept separate from internal representation.

Granted, not everything is best represented numerically. However, for the purposes of

getting along in the world, the processes which could potentially produce non-numeric rep-

resentations (sensing and cognition, e.g.) can be seem as means to one end—action. And

before any creature takes action it must first decide what action to take, which is a qualita-

tive evaluation. Therefore, for the purposes of action selection, all semantic representations

in the system are first converted to a value.

1. Sensors: In our system, the sensor primitive is an abstract component that operates

on arbitrary input and outputs a set of objects appropriate to the sensor’s functional

criteria. Sensors typically use the external world or the internal state of the character

as input. In addition, they may use the output of a different sensor as input; in this

manner a directed, acyclic data-flow sensing network may be formed. For example,

a VisibleObjectSensor could find all the visible objects in the world (through di-

rect sensing, computational vision, or any arbitrary method), passing its output to a
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DogSensor to filter out everything but dogs.

The output set of a sensor is made up of SensorData objects, each of which contain

an object’s state as described in Section 2.1.

2. Transducers: The transducer primitive operates on a set of input objects to produce

a single floating-point output; transducers are the gateway through which sensor data

enters the computational substrate. The values produced by transducers are often

objective and the result of basic computations, such as the distance to the first sensed

object. However, there is nothing to restrict a transducer from returning a subjective

result from a complex computation—reasoning with predicate calculus about a set of

input obstacles and returning the best heading in which to move, for example. Chains

of sensors and transducers form the perceptual elicitors that allow the creature to react

to internal and external situations.

3. Accumulators: The third primitive in the framework, the accumulator, is the

primary unit of computation. Its inputs and gains are typically the output of trans-

ducers or other accumulators, and by constructing feedback loops it is possible to

create highly connected networks which exhibit useful temporal behavior. The value

Vt of an accumulator at time t for N inputs and gains is:

Vt =
N−1∑
i =0

input t,i · gain t,i (3.1)

where N is arbitrary.

4. Groups: The fourth primitive, the group, is used to organize accumulators into

semantic groups and impose arbitrary behavior upon them. For example, a group

might force the value of its accumulators to be zero except for the accumulator with the

highest value. This abstraction keeps the syntax and configuration of the accumulators

independent of their group semantics.

3.1.3 From components to subsystems

As an illustration I will now show one way in which each subsystem can be constructed

from the components of the framework.

40



• Drives: Motivational drives can be expressed using an accumulator with a feedback

loop whose gain is at least one. Attentive and aggravatory stimulus inputs are given

negative and positive gains, respectively, and one additional input-gain pair represents

the magnitude of the growth term. The setup in Figure 3-3 creates a drive in the style

of Breazeal [Bre98].

Vt-1

growth
term

Vt = sum({input i x gaini})

inputs

1

output

-1 0.1 1

value of attentive
behavior or elicitor

gains

Figure 3-3: An accumulator-based motivational drive

Assuming that each stimulusi is a positive-valued stimulus working to satiate the

drive, this configuration increases in value over time from a homeostatic base state of

zero, according to (3.2).

Vt = V t−1 + growth t −
∑

i

stimulus t,i (3.2)

• Emotions: Emotions can be implemented with a configuration similar to that used

for drives where, instead of acting as a growth term, the input-gain pair biases the

homeostatic base state. By limiting the gain on the feedback loop to the range (0, 1)

we can effect a gradual decay over time in the value of the emotion. This configuration,

show in Figure 3-4, varies in time according to (3.3).

Often it is useful to organize emotions into cross-exclusion groups for the purposes of

identifying the dominant emotion. By adjusting the inhibition between the competing

emotions one can tailor the personality of the creature—making a fearful creature less

prone to happiness, for example.
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Vt-1

bias
term

Vt = sum({input i x gaini})

inputs

gains

5

output

10 1 0.8

value of
perceptual elicitor

Figure 3-4: An accumulator configured as an emotion

Vt = (V t−1 · decay t) + bias t +
∑

i

stimulus t,i (3.3)

• Action Selection: A behavior is simply an accumulator that is semantically asso-

ciated with a particular behavioral routine that it executes while “active”; typically

this involves sending a message (e.g., “walk”) to an underlying motor system. Their

inputs are the outputs of emotions, drives, and perceptual elicitors; whether a behav-

ior is considered active or not is determined by the semantics of its associated group.

For example, autonomic behaviors like breathing and blinking might be contained in a

group whose policy is to activate any behavior with a value above a certain threshold.

To achieve ethologically-inspired action selection policies, mutually exclusive behav-

iors can be organized into groups with cross-exclusion and mutual inhibition semantics

and forced to “compete” on the basis of their output values. Hierarchical action selec-

tion in the style of Blumberg and Tyrrell is easily implementable by associating each

behavior with a reference to another group.

This method of implementing action selection has the advantage of making behavior

design independent of action selection policy, allowing the designer to use the same

behavior in many different contexts. For example, under normal circumstances a

character might execute a swallowing behavior at regular intervals; this same behavior,

however, might be a sub-behavior with an explicit order in the context of eating a

meal. In our framework the same behavior can be used in both situations without

requiring the designer to implement or have a priori knowledge of policy-specific

42



details (e.g., connections to parent behaviors, execution order, etc.). This flexibility

facilitates creating libraries of generic behavioral routines from which a variety of

characters can be constructed.

3.2 Integration of expectation generation and response

In many respects synthetic characters are a perfect vehicle to test a system for expectation

generation and response. In entertainment, for example, the kinds of characters we would

like to interact with are of cartoonish exaggerations of real animals, and much of classic

cartoon humor—Daffy Duck’s double-take of disbelief after running off a cliff; Wile. E.

Coyote’s surprise in discovering that his cigar is actually a stick of dynamite; Elmer Fudd’s

confusion when Bugs Bunny taps him on the shoulder and then disappears—are based upon

expectation violations. In general, any kind of character you might want to tease or trick

needs object persistence and expectations.

To integrate expectations into the synthetic character architecture described above I

have created a new type of sensor which, when inserted into the sensory network, manages

the creation, persistent updating, and eventual elimination of expectations about sensory

information received at some point in time up to the present. In the implementation, and

in the rest of this section, this sensor is called the ObjectPersistence module (OPM), and

the data structure that represents and embodies an expectation is referred to as a persistent

object.

The OPM works by taking in measurements of the state of objects over time and provid-

ing as output predictions of what the state of previously observed objects will be in the very

near future3. In the following sections I will describe this process by which this happens in

more detail.

3.2.1 The ObjectPersistence module interface

The designer of the character specifies the creature’s behavior by linking together the com-

ponents discussed in Section 3.1.2 and modifying their parameters in order to build more

complex higher-level subsystems. Though these connections and parameters can be adjusted

3For any such object for which a prediction can be made with a non-zero confidence. The special case
is when a reject-1 grounding error occurs, because the creature should not react to an expectation that is
disproved by its sensory grounding.

43



from within Java (the programming language in which the architecture is implemented), the

usual manner in which characters are specified is via an ASCII text file whose format de-

scribes the relationship between value containers, or nodes, and the values themselves, called

fields. This format is loosely based upon that of the Virtual Reality Modeling Language

(VRML)4.

Within this file the format of the OPM is:

ObjectPersistence {

VrmlSFNode input

VrmlSFFloat minimumAllowedLikelihood

VrmlSFFloat lowConfidence

VrmlSFFloat mediumConfidence

VrmlSFFloat highConfidence

VrmlSFFloat veryHighConfidence

VrmlSFFloat maxConfidenceDecayRate

VrmlSFFloat minConfidenceDecayRate

VrmlSFFloat maxConfidenceGrowthRate

VrmlSFFloat minConfidenceGrowthRate

VrmlSFNode featureGrounding

VrmlMFString salientFeatures

VrmlMFNode featureUpdateMethods

}

where the VrmlSF prefix denotes a single-valued field and the VrmlMF prefix indicates a

multiple-valued field, which is the equivalent of an array. Thus, a VrmlSFFloat is a field

whose value is a single floating-point number, and a VrmlMFNode field contains an array of

nodes. The OPM is itself a VrmlNode.

Each of these fields represents a parameter by which the designer may control the way

in which expectations are generated and the conditions under which violations will occur.

The nature of each parameter is as follows:

input: The input to this the OPM, which must be a Sensor

4International Standard ISO/IEC 14772-1:1997
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minimumAllowedLikelihood: The minimum allowed likelihood for an observation to be

considered “normal” given the prediction. If the likelihood is less than this value,

then the observation does not match the prediction (i.e., “it’s too weird”).

lowConfidence: The level of confidence (in the model of a feature) that is considered

“low”. The confidence needs to be at least this high in order for the creature to be

confused.

Restriction: 0 < lowConfidence ≤ mediumConfidence

mediumConfidence: The level of confidence (in the model of a feature) that is considered

“medium”. The confidence needs to be at least this high in order for the creature to

be surprised when there IS an observation available.

Restriction: lowConfidence ≤ mediumConfidence ≤ highConfidence

highConfidence: The level of confidence (in the model of a feature) that is considered

“high”. The confidence needs to be at least this high in order for the creature to be

surprised when there is NOT an observation available.

Restriction: mediumConfidence ≤ highConfidence ≤ veryHighConfidence

veryHighConfidence: The level of confidence (in the model of a feature) that is considered

“very high”. The confidence needs to be at least this high in order for the creature

to be ever be in a state of disbelief.

Restriction: highConfidence ≤ veryHighConfidence≤ 1

minConfidenceDecayRate: This is the minimum rate, in units of second−1, which the

creature’s confidence in a feature will decay.

Restriction: 0 < minConfidenceDecayRate< maxConfidenceDecayRate

maxConfidenceDecayRate: This is the maximum rate, in units of second−1, which the

creature’s confidence in a feature will decay.

Restriction: 0 < minConfidenceDecayRate< maxConfidenceDecayRate

minConfidenceGrowthRate: This is the minimum rate, in units of second−1, which the

creature’s confidence in a feature will grow.

Restriction: 0 < minConfidenceGrowthRate< maxConfidenceGrowthRate
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maxConfidenceGrowthRate: This is the maximum rate, in units of second−1, which the

creature’s confidence in a feature will grow.

Restriction: 0 < minConfidenceGrowthRate< maxConfidenceGrowthRate

salientFeatures: The names of all the features in the incoming sensory data for which

expectations should be generated. All other features are ignored and will not be

present in the output.

featureGrounding: The PerceptualGrounding object which implements the sensory ground-

ing function described on page 20; a common grounding, for example, the creature’s

visual sensor.

featureUpdateMethods: The mechanism(s) used to update the value of the salient fea-

tures with measurements from new observations. If these are left unspecified, the

default behavior is to keep the value of each feature the same in the absence of a new

measurement, and to update them from a new measurement by directly copying the

value of the measurement.

3.2.2 High-level overview of the algorithm

Sensory data enters the OPM as an array of state measurements {S(O0) , . . . , S(On−1) },
where each state S(Oi) corresponds to one of the n objects perceived at the current time

t = tnow. This set of observations is then compared the set of pre-existing persistent objects

in order to determine the appropriate way of handling the new state measurement. The

three possible cases and their corresponding actions are as follows:

1. Case: The measurement does not correspond to any existing persistent object.

Action: Create a new persistent object to corresponding to the measurement (Sec-

tion 3.2.3).

2. Case: There exists a persistent object that corresponds to the measurement S(Oi).

Action: Update the persistent object, taking into account the new measurement

(Section 3.2.4).

3. Case: There exists a persistent object for which no new measurement is available.

Action: Update the persistent object, taking into account the fact that a measure-

ment is unavailable (Section 3.2.4).
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After all of the pre-existing persistent objects have been updated and, if appropriate,

new persistent objects have been created, the output of the OPM is an array of persistent

objects {P (Ol), . . . , P (Om) }, where (m− l)+1 is the current number of persistent objects

in the OPM and 0 ≤ l ≤ m ≤ max(∀ t ≤ tnow : nt). Each of these persistent objects

represent an expectation of what the state of object Oi will be in the very near future. To

the rest of the behavior system, these persistent objects appear no different from any other

type of sensory data because their structure and method of manipulation is identical to

that of normal sensory information.

It should be noted the problem of determining correspondence between a new measure-

ment and an existing persistent object is handled by direct pointer comparison. The per-

sistent object data structure retains as a reference a pointer to the real-world object that it

represents. If an object in the incoming sensory data matches the reference pointer in a pre-

existing persistent object, then correspondence has been achieved. This is not as cognitively

plausible as the other mechanism proposed earlier (page 23), but perfect correspondence

does not seem to sacrifice any realism. My guess is that this is because correspondence is

one of the sensory-cognitive abilities (like object persistence and expectations) that are so

fundamental as to be unnoticeable when functioning properly5.

3.2.3 Creating new expectations

Creating a new expectation involves creating a new persistent object. The expectation’s

initial state is created by recursively traversing the measurement and copying the value of

its features. However, the addition of each feature for which predictions are made brings

with it a linear decrease in system performance. Therefore only those features that the

designer has declared as salient (specified by name in the salientFeatures field of the

OPM) or that are necessary for mimicking the structure of the measurement are made part

of the persistent object’s state. A pseudo-code description of this recursive process is shown

in Figure 3-5.

In addition to initializing feature values, this creation phase also assigns each salient fea-

ture the mechanisms by which both the prediction of the feature’s value and the confidence

in that prediction are updated. The feature update method assigned is determined by the

5Of course, one could apply the same argument I made in Section 1.1.3 against me by saying that a
synthetic creature will not behave realistically until it makes the same correspondence errors as real animals.
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value of the featureUpdateMethods field of the OPM, as described earlier; the confidence

policy assigned is an EVBasedConfidence, which will be discussed in the next section. This

information is stored within each persistent object and is invisible to inspection outside the

OPM.

FUNCTION RECURSE_CREATE(observedState, State newPersistentObject) {
FOREACH feature IN observedState {
IF (feature IS_A State) {

// This feature must be copied, both to mimic the
// structure of the observation, and to ensure that
// any salient features within it are copied.
State recursiveCopyOfFeature = NEW State;
RECURSE_CREATE(feature, recursiveCopyOfFeature);
ADD_FEATURE(newPersistentObject, recursiveCopyOfFeature);

}
ELSE IF IS_SALIENT(feature) {

// Copy this feature because it is salient
State copyOfFeature = CLONE(feature);
ADD_FEATURE(newPersistentObject, copyOfFeature);

// Assign the update mechanisms for the feature’s
// value and confidence
ASSIGN_FEATURE_CONFIDENCE(newPersistentObject, copyOfFeature);
ASSIGN_FEATURE_UPDATER(newPersistentObject, copyOfFeature);

}
ELSE {

// Don’t copy this feature, because it is not a
// salient feature or state

}
}

}

Figure 3-5: Pseudo-code for the recursive method used in creating new persistent objects

3.2.4 Updating existing expectations

Each time the OPM is queried for new data by the other modules in the creature’s sensory

chain, all pre-existing persistent objects P (Oi) are updated to reflect either a new state

measurement S(Oi), if available, or the lack of a such a measurement. This process is as

follows (steps 1d through 1g are discussed in more detail later in this section):

1. Beginning with the root, both P (Oi) and S(Oi) are recursively traversed in parallel.

At each level in the persistent object hierarchy the following actions6 are taken in

6Though it has been left out for the sake of clarity, all functions also include time as a variable
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sequence:

(a) For each salient feature f an attempt is made to get the value of the corresponding

feature f ′ in the state measurement. I will indicate that f ′ is not available by

saying that A(f ′) = false; otherwise A(f ′) = true.

(b) The persistent object is queried for the feature value and feature confidence mech-

anisms associated with f . These will be referred to as Uf and Cf , respectively.

(c) The sensory grounding (specified in the featureGrounding field of the OPM)

is queried to determine if it should be possible to obtain the measurement f ′

given the expectations about the state S(Oi) embodied in P (Oi); call this result

V (P (Oi)). For example, if the grounding is visual, V (P (Oi)) = true if and only

if P (Oi) represents an object that should be visible to the creature at the current

time.

(d) Uf is queried to to determine the likelihood Lf ′ of the measurement f ′ given the

expected value f and the grounding information V (P (Oi)).

(e) Uf is used to update the expectation f such that ft+δ = Uf (ft, f ′
t). Because

the current version of our architecture updates in discrete intervals, δ is a small

positive value around on the order of 30 milliseconds.

(f) The OPM determines whether or not any expectation violations EVf have oc-

curred for this feature, taking into account V (P (Oi)), Lf ′
t
, A(f ′), f ′, and the

current confidence in the predicted value of the feature, cf .

(g) Cf is used to update cf such that cft+δ
= Cf (f ′

t). In the special case of the

expectation-based confidence metric described later, the expectation violations

are included as additional arguments to Cf .

2. If {∀f : f ∈ P (Oi) | cf = 0}, meaning that no feature with a non-zero confidence

remains, then P (Oi) is permanently deleted from the OPM.

3. ∀f : f ∈ P (Oi) any violations EVf are registered with the OPM so that they may be

detected within the creature’s behavior system.

After each persistent object has been updated, checks are made to determine if it should

be added to the output of the OPM:
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1. If a state measurement S(Oi) was available, then add P (Oi) to the output7.

2. If the updating of P (Oi) triggered a disbelief violation then P (Oi) is added to the

output8 since the creature should literally “not believe what it sees” and trust its

expectation rather than its senses.

3. If a state measurement S(Oi) was not available, then P (Oi) is only added to the

output if V (P (Oi)) is false. Think of this using the example of the ball rolling behind

the wall: since the ball cannot be seen behind the wall, the creature should only

react to the expectation of the ball’s position while the ball is not supposed to be

visible (i.e., while it is hidden by the wall). To the observer, this looks like the

creature is “guessing” the ball’s location. Unless the creature were in disbelief (as

already described), if the ball were to fail to roll out from the other end of the wall

as expected (in which case V (P (Oi)) would be true but no measurement would be

available, triggering a reject-1 grounding error), the creature should not react to its

expectation. This would result in incorrect behavior, appearing to the observer as if

the creature was too stupid to realize that the ball had not appeared.

As a final step, any expectation violations which occurred in the past but are no longer

valid are removed from the OPM and the creature’s behavior system.

The feature updating mechanism

One of the fundamental requirements of the expectation model is the ability to update an

expectation given new observational data. This is a very difficult and open-ended problem

that I view as being very feature- and task-specific. Therefore in my implementation I have

chosen to give the designer the ability to specify the appropriate mechanism on a per-feature

basis. Each updating mechanism implements a particular function interface which allows

the OPM to pass as input the value of the feature in the expectation, ft, and the current

7This is incorrect behavior in the event of a reject-2 grounding error (i.e., the creature can observe
something which should be impossible to observe given its knowledge of the world or a corresponding
expectation) but, as noted on page 19, my theory does properly handle this situation.

8This implementation is somewhat flawed in that if any feature f ∈ P (Oi) causes a disbelief violation
then the creature effectively adopts a position of disbelief towards P (Oi) in its entirety. This does not make
sense in many cases; e.g., I could be in disbelief regarding the clothes you are wearing, yet still believe what
my senses tell me about your position in space. This problem has not yet been noticeable, however, because
none of the creatures we have built to date are complex enough to care or convey disbelief about details as
subtle as a style of clothing.
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measurement of that feature, f ′
t. The output of the function is the updated expectation of

what the feature’s value will be at some point in the near future, ft+δ.

My implementation currently includes two updating mechanisms. The first is the

DefaultUpdateMethod, which simply sets the value in the expectation to be the same

as the measured value if a measurement is available. This is useful when it is important

that a feature be declared salient so that it becomes part of the expectation state (and

hence is available to the rest of the sensory hierarchy), but the designer does not care about

detecting expectation violations for that feature.

The second mechanism I have implemented is called the KalmanFilterUpdateMethod

and is based on the discrete Kalman filter approach to optimal estimation[Gel74, WB95].

Given noisy and discrete samples of one or more of the variables in the state of a continuously-

varying linear function, the Kalman filter attempts to approximate the true value of the

function. I chose this method, not because I believe animals necessarily use statistical

methods of estimation, but rather because the Kalman filter has the following desirable

qualities:

1. It can estimate the process state while lacking observations of all state variables (e.g.,

estimating position, velocity, and acceleration through observations of position alone)

2. It can be used to “predict ahead” an arbitrary number of time steps

3. Estimation with gracefully degrading accuracy is possible in a temporary absence of

observations

4. It is capable of providing an estimate of its error in the approximation of each state

variable

These qualities are desirable because they mimic qualitatively some of the abilities which

humans and other animals seem to possess.

Determining the likelihood of a measurement

As was discussed in Section 2.2.1, an expectation violation can occur in one of two situations,

the first being when an observation causes a grounding error and the second when the

difference between the predicted value of the feature and the measured value is highly

unlikely. Because the feature updating mechanism is responsible for providing the prediction
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of a feature’s future value, it is also in the best position to answer the question “how

surprising is it that I observed f ′ given that I had expected f?”

In the case of the DefaultUpdateMethod, it is assumed that the designer is not concerned

with (or seeks to actively discourage) expectation violations for the associated feature so,

when asked for the likelihood of a measurement, a value of 1 is always returned. The

KalmanFilterUpdateMethod uses a more sophisticated likelihood measurement. Because

part of the Kalman filter’s internal state is a covariance matrix for the state estimate, we

can compute the likelihood L of a given observation under the corresponding gaussian:

L = P (O |E,M) (3.4)

=
1√

(2π) d |M |
e− 1

2
(O−E)T M−1 (O−E) (3.5)

where O is the state measurement vector, E is a vector containing the predicted (expected)

value of the state, M is the Kalman filter error covariance matrix, and d is the dimensionality

of both E and O.

It was my intent to allow the designer to specify a threshold to which likelihoods would be

compared; observations with likelihoods below the threshold would be considered “unusual”

and might possibly contribute to a violation. Unfortunately, in many cases the gaussian was

very flat, making it difficult to distinguish between “unusual” and “acceptable” observations.

To compensate for this I normalized the likelihood by its maximum possible value, which

occurs when O = E, causing the fractional term in (3.5) to drop out9. This tends to overly

exaggerate small differences in the true likelihood, but since the OPM is only concerned

with the tail ends of the probability distribution this has proven to be a reliable metric.

A better solution would have been to use a threshold based on how many standard

deviations away the measurement was from the prediction.

9The absolute value of the expression in the exponential term is known as the Mahalanobis Distance. Its
advantages over Euclidean distance include automatically accounting for scaling of the coordinate axis and
correcting for correlation between components. Though it can be unreliable in the case where components
are uncorrelated, this is not a problem in my implementation because the components of a feature’s state
are always at least somewhat correlated (i.e., under normal circumstances the x, y, and z coordinates in a
position vector cannot vary truly independently).
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Detecting expectation violations

Given a measurement f ′, its availability A(f ′) and likelihood Lf ′ , the confidence cf in the

expectation and its sensory grounding status V (P (O)), the OPM determines whether or

not the measurement has caused one or more violations in the following manner:

1. If A(f ′) = true and Lf ′ < minimumAllowedLikelihood then

(a) if cf ≥ lowConfidence then a confusion violation has occurred

(b) if cf > mediumConfidence then a surprise violation has occurred

(c) if cf > veryHighConfidence then a disbelief violation has occurred

2. If A(f ′) = false and V (P (O)) = true then

(a) if cf ≥ lowConfidence then a confusion violation has occurred

(b) if cf > highConfidence then a surprise violation has occurred

(c) if cf > veryHighConfidence then a disbelief violation has occurred

otherwise no violation has occurred. Note that more than one type of violation can be

generated simultaneously by the same feature.

Updating the expectation confidences

As stated in the previous section, the confidence mechanisms created by the OPM for each

new feature are instances of EVBasedConfidence. This confidence mechanism implements

the reliability- and expectation-based confidence policy of Section 2.2.2 by using a collapsed

version of Equations 2.3-2.4:

ct = ct−1 + φ ∗ dt

where

φ = max( re ∗ maxGrowthRate, minGrowthRate )

when A(f ′) = true and the measurement did not cause a violation;

φ = −1 ∗ max( (1 − re) ∗ maxDecayRate, minDecayRate )

in all other cases.
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3.2.5 Expression of expectation violations

Here I will discuss some implementation-specific details on how information provided by

the OPM might be used by the designer of a creature.

Violation sources

Every feature in every object has the potential to be the source of one or more expecta-

tion violations. For this reason it is useful for a creature designer to have access to this

information for the purposes of building violation responses tailored to specific situations or

types of situations. For example, the designer might want the creature to do a double-take

in most surprise situations, but respond by rubbing its eyes “whenever the color of Peter’s

shirt is so unexpected that it causes disbelief.”

To account for this, my implementation keeps track of the situation that caused each

violation and makes it available to the designer through a special sensor called

ExpectationViolationSources. This sensor allows the designer to build history queries

comprised of logical conjunctions of criteria such as the types of violations that occurred,

the names of the features associated with those violations, and information specific to the

objects containing those features.

The output of these queries are the expectations corresponding to the objects containing

the violating features. This allows the designer to use violation information throughout the

architecture and orchestrate complex situated responses such as “get the closest object that

is red in color and whose position caused surprise; look at it and back away slowly.”

Salience

Because expectations must exhibit the property of transparency they can be evaluated

using the same mechanisms a creature would use to evaluate raw sensory data. However, as

Section 2.2.2 made clear, expectation confidence is the fundamental variable through which

expectations can have an impact on a creature’s behavior. For example, if there was food

in front of me and at the same time I had an expectation that there was food behind me,

I could base my decision in part on the relative merits of the two food sources. All other

things being equal, however, the decision would ultimately rest on on how confident I was

that the food would actually be there if I turned around.
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To allow the designer access to this information, the OPM includes a feature’s confidence

(in the form of a “hidden” feature) along with it in the expectation state hierarchy. The de-

signer can then extract this confidence and use it to weight the saliency of the corresponding

feature.

Violation events versus violation response

In addition to talking about saliency, Section 2.2.2 also discussed the necessity of having

a “benefit of the doubt” period between the initial onset of an expectation violation and

the characteristic expression of that violation. This is easily achieved in our architecture

by integrating violation events using the same principles from upon which motivational

drives are based, where the input to the integrator is the cardinality of the output of

the ExpectationViolationSources module. The parameters of each “drive to express

confusion, surprise, disbelief” can then be tweaked to create a creature that responds as

desired in a given situation.

3.3 Evaluation

The implementation was tested in a three-dimensional world consisting of a flat square plane

upon which rested a small red cube and three walls (Figure 3-6). The bipedal test creature

directly sensed this world at a rate of 30±10hz through a visual filter which detected objects

within a 60◦ bi-directional field of view. Occluded objects were not visible to the creature

and objects were not allowed to interpenetrate. The creature’s only goal was to to approach

the cube and stop.

The user had absolute control over the position of the cube and was able to move it in

either a continuous (“sliding”) or discrete (“transporting”) fashion. By moving the cube

around the world it was feasible to test the behavior of the creature in various situations

both with and without the benefit of the ObjectPersistence module.

Without the OPM the behavior of the character in response to perceptual discontinuities

was quite unrealistic, exhibiting the problems discussed in Section 1.1. When the cube

moved behind a wall and became occluded, for example, the creature immediately stopped

pursuing it (as if the cube had ceased to exist). When the cube reappeared from behind

the wall the character once again took up pursuit, but displayed no outward indication
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Figure 3-6: The test environment

that anything unusual had occurred. In addition, no reaction was made by the character

in response to non-occluded discontinuous motion.

After the OPM was enabled, the level of realism in the character’s behavior increased

markedly (see Figure 3-7). For example, the character continued to pursue the cube even

after it moved behind a wall. By generating an expectation of the cube’s position—

extrapolated from the cube’s motion prior to occlusion—the creature was able to determine

where it “thought” the cube would re-appear and then take the shortest path to the pre-

dicted appearance point (e.g., the character would immediately head to the other end of

the wall).

These expectations also made it possible to “trick” the creature by stopping the cube

after moving it behind a wall. Because the creature was unable to see the cube stop,

it assumed that the cube would appear on the other side of the wall and was therefore

experienced one or more violations when it did not; these violations exhibited the various

types of dynamic behavior described in Section 2.2.3, such as habituation and terracing.

It was also possible to cause expectation violations without the use of occlusion. Vi-
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olations were generated whenever the cube’s motion was not sufficiently continuous, such

as when the user made the cube instantly jump to a different location, or when the cube’s

acceleration was discontinuous.

The creature expressed non-transient violations through stereotypical animated behav-

iors. For example, disbelief was indicated by the creature rubbing its eyes (“I don’t believe

what I am seeing!”) and then peering forward intently. Surprise was expressed through a

small “startled jump” and confusion was communicated by the creature scratching his head

and looking around.
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Figure 3-7: An annotated example of one test session in which the OPM was enabled. An
’X’ indicates where the likelihood was undefined (discussed in Section 4.1.2)
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Chapter 4

Future Work

In many ways the work that I have presented here is incomplete. Therefore in this section

I would like to touch briefly upon some of the ways in which it might be improved.

4.1 Immediate issues

In addition to problems previously discussed, there are several areas in which my theory

and the current implementation of it stands to be improved.

4.1.1 Problems with the theory

1. Rather than using arbitrary thresholds, it might make more sense to specify the

conditions for confusion, surprise, and disbelief in terms of the ratio of confidence in

the expectation to the likelihood of the measurement. For example, under normal

circumstances it is highly unlikely that any given object will explode; therefore when

an object does explode it is almost always surprising, regardless of confidence. In

contrast, when one is in the middle of a battlefield the likelihood of an object exploding

increases drastically, and therefore a higher confidence is necessary before an exploding

object will be cause for surprise.

2. The likelihood of a measurement only affects confidence to the extent that unlikely

measurements may cause violations and lower the reliability of the expectation. It

might also make sense to weight the scaling factors in Equation 2.3 by some value

proportional to the likelihood, in such a way as to make the confidence grow more
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quickly when observations closely match predictions, and vice-versa.

3. Much of the behind-the-scenes knowledge in the feature updating mechanisms remains

unused. Specifically, in the case of reject-1 grounding errors it would useful to

provide the creature with information about where the object might be found even

though it cannot be seen. In many cases this information may already be present

in the feature updating mechanisms since they are already capable of assessing the

likelihood of a measurement given an expectation.

4. Under the current theory there is no consistent mechanism for handling reject-2

grounding errors. Because of this, a creature cannot be surprised when something for

which it does not already have an expectation appears “out of thin air”, and certainly

cannot handle the “pink elephant” case of page 19. This is one of the more glaring

inadequacies of the existing theory—my creatures would not be surprised were random

objects to inexplicably fall from the sky.

5. The theory cannot account for certain transitions between violation types. If your

chair disappeared out from under you, for example, you might initially be surprised

before entering a state of disbelief. In this case the failure of the theory hinges upon the

assumption that the two violations come from the same source; however, this might

not be the case—perhaps your surprise stems from the collision of your posterior with

the floor while your disbelief is related to the disappearance of the chair.

6. The theory does not handle any of the problems associated with inductive reasoning

(Section 4.2.1).

4.1.2 Problems with the implementation

1. The feature update methods currently implemented do not use negative knowledge

to improve the expectation. To use (yet again) the example of a ball rolling behind

a wall, if the ball does not roll out the other side as expected (a reject-1 grounding

error), the creature should be able to reason that “since the ball is not here where I

predicted it to be, it must be somewhere in between here and the place I last observed

it.”
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2. The feature update methods do not handle discrete-valued features very robustly. The

usefulness of my implementation would benefit greatly from a mechanism that can set

the value of an expectation’s feature to argmaxi P(f ′ |Uf) given the i discrete feature

values previously observed.

3. The algorithm used to detect expectation violations should use standard deviation

rather than likelihood to classify the discrepancy between predictions and measure-

ments.

4. Likelihood of a measurement is not able to be determined in the case of a reject-1

grounding error. This has not been a problem for the current implementation because

it does not use likelihood for detecting violations when A(f ′) = false and V (P (O)) =

true. However, a change in the violation detection algorithm might necessitate this

information.

5. The designer must explicitly tell the creature the features for which is should build

expectations (by specifying them in the salientFeatures field). This could be im-

proved by incorporating a mechanism by which a creature could learn which features

are salient through observation; one example of such a mechanism can be found in

[WB99].

4.2 Areas for further exploration

There are two areas related to this work which I consider to be particularly strong candidates

for further research.

4.2.1 Expectations and inductive reasoning

One of the original goals of this work was to give creatures the ability to generate higher-

order expectations about the behavior of objects in the world. For example, if I built

a synthetic cat and set it to the task of chasing a real mouse, I would like it to begin

by being able to generate the kind of first-order expectations described in the previous

chapters. Building upon that, the cat should then begin to construct chains of first-order

expectations to arrive at second-order expectations; this, for example, would give it the
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ability to predict more complex activity such as the periodic nature of circular movement

or a zig-zag pattern.

The hope is that this bottom-up approach to the construction of higher-order expec-

tations would eventually create a huge knowledgebase of experience from which to exert

top-down influence upon the expectation generation process, allowing the cat to predict

increasingly complex behavioral sequences given a relatively small number of observational

clues. Many non-trivial issues obstruct the path to this goal:

• These additions would require a general mechanism for pattern recognition. But when

does a pattern start and when does it end; by what features is it characterized, and

how does one know when a new pattern is being observed? These are incredibly

difficult problems.

• There must be a way to reconcile the a priori knowledge embodied in the feature

updating mechanisms with the newly acquired information, and that knowledge must

be represented in such a way as to facilitate both bottom-up generation and top-down

influence.

• The creature must be able to generate expectations for an arbitrary amount of time

δ in the future, and therefore needs a heuristic by which to pick the right value of δ

in any given situation (knowing when to zig if expecting a zag, so to speak).

• The importance of context grows in parallel with the influence of experience in guiding

the generation of higher-order expectations. In order to make the right predictions,

the creature must begin taking into account how both its own actions and the state

of the world will affect the behavior of the object for which expectations are being

generated. This would add a tremendous amount of sophistication to our creatures’

reasoning ability, allowing them to perform the kind of speculative internal simulations

that is often associated with human-level intelligence. Of course, intelligence has its

price—the addition of such causality would force the implementor to deal with the

infamous “frame problem”.

This top-down influence upon expectations is vital to intelligent behavior. For exam-

ple, under the expectation model I have proposed, a creature can become conditioned to

something unexpected, like a desk moving of its own accord. However, this conditioning
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never becomes a top-down prior for when a new desk is seen; the creature would be equally

surprised if the new desk moved.

This ability to draw general conclusions from specific examples, known as inductive

reasoning, is one of the great unsolved problems in any comprehensive theory of mind.

Drescher [Dre91] addresses some of these issues at the developmental level, though it is not

clear that his or any other proposed system is capable of scaling with the speed and grace

seen in humans and other animals. I do not claim that I have any definitive solution to

this problem, but I believe that it would be interesting and beneficial to explore the level

of inductive reasoning necessary to create an artificial animal whose behavior is sufficiently

convincing to a human observer.

4.2.2 Use in reinforcement learning

It is possible that expectations and expectation violations might improve reinforcement

learning in the following areas:

1. Hidden state: One of the major problems in reinforcement learning is that an agent

needs to have complete knowledge of the context order to learn which elements of

that context are most relevant to the consequent utility of an action. Often, however,

knowledge of the context is limited by the restrictions of perception (e.g., you cannot

see what is happening behind you); compensating for incomplete perception is known

as the problem of hidden state. The use of expectations could help in this case by

“filling in” the hidden portions of context with assumptions about what their values

might be1.

2. Exploration versus exploitation: Another problem in reinforcement learning is

knowing when to use an action that was successful in the past for a particularly

context (exploitation) versus when to try different actions (exploration) in the hope

that they will be more successful. Expectation violations might help with this in two

ways: first, as an indicator that the creature’s understanding of the world is less than

complete, thereby motivating further exploration of the state space; second, because

1A second aspect of the hidden state problem is that there may be important features in the context that
your sensors are simply incapable of detecting (e.g., human eyes cannot detect radiation in the infra-red
portion of the spectrum). Expectations would be of no help in this case.
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each violation is associated a particular feature, the creature knows what it should

pay more attention to in the future2.

2This attention-focusing mechanism is similar in spirit to the reinforcement learning techniques known
as prioritized sweeping [MA93] and Queue-Dyna [PW93].
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Chapter 5

Conclusion

This thesis has addressed the incorporation of a low-level cognitive ability into reactive,

behavior-based artificial intelligence architectures. Specifically, it discussed the need to

generate short-term, observation-based expectations about the world and react appropri-

ately to the violation of those expectations.

The motivation for incorporating expectations was discussed and a theory of expecta-

tions and expectation violations was proposed. To test that theory it was implemented as a

non-intrusive extension to an existing reactive behavior-based architecture; this implemen-

tation proved successful in replicating many of the phenomena predicted by the theory.

In conclusion, I believe that this model was successful in helping behavior-based crea-

tures compensate for the limitations of perception, thereby facilitating behavior whose ad-

equacy, coherence, and relevance is qualitatively closer to that of real animals.
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