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Abstract 

Inspired by recent work in ethology and animal training, we integrate representations for time and rate into a 
behavior-based architecture for autonomous virtual creatures.  The resulting computational model of affect and 
action selection allows these creatures to discover and refine their understanding of apparent temporal causality 
relationships which may or may not involve self-action.  The fundamental action selection choice that a creature must 
make in order to satisfy its internal needs is whether to explore, react or exploit.  In this architecture, that choice is 
informed by an understanding of apparent temporal causality, the representation for which is integrated into the 
representation for action.  The ability to accommodate changing ideas about causality allows the creature to exist in 
and adapt to a dynamic world.  Not only is such a model suitable for computational systems, but its derivation from 
biological models suggests that it may also be useful for gaining a new perspective on learning in biological systems.  
The implementation of a complete character built using this architecture is able to reproduce a variety of conditioning 
phenomena, as well as learn using a training technique used with live animals.   
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1.0 Introduction 

In order to survive in a dynamic environment, many self-regulating systems – both biological and 
computational – make use of representations that model important aspects of the world.  Two such 
representations fundamental for living systems are the passage of time, and the rate at which they 
experience relevant stimuli.   

Early models of behavioral conditioning, such as the Rescorla-Wagner model, minimized the use of 
representation and speak simply of animals forming and strengthening associations between stimuli.  
While this associative model is successful at rendering explainable certain phenomena, there is a wide 
range of phenomena that it is unable to model without substantial trouble, such as the ability to learn 
an expected latency of reinforcement.  Recent studies by Gallistel and others have considered the 
possibility that models of time and rate are fundamental to conditioning phenomena.  Gallistel and 
Gibbon propose two new models – Scalar Expectancy Theory (SET) and Rate Estimation Theory (RET) – 
that require an animal to represent the length of the interval between stimuli, and the rate of 
reinforcement associated with various stimuli.  Using these models, the authors are able to account for a 
number of conditioning phenomena that can not be explained using the Rescorla-Wagner model 
[Gallistel 1990], and they do so in a clear and elegant way. 

Similarly, much of the early work in behavior-based artificial intelligence minimized the importance of 
representation [Brooks 1991b].  Recent work in the Synthetic Characters group involved incorporating 
time into the representations of a behavior-based system.  The use of temporal representations was a bit 
ad-hoc, in that we used multiple representations spread throughout the system in a way that worked, 
but perhaps was not as elegant as one would wish.  However, the use of time in the representation 
allowed us to model the kind of applied operant conditioning that underlies dog training.  The sorts of 
learning that could occur within the previous framework include d Thorndike’s Law of Effect, wherein 
the relative frequency of behaviors reflects the relative value of their apparent consequences [Thorndike 
1911]; cue learning, in which the system identified contexts in which particular actions are most reliable; 
behavioral sha ping, in which the system learned the best way in which to perform a given action so as 
to improve its chances of desirable consequences; and the relative reliability of actions. 

Our goal was to re -implement much of the learning mechanism in a way that pays a ttention to the sort 
of details that Gallistel attends to in the SET and RET models.  The resulting representations and 
mechanisms needed to operate in real-time with dozens of potential stimuli.  We wished to maintain, 
and hopefully improve upon, the system’s ability to model a dog training paradigm and other sorts of 
learning. 

We have arrived at the representations and mechanisms described in this thesis.  They are not simply a 
recreation of Scalar Expectancy Theory and Rate Estimation Theory.  Instead, they represent a hybrid 
that integrates new components inspired by Gallistel and Gibbon’s work into the Synthetic Characters 
cognitive architecture.  A creature constructed using this new architecture can predict and plan for 
future events by discovering causality relationships in the world.  The creature  is motivated to learn by 
a desire to explain salient stimuli it perceives.  Its representation of apparent temporal causality is 
tightly integrated with its fundamental representation for action selection. 

As we had hoped, the resulting architecture is capable of reproducing a wide variety of conditioning 
phenomena, as well as providing a robust implementation of the clicker training paradigm.  We claim 
the following contributions based on the work presented in this thesis: 

1.1 From a Cognitive Architectures perspective 
• A model for action selection and learning that integrates apparent temporal causality into the 

action selection mechanism of a complete virtual creature. 

• An implementation of that model’s representations and mechanisms . 
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• Extensive visualizers that provide an observer with the ability to monitor the learning process.  

• Two creatures that serve as robust, working examples. 

1.2 From an Animal Behavior perspective 
• The integration of computational models from ethology into a computational architecture 

designed to support non-trivial creatures in complex worlds. 

• Discussion of how the behavior architecture is able to reproduce a variety of conditioning 
phenomena that can be observed in live subjects.  Because it  is derived from biological models , 
there is some suggestion that this architecture may allow us to gain a new perspective on 
learning in biological systems. 

• Discussion of the benefits gained from being inspired by the ethological models, and the 
challenges discovered implementing the computational models described by SET and RET. 

1.3 Thesis Overview  
We begin in Section 2 with an introduction to the sources of inspiration behind this work: the 
philosophy of the Synthetic Characters group, the layered brain architecture upon which we built this 
system, and the ethology described in Time, Rate and Conditioning. 

We then present in Section 3 a description of the new cognitive architecture.  We begin with the notion 
that creatures have internal needs that they seek to satisfy, and show how this motivates their action 
selection decisions .  We then demonstrate the benefits creatures obtain by learning about apparent 
temporal causality while they are on the job.  We conclude with a discussion of how apparent temporal 
causality lets us model changes in a creature’s affective state. 

In Section 4, we present our results from a cognitive architectures point of view.  We describe some 
lessons learned integrating the new representations and operations into the existing architecture, and 
then analyze two characters built using the new architecture.  We use two scenarios – an applied 
operant conditioning technique, and another more whimsical domain in which a creature discovers 
apparent temporal causality in its world – to illustrate the learning process in more depth. 

In Section 5, we discuss the results from an ethological point of view.  We describe the challenges and 
successes we had integrating the SET and RET computational models into a complete cognitive 
architecture .  We include a recreation of Gallistel and Gibbon’s “Different Answers to Basic Questions” 
that contrasts the implemented model with the timing and associative models.  We conclude by 
discussing the architecture’s ability to reproduce a variety of conditioning phenomena that have been 
observed in real animals during experimental protocols.   

In Section 6, we present references to some related work from both the virtual ethology and cognitive 
psychology fields. 

We conclude in Section 7 with some of the important ideas that we uncovered during this research, 
followed by a summary of contributions and avenues for future research.   
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2.0 Background: Sources of Inspiration 

This thesis begins with a discussion of the philosophy that inspires the Synthetic Characters group’s 
attempt to understand the nature of intelligent behavior.  This will lead us into an overview of the 
group’s previous cognitive architecture.   

Our goal is to augment that architecture to include a representation of apparent temporal causality.  If 
we do this, a creature that uses the architecture will be able to use its understanding of past events , its 
perceptions of the present, as well as its predictions of future events, to inform decisions that help it satisfy 
its drives.   

The search for appropriate representations leads us to our ethological inspiration.  Scalar Expectancy 
Theory and Rate Estimation Theory provide a computational model that allows a creature to predict the 
timing of future events, and help decide which stimuli are worth attending to.   

We will thus conclude the Section with our goal: to integrate elements of these ethological models into 
the cognitive architecture to provide the creature with an understanding of apparent temporal 
causality. 

2.1 But first, some Definitions  
Before we begin, we should define several important terms that we will use during this discussion: 
representation, model, mechanism and architecture. 

A representational system has two essential ingredients:  

• The represented world: that which is to be represented, and 

• The representing world: a set of symbols or structures, each standing for something – or 
representing something – in the represented world. 

Represented World

Representing World

 

Figure 1: The represented and representing worlds, after [Norman 1993] Figure 3.1.   

In Figure 1, the “represented world” is shown on the left.  The “representing world” is shown to its 
right as symbols on a sheet of paper.  The representing world is an abstraction and a simplification of 
the represented world.  In this example, the cube  represents the building, and so on.  The other aspects 
of the real (represented) world are absent from the representing world.   

The power of a representation comes from its ability to help us understand the represented world.  The 
choice of representation makes a dramatic difference in the ease of this task, even though, technically, 
the choice does not change the problem.  A good representation allows us to model the important 
aspects of the represented world. 
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The proper choice of representation depends in part upon the mechanism being applied to the problem.  
The mechanism consists of procedures and other operations performed on the knowledge that is kept in 
the representations , and provides the method we will use to solve problems . 

The architecture consists of both the representations and the mechanisms that work with them.  The 
architecture thus encapsulates the complete problem-solving framework that we use to represent and 
reason about t he world. 

2.2 Philosophical Inspiration: Synthetic Characters Group 
The Synthetic Characters group at the MIT Media Lab designs cognitive architectures for autonomous 
and semi-autonomous creatures that inhabit graphical worlds.  By using ethological models to inform 
our design of these intelligent, expressive creatures, we seek to extend the work and philosophy 
formulated by Blumberg in [Blumberg 1996].  Previous extensions of the work have considered 
observation-based expectation generation [Kline 1999], the use of a character-based architecture for 
camera control [Tomlinson 1999], the use of classification techniques within the framework [Ivanov, 
Blumberg et al. 2000],  extensions to characters ’ motor systems with applications to music [Downie 
2001], and the use of quaternion-based animation blending techniques [Johnson 2001]. 

The group has recently sought insight into the nature of intelligent behavior by building characters 
inspired by the capabilities of dogs.  While we still have a long way to go before we implement a perfect 
virtual dog, the trying has been very revealing.  It has afforded us countless insights into the facets of 
intelligence we have yet to emulate, and required us to consider how to organize the many aspects of 
intelligence and behavior into a single cognitive architecture . 

From a behaviorist’s point of view, a focus on a particular species also provides us with a means for 
gauging our success.  A problem with cartoon-like creatures is that they can behave however we want 
them to – there are no rules, and no way to ask “how close did we get?”   At the other extreme, 
attempting to honestly model all aspects of human intelligence would be setting the bar too high (at this 
stage in the game).  Later on in this thesis, we are able to examine how the behavior of one of our 
virtual creatures compares with the behavior of live subjects in a variety of experiments. 

There is a vast amount of literature  available on every conceivable aspect of canine existence  (Fox 
examines social organization in wolves and other canines [Fox 1971]; Wilkes describes dog behavior 
and training for pet owners [Wilkes 1994]; Lindsay provides a thorough summary of dog behavior and 
training in two volumes [Lindsay 2001a], [Lindsay 2001b].)  

Dog training is applied operant conditioning, and a domain in which one sees many of the phenomena 
described in lab experiments, but in the context of a whole “behaving” creature.  One form of training, 
known as “clicker training,” involves the use of a handheld device called the “clicker” that makes a 
short, sharp clicking noise.  This noise serves as a precise event marker for the creature.  When 
repeatedly followed by a treat, the noise of the clicker becomes associated with a food reinforcer.  
Clicker training has been successfully used to train animals ranging from dogs to dolphins (see [Pryor 
1999] and [Wilkes 1995]).  We will describe clicker training in more detail in Section 4.4.3, when we also 
demonstrate how the architecture described by this thesis allows us to perform clicker training on a 
virtual creature. 

2.3 Architectural Inspiration: Synthetic Characters Cognitive Architecture 
The Synthetic Characters group has designed and implemented an agent-based cognitive architecture 
that supports the creation of these virtual creatures.  By agent-based we mean tha t the architecture is 
composed of many fairly simple components , each of which is individually unintelligent, but through 
their interaction they are capable of producing complex cognitive behavior.  Most of the agents (or 
“Systems”) contain their own representations and mechanisms.   
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Action and Attention Selection

Navigation and Motor Control

Sensory System

Perception System

Working Memory Autonomic Variables

external internal

Represent the world

Decide what to do

Figure out how to do it

Salient Stimuli

High-level action requests

 

Figure 2: High-level view of the Synthetic Characters cognitive architecture. 

We divide the systems in a creature’s brain by function into three parts.  As depicted in the Figure 
above, the first part of the cognitive architecture allows the creature to represent the world.  The second 
part, which includes the action selection mechanism and its underlying representations, lets a creature 
decide what to do .  The third part of the brain, which encapsulates navigation and motor control, helps a 
creature figure out how to implement its action plans.   

No part of the architecture exists in isolation.  The arrows in the Figure indicate bi-directional flow 
between its various compone nts .  Not only does our representation of the world help us decide what to 
do, but, in return, the action selection mechanism helps us refine how we represent the world.  
Similarly, not only do our navigation and motor systems carry out the high-level commands of our 
action selection mechanism, but through their operation we can learn things like how long it typically 
takes to perform an action. 

2.3.1 Representing the World 

The creature’s ability to represent the external and internal worlds determines its ability to understand 
the current context.  Many forms of learning are context-specific, in that they involve discovering 
important properties of different contexts .  There are some  contexts  in which the creature should 
perform certain actions, others in which the creature can reliably predict future events, and yet others 
with which the creature associates an affective response.  Thus , it is very important that we design 
representations that allow a creature to effectively determine its current context. 

2.3.1.1 Sensing 
A creature should only be able to act on information that its “sensory apparatus” is able to observe.  The 
Sensory System marks the single entry point for external and proprioceptive sensory information into a 
creature’s brain.  All sensory input from the world is transformed into the creature’s coordinate frame 
and filtered so that the creature can only receive “biologically plausible” sensory input.  Thus, for a 
creature in a virtual world, the sensing mechanism acts as the enforcer of sensory honesty.  

2.3.1.2 Perception 
Once the sensory input has been “sensed,” it can then be “perceived” by the creature’s Perception 
System, which classifies and thus assigns meaning to every nugget of sensory information.  The 
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distinction between sensing and perceiving is importa nt. A creature, for example, may “sense” an 
acoustic event, but it is up to the perception system to recognize it as an instance of a specific type of 
acoustic event that has some meaning to the creature.  When the shepherd says “down!” the sheep 
perceive it as just another human utterance, but the sheepdog interprets it as an acoustic pattern with a 
particular meaning. 

anything

proprioceptive external

utteranceClassifiershape

downUtterance sitUtteranceworldLocation dogShapesheepShapesitPose begPose

locationmotorActualProprioception

...

...

...

...

......

 

Figure 3: Part of a creature’s Percept Tree. 

As illustrated in Figure 3, creatures use a hierarchical arrangement of Percepts, each of which represents 
an atomic classification and data -extraction unit.  Each Percept’s activation level indicates its immediate 
or instantaneous response to sensory input.  The activation threshold for each Percept (typically some 
small e) indicates the activation level above which it is considered active, and the activation decay rate 
indicates the rate at which the Percept’s activation level decays in the absence of sensory input.  In 
addition to these properties re lated to its activation, each Percept is attributed an inherent salience, a 
scalar metric that provides a common currency for salience across all Percepts. 

The Percept provides a useful level of abstraction for reducing the dimensionality of incoming sensory 
information.  An arbitrarily complex mechanism tucked into a Percept can determine whether or not it 
matches a particular sensory input.  The current architecture contains examples of very simple 
matching mechanisms – for example, a string token mechanism for matching shapes in the virtual 
world – and also more complex mechanisms – for example, the acoustic pattern matcher, described in 
Appendix A, which interprets sound input. 

Some Percepts are adaptive, using statistical models to characterize and refine their response 
properties.  These Percepts can not only modulate their “receptive fields” (the space of inputs for which 
they will activate ) but also, in concert with the action selection mechanism, modify the topology of the 
Percept Tree itself , producing an evolving hierarchy of children in a process called perceptual innovation.  
In general, Percepts are only prompted to perform perceptual innovation when the action-selection 
mechanism is fairly confident that this will allow the creature to make better decisions. 

We emphasize here the importance of Percepts  in determining the current context.  Modifying the 
topology of the tree can allow the creature to represent different contexts in the world.  Adding child 
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Percepts that represent increasingly specific perceptual responses lets the creature differentiate between 
increasingly specific features in the world. 

2.3.1.3 Object Representation 
Percepts reduce the dimensionality of incoming sensory information by transforming that information 
into features of the world that are meaningful to a creature.  The creature also needs some sort of 
representation that matches features of differing modalities (visual, acoustic, etc.) by combining and 
identifying them together as an object.  Such a mechanism would allow us to solve (or at least avoid) the 
perceptual binding problem, described by Treisman in [Treisman 1998].   

We call our object representation a Belief.  All of the Percept activity generated by each object in the 
world is stored together as a Belief in Working Memory.  Each Belief, as depicted in Figure 4, consists of 
a history of each Percept’s activation level as it pertains to that object in the world – in other words, it 
contains a history of which features recently appeared in which objects.   

On timesteps in which no new information for a given Percept is observed, the confidence level of that 
Percept in the particular Belief is decayed. The rate of decay is determined in part by the Percept’s 
activation decay rate.  For example, confidence in another creature’s location might decay rapidly 
without observation, but confidence in its shape probably should not. 

location

shepherdShape

sitGesture

sitSound
0

1

Duncan H Terrier's Belief representing the Shepherd

Duncan perceives that the shepherd said "sit" here

time

activation level

 
Figure 4: A Belief contains a history of how an object in the world activated each Percept.  

An object representation allows us to query our memory in useful ways.  Behaviors can be triggered by 
asking questions like, “is there food near me?”  Action-targets can be picked by finding the “red object 
that is making the most noise.”  “Find an object that is humanoid-shaped and go to it” implies that you 
can extract both shape and location information out of a representation of an object.  The Belief in 
Figure 4 is another creature’s representation of the Shepherd.  This creature , Duncan the terrier, believes 
the Shepherd just made the sit gesture, and then made an utterance that sounded like the word “sit.” 

2.3.2 Action Selection, Attention Selection 

The action selection mechanism takes the creature’s representations of the internal and external worlds, 
and uses the information they contain to arrive at a high-level plan that consists of three parts: a desired 
action, a desired target for that action, and the creature’s current focus of attention.   



22 It’s about Time: Temporal Representations for Synthetic Characters  

2.3.3 Locomotion and Interaction 

The creature carries out the high-level requests generated by the action selection mechanism by using 
its capacity for navigation and motor control to locomote around and interact with the world. 

2.3.3.1 Separating Navigation from Action Selection 
A separate Navigation System provides large-scale spatial competencies, usually by overriding motor 
requests passed down by the action selection mechanism to cause locomotion around the environment.  
This relieves the action selection mechanism of the burden of implementing the decisions it makes.  
Ultimately, the majority of animal behaviors follow the “approach, orient and do” model, and a 
separate navigation competence allows the action selection mechanism to concern itself with higher-
leve l atoms. 

2.3.3.2 Generating Expressive Motion 
The Motor System is responsible for performing locomotion, a variety of actions, and orienting the eyes, 
heads, and bodies of creatures.  Throughout all of a creature’s motion, it should remain “in character,” 
using cues from its motivational and affective state.  In The Illusion of Life, Thomas and Johnson explain 
there is no such thing as just a “walk cycle.”  [Thomas, Johnson 1981] There is a happy walk, a sad walk, 
an excited walk, and so on.  This notion – that an animation consists of both a Verb and an Adverb – is 
captured in the work of Rose et al [Rose, Cohen et al. 1999] that inspired our Motor System design.  For 
more information about these and other Motor System issues, the reader is referred to [Rose, Cohen et 
al. 1999], [Downie 2001] and [Johnson 1999].  

2.3.4 Summary 

The Synthetic Characters architecture is very good at simulating virtual creatures that inhabit graphical 
worlds.  The creatures are able to sense and perceive their worlds, and perform actions informed by 
those perceptions that help satisfy their drives (which we will discuss shortly in Section 3.1).  They are 
even able to learn via a training technique based on applied operant conditioning.  For the curious, a 
more detailed discussion of the layered brain architecture and training technique is found in [Isla, 
Burke et al. 2001], and even more implementation detail is found in [Burke, Isla et al. 2001]. 

One thing this architecture does not provide the creatures with is a representation of apparent temporal 
causality.  If it did, creatures would be able to predict the onset of future events  and thus plan for the 
future.  Based on their understanding of apparent causality, they could perform actions explicitly 
intending to change the world in some way.  They could expect an event at some future time , and react 
appropriately if that event does not occur. 

We turn now to ethology, the study of animal behavior, for one model that may allow us to provide our 
creatures with some of this understanding. 

2.4 Ethological Inspiration: Time, Rate and Conditioning 
There are many reasons why we take classical ethology as an inspiration for the design of autonomous 
virtual creatures [Blumberg 1996].  By studying how animals behave and adapt in their natural 
environments, many ethologists  like McFarland, Ludlow and Gallistel adopt the level of abstraction at 
which we would like to synthesize behavior (see [McFarland 1993], [Ludlow 1976], [Gallistel 1990]).  
Like ethologists, we are less concerned with how particular representations might be implemented at 
the level of neurons .  Instead, like Minsky in his influential book Society of Mind [Minsky 1985], we are 
more concerned with how to organize and implement higher-level structures in the brain.  As we saw 
in the previous subsection, we design syste ms and representations at the levels of perception, action 
selection, navigation and motor control.  The interplay of many such simple systems might reproduce 
the wide variety of complex behavior that can be observed in nature . 
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2.4.1 Time, Rate and Conditioning Representations 

Because of the success they had elegantly incorporating knowledge of time and rate into a 
computational model, we found inspiration for our implementation of apparent temporal causality in 
Gallistel and Gibbon’s Time, Rate and Conditioning [Gallistel, Gibbon 2000].  In that article, the authors 
detail two theories that account for a broad range of conditioning phenomena.  These theories depend 
on an animal’s ability to learn temporal intervals between events, as well as rates of reinforcement.  In 
Scalar Expectancy Theory, animals store in memory the reinforcement latency (the time between the 
onset of a stimulus and a subsequent reward signal).  In Rate Estimation Theory, they store the rates of 
reinforcement for stimuli. The authors contrast their paradigms with the existing associative paradigms, 
and present a veritable library of experimental data to support their claims.  What is exciting about the 
model is that by assuming the existence of representations for time and ra te, Gallistel and Gibbon are 
able to easily explain a wide range of disparate conditioning phenomena. 

2.4.1.1 Experimental Paradigm 
One main goal of behaviorism is the identification of basic learning processes that can be described in 
terms of stimuli and responses.  The experimental paradigm that underlies the study of conditioning is 
one in which the subject is presented with various stimuli.  The subject learns associations between the 
stimuli.  These associations often involve responses made by the animal when it perceives a stimulus. 

Neutral stimulus (bell)

Unconditioned stimulus (food)

No response

Unconditioned Response (salivation)

Before Conditioning

Neutral stimulus (bell) Unconditioned stimulus (food) Unconditioned Response (salivation)

During Conditioning

Conditioned Stimulus (bell) Conditioned Response (salivation)

After Conditioning

Figure 5: Classical conditioning procedure. 

Pavlovian or Classical conditioning is an association-forming process by which a stimulus that 
previously did not elicit a response c omes to elicit a response, in reflex-like fashion, after it is paired for 
one or more trials with a stimulus that already elicits a response.  As shown in the above Figure, a 
neutral stimulus is initially demonstrated not to elicit a response.  After it is paired for several trials 
with an unconditioned stimulus (abbreviated US), it becomes a conditioned stimulus (CS) and does elicit a 
conditioned response (CR).  

Neutral stimulus (bell) No response

Before Conditioning

Neutral stimulus (bell) + Unconditioned Response (sitting) Unconditioned Stimulus (food)

During Conditioning

Conditioned Stimulus (bell) Conditioned Response (sit)

After Conditioning

Figure 6: Operant conditioning procedure. 
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Operant or Instrumental conditioning is a process through which the consequences of a response 
increase or decrease the likelihood that the response will occur again.  In one such procedure , the 
subject learns that performing a certain behavior in a context results in a reinforcer such as food.  In 
accordance with Thorndike’s Law of Effect, responses that produce a satisfying effect in a particular 
situation become more likely to occur again in that situation, and responses that produce a 
discomforting effect become less likely to occur again in that situation (see [Thorndike 1911]).   

Most contemporary associative theorists no longer assume that the association-forming processes in 
classical and operant conditioning are fundamentally different.  Rather, they are thought to give rise to 
different associative structures via a single association-forming process. 

2.4.1.2 Scalar Expectancy Theory: the “When” decision 
Scalar Expectancy Theory, or SET, pertains to the onset of the conditioned response (CR) following a 
stimulus onset, revealing both “when” and “for how long” the CR should occur.  It explains how a 
subject’s uncertainty about the “true value” of a remembered length of an interval is proportional to the 
length of that interval.  The results produced by SET correlate with some well-established facts about 
how subjects time the duration between two events : 

• First, the conditioned response (which suggests the expectation of the second event) is 
maximally likely at the reinforcement latency.  When there is a fixed interval between two 
events  – for example, a marking event and the delivery of a reinforcement – the probability 
that a well-trained subject will make a conditioned response increases as the interval between 
events approaches, reaching a maximum at the interval length. 

• Second, the distribution of Conditioned Response onsets and offsets is scalar, and thus the 
temporal distribution of CR initiations and terminations is time scale invariant.  In other words, 
when one signal seems to predict a future event, the approximate size of the window in which 
a subject expects that event to occur increases as the length of the interval between the events 
increases. 

The components of the Scalar Expectancy Theory model include (1) a timing mechanism, (2) a memory 
mechanism, (3) sources of variability or noise in the decision variables, and (4) a comparison 
mechanism adapted to that noise.  At the onset of the conditioned stimulus (CS), the timing mechanism 
generates a signal that is proportional at every moment to the elapsed duration of the subject’s current 
exposure to the CS.  This quantity represents the subject’s measure of the duration of an elapsing 
interval.  The timer is reset to zero by the onset of a reinforcer or other unconditioned stimulus (US) that 
marks the end of the interval.  The magnitude of the timing signal at the time the timer is reset is 
written to reference memory through a multiplicative translation variable k*, whose expected value is 
close to but not identically one.  This effect, known as k* error, causes the recorded interval to deviate 
from the timed value by some generally small percentage.   

When the CS reappears (marking the beginning of a new trial), a new timing mechanism generates a 
signal, the subjective duration of which is compared to the remembered reinforcement delay in 
memory.  The comparison takes the form of a ratio that is called the decision variable .  When this ratio 
exceeds a threshold – ß 1 somewhat less than 1 – the animal responds to the CS, provided it has had 
sufficient experience with the CS to have already decided that it is a reliable predictor of the US.  If the 
expected US does not occur, the conditioned response ceases to occur when the decision ratio exceeds a 
second threshold ß 2 somewhat greater than 1.  In other words, the subject begins to respond when it 
estimates that the currently elapsing interval is close to the remembered interval.  If the US does not 
appear, the subject stops responding when it estimates that the currently elapsing interval is sufficiently 
past the remembered interval.  The ß decision thresholds constitute the criteria for “close” and “past.”  
The measure of closeness is the ratio between the currently elapsing interval, and the remembered 
interval. 

A diagram might help here. 
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Figure 7: Flow diagram for Scalar Expectancy Theory , explaining the timing of an animal’s conditioned response.  
After [Gallistel, Gibbon 2000], Figure 3.   

In Figure 7, we see how Scalar Expectancy The ory handles two trials.  Each trial involves the activation 
of a timing mechanism (left side  of Figure ).  The first trial was reinforced at time T (the circle on the 
timeline), and the second trial is still elapsing at time e.  When the first trial was reinforced, the 
cumulated subjective time , tT, was stored in Timer Memory and transferred to Reference Memory via a 
multiplicative variable k*, thus producing the so-called k* error and encoding the remembered interval 
t*=k*tT.  The subject decides when to respond by using the ratio of the elapsing interval in Timer 
Memory (te) to the remembered interval in reference Memory (t*).  When the ratio exceeds a threshold, 
ß 1, which is close to but generally less than 1, the subject responds.   

To summarize, Scalar Estimation Theory employs two assumptions to explain scale invariance in the 
distribution of conditioned responses: 

• The decision variable used to determine when to respond takes the form of a ratio te/t*, the 
denominator of which, te, is the learned interval length; and the numerator of which, t*, is the 
elapsed time since the conditioned stimulus. 

• Estimates of duration read from memory have scalar variability. 

2.4.1.3 Rate Estimation Theory: the “Whether” decision 
Scalar Estimation Theory assumes that the animal has already determined whether or not a stimulus 
merits a response.  In the Rate Estimation Theory model, this decision is based on an animal’s growing 
certainty that a stimulus has a substantial effect on the rate of reinforcement.  In simple conditioning, this 
appears to be determined “by the subject’s estimate of the maximum possible value of the rate of 
background reinforcement given its experience of the background up to a given point in conditioning.”  
[Gallistel, Gibbon 2000]  Gallistel and Gibbon provide  a computational model for how animals 
determine the true rates of reinforcement for each stimulus and use this to determine whether or not a 
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stimulus merits response.  They demonstrate  how this model accounts for experiments that employ 
fixed and variable rates of reinforcement. 

Conditioning to one stimulus does not proceed independently of conditioning that occurs to other 
stimuli.  Rate Estimation Theory provides an explanation for cue competition phenomena based on two 
principles: rate additivity and the principle of parsimony.   
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Figure 8: Functional structure of the computational process that underlies Rate Estimation Theory.   
                After [Gallistel, Gibbon 2000], Figure 18. 

For each stimulus, the subject stores individual time totals (ti) and pairwise time totals (tij) in the temporal 
coefficient matrix (as shown in Figure 8).  The raw rate vector consists of the rate estimates made by 
ignoring other stimuli and simply dividing the cumulative exposure to each stimulus (ti) by the number 
of reinforcements obtained in the presence of that stimulus (ri). 

The creature arrives at the corrected or true rates of reinforcement (? i) by inverting the temporal coefficient 
matrix and multiplying the inverse by the raw rate vector.  If there are redundant stimuli, the 
determinant of the temporal coefficient matrix will be 0 and thus its inverse undefined.  In this case, 
redundant stimuli are removed from the matrix to create lower-order matrices representing systems of 
equations that ignore one or more stimuli.  The principle of predictor minimization (or more generally, 
the principle of parsimony) determines which of the lower-order solutions is taken as the “correct” 
solution: it is the solution that minimizes the sum of the absolute values of the predicted rates.  Thus the 
creature arrives at the true rate of reinforcement for stimuli.   

Rate additivity is implicit in the structure of the mechanism used by Rate Estimation Theory to compute 
the rates of reinforcement that are credited to each of the experimentally manipulated stimuli.  The 
principle of parsimony – essentially Occam’s razor – is invoked for cases where the principle of rate 
additivity does not determine a unique solution to the rate estimation problem.  Mathematical details of 
the partitioning model are available in the appendices of [Gallistel, Gibbon 2000].   

2.5 Summary of Our Goal 
The Synthetic Characters cognitive architecture is very good at integrating several kinds of learning into 
an autonomous virtual creature that can often maintain the illusion of life.  Scalar Expectancy Theory 
and Rate Estimation Theory succinctly explain the results of a wide variety of conditioning 
experiments.  Perhaps most importantly, they explain how an animal can employ its ability to 
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remember the temporal interval between stimuli to predict a future event, and how an animal can 
decide which stimuli are worth responding to. 

Our goal is to integrate aspects of Gallistel and Gibbon’s computational model into the existing 
architecture .  The resulting hybrid should allow us to build virtual creatures that are capable of learning 
apparent temporal causality relationships.  The system will require a new action selection mechanism 
that allows the creature to take advantage of its understanding of causality.   

The previous cognitive architecture could be said to integrate an analysis of the past with an ability to 
react to the present.  With the new architecture, we seek to include an ability to predict the future.  Thus 
a creature could be informed by salient stimuli perceived in the recent past, reactive to stimuli perceived 
in the present, and able to plan appropriately for the stimuli predicted to appear in the future.   

We seek to preserve many of the qualities that make the existing system good, such as its modular 
nature, its capacity for intuitive behavior design, and its ability to reproduce operant conditioning 
phenomena.  The new augmentations should further our ability to create robust creatures that are able 
to adapt to and learn in a dynamic environment. 
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3.0 Cognitive Architecture 

By itself, a representation for apparent temporal causality won’t improve the life of a virtual creature.  
We need to consider how a creature might use its knowledge of apparent causality to influence its 
action selection and help satisfy its internal needs. 

Thus we begin this Section with the notion that a creature  has needs that it must satisfy.  The goal of the 
action selection mechanism is to explore, exploit and react to the world in a way that lets the creature 
satisfy those needs. 

One thing that will help the creature perform these tasks better is the ability to learn from the past to 
predict the future .  To allow this, we need to give the creature a means for predicting future events , 
which is something it would gain from an ethologically-inspired model of apparent temporal causality.  
We thus introduce the action selection mechanism and the representation of apparent temporal 
causality, and show how the two are integrated.  We conclude the Section by showing how affective 
responses can be generated using our understanding of apparent temporal causality.   

Mathematical details for many of the mechanisms described in this Section are found in Appendix B. 

3.1 Creatures must satisfy Internal Needs 
A creature’s needs are a subset of the internal state that we need to represent.  Our atomic component of 
internal representation is the Autonomic Variable .  Autonomic Variable s each produce a continuous 
scalar-valued quantity.  Most Autonomic Variables have drift points – values that they drift toward in 
the absence of any other input.   

3.1.1 Drives represent Needs 

Some of the creature’s Autonomic Variables represent Drives, like the hunger drive depicted in the 
Figure below.  In addition to its drift point, each Drive also has a set point, the value at which the drive 
is considered satisfied.  The strength of the drive is proportional to the magnitude of the difference 
between the set point and the output value.   

0.4 (scalar output)

hunger
1.0

0.0 (set point) 0.8 (drift point)

0.4  

Figure 9: An Autonomic Variable, the atomic component of internal representation. 

Associated with each Drive is a scalar drive multiplier that allows the creature to compare the 
importance of various drives.  Over the course of a creature’s existence, these multipliers might change, 
so that the creature can favor different drives at different times.  This mechanism can be used to create 
periodic changes in the creature’s drives (for example, to produce a circadian rhythm) and induce 
drive-based developmental growth over a creature’s lifespan. 

Take the output of all the Autonomic Variables that represent Drives, and concatenate their scalar 
output values into a vector, and we have the DriveVector – a summary of the creature’s current drive 
state.  As depicted in the following Figure, each component of the DriveVector indicates the state of a 
particular Drive, and the entire  DriveVector summarizes the creature’s current needs. 
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Figure 10: Three drives, their drive multipliers, and the resulting DriveVector. 

This has ramifications on the way our creatures represent “value” or “goodness.”  Many machine 
learning algorithms use a single -dimensional “utility” value that describes something’s general 
goodness.  But by itself, an “affective tag” like this does not reflect how something’s utility changes as 
the creature’s drives change. 

Instead, our creatures represent the value of something in the world – whether it is an action, a fellow 
creature, or an object – as a “value vector” with the same dimensions as the DriveVector.  That vector 
indicates how the creature believes that thing will affect its drives.  

The utility of something in the world at a given moment can be reduced to a scalar value by taking the 
dot product of the thing’s value vector with the creature’s DriveVector, as shown in Figure 11.  The 
result of this approach, which parallels the motivational model described by Spier in [Spier 1997], is 
that the utility of something in the creature’s world reflects the creature’s current drive state.  Please 
note that the set point for each Drive in this discussion is zero.  Thus, positive drive output values indicate the 
magnitude of the creature’s drive away from a zero set point.  Negative utility values indicate something 
useful to the creature, because that thing has the perceived effect of reducing the creature’s drives. 
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Figure 11: The utility of an action varies with the creature’s current DriveVector.   

The creature described in Figure 11 has three drives: hunger, pain avoidance, and curiosity.  These are 
concatenated into a three-dimensional DriveVector |d1 d2 d3| (left side of Figure).  The creature’s food 
source is a shed in which there are sleeping sheep.  If he rattles the shed, the sheep will scatter and he 
can feast.  However, the shed is surrounded by an electrified fence.  Thus, in order to rattle the shed, the 
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creature will have to sustain a shock, which will hurt a whole lot.  Thus, the value of the “kick the shed” 
action (middle of Figure) might look like [-10 20 -3] relative to his drives [hunger, pain, curiosity], 
meaning that it will reduce his hunger drive (good), increase his pain (bad), and slightly lower his 
curiosity drive (because kicking stuff is intriguing).  If this unnamed creature’s current drives are [5 5 5], 
then the value of kicking the shed is [5 5 5] · [-10 20 -3] or 35, a positive number suggesting that, overall, 
the action will not be such a good thing.  But, in the absence of other food sources, the creature’s drives 
might eventually drift to [10 4 5] for [hunger pain dominate].  Now he’s hungrier and isn’t in quite as 
much pain.  The dot product of [10 4 5] and [-10 20 -3] generates a utility of -35; in other words, an 
effective strategy for satisfying the current drives.  (We note that this example is functionally analogous 
to a more mundane experiment wherein a rat is presented with a lever, surrounded by an electrified 
floor pad, which causes food pellets to be dispensed when pressed.) 

For the purposes of the action selection mechanism that follows, and as seen in this example, a special 
drive called curiosity is added to each of the creatures.  Curiosity tends to drift up over time, and drop 
back down as the creature does interesting things.  As we will see when we discuss action selection, 
treating curiosity as a first-class drive is very effective for producing exploratory behavior. 

3.1.2 Drives are satisfied by performing actions or consuming resources 
There are number of ways that we can model effects on a creature’s drives.  Lorenz and Leyhausen 
posit in [Lorenz, Leyhausen 1973] that creatures find it inherently satisfying to perform particular 
actions and consume resources.  When either of those conditions are met (the creature consumes food, 
comes in contact with an electric shock, enters an action state it finds inherently rewarding, or whatever 
else), the values of the corresponding Autonomic Variables are automatically updated. 

3.1.3 Represent Drives with Various Levels of Abstraction 

It is possible to use Autonomic Variables to model higher- or lower-level abstractions of the creature’s 
internal state .  For example, we could model a low-level representation of “chemicals” that are added to 
a creature’s “bloodstream,” much like the system used to create Cyberlife’s Creatures [Cyberlife 1998].  
Or, Autonomic Variables can model higher-level concepts, such as the desire to dominate other 
creatures, by generating an Autonomic Variable that re presents the result of a function of other 
Autonomic Variables.  A learning mechanism installed here would allow us to emulate the intriguing 
technique employed by the titans in Lionhead’s Black and White, who use a form of perceptron training 
to learn which drives should propel them to pursue which consummatory actions [Evans 2001]. 

3.1.4 Affective Variables represent Emotional State 

Autonomic Variables are also used to model the creature’s emotional state.  We have worked with 
several models of affect that create a multidimensional “affective space.”  Each axis of the space is 
represented by an Autonomic Variable we call an Affective Variable .  Yoon describes the three-axis 
stance -valence -arousal model in [Yoon, Blumberg et al. 2000] that was inspired by Russell [Russell 
1980].  Outputs from these axes can be mapped into less rudimentary affective states, such as the seven 
primary emotional states suggested by Ekman in [Ekman 1982]: surprise, interest, anger, 
disgust/contempt, happiness, sadness and fear. 
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Figure 12: Simple two-axis emotional space , after [Russell 1980]. 

The creatures described in this document use the two-axis emotional space shown in Figure 12 which 
consists of an arousal axis, and an affective stance axis that integrates aspects of Yoon’s stance and 
valence, restoring a two-axis model very similar to that proposed by Russell.  (Russell calls the affective 
stance axis “pleasure” in [Russell 1980].) 

3.2 The fundamental action selection choice: explore, exploit or react. 
Now that we’ve established how creatures represent the needs that they must satisfy, we can discuss 
the action selection mechanism that helps them satisfy those needs.  The fundamental choice a creature 
must make at every moment is whether to exploit its knowledge about the world, explore the world to 
possibly discover new things, or react to recently-observed stimuli.   

The action selection mechanism that will integrate these explore, exploit and react operations should 
exhibit the qualities suggested by Brooks in [Brooks 1991a].  Every action performed by the creature 
should appear (and be) relevant .  It should make sense, given the creature’s internal state, its perceptions 
of its environment, its knowledge of how the world works, and its repertoire of actions.  The creature’s 
behavior should have a high degree of persistence and coherence, in that the creature should be aware of 
the appropriate duration of its actions and see them through to completion, without getting stuck in 
“mindless loops.”  The selection mechanism itself should be capable of learning and adaptation, and 
facilitate learning in other parts of the creature’s brain.   

Our task is complicated by the fact that the action selection mechanism we want is not purely reactive.  
We would like the mechanism to be informed by salient stimuli perceived in the recent past, reactive to 
stimuli perceived in the present, and able to plan appropriately for stimuli predicted to appear in the 
future.   

We need a representation that can integrate the past, present and future, offering a creature an 
understanding of the passage of time. 
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Figure 13: The TimeLine representation integrates past, present and future events. 

This representation is the TimeLine.  The creature uses it to maintain a list of salient events – both those 
perceived in the past and those predicted for the future – arranged on a temporal axis.  The observation 
of a salient stimulus causes a Perception event to be posted to the TimeLine.  In response to Perception 
events, a creature can use its understanding of cause and effect to add Prediction events to the TimeLine .  
A Prediction event includes the stimulus that is predicted, the time window in which the onset is 
predicted to occur, and the Predictor (discussed below) that caused the prediction to appear. 
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Figure 14: How the action selection mechanism integrates the explore, exploit, react and startle operations .  
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3.2.1 Overview 
The previous Figure illustrates how the action selection mechanism integrates the explore, exploit, react 
and startle operations.  On every timestep, we first check if the creature needs to perform a reflex or 
startle  action ((1) in the diagram).  If not, we check if the active action is completed (2).  If so, the creature 
selects a drive on the basis of their relative magnitudes (3).  If the curiosity drive is chosen, the creature 
performs an explore operation.  If any other drive is chosen (or the explore operation fails to select a new 
action), the creature performs an exploit operation, which is guaranteed to select a new desired action.  
Next, the react operation is performed on any newly salient stimuli, potentially causing the focus of 
attention and desired action to change  (4).   

At the end of the timestep, the mechanism has in fact made three selections: it has chosen the desired 
action, the object of attention, and the target object .  The desired action is a high-level token like “sit,” “kick” 
or “approach” that describes what the creature would like to do.  The target object is the object on which 
the desired action should be performed.  The object of attention represents the creature’s focus of 
attention.  Each of these three selections is “winner take all,” in that they are made to the exclusion of all 
other options for this timestep. 

An example should illustrate the difference between the target object and object of attention.  Suppose 
the creature is a dog that is running around a sheep.  Then both his target object and his object of 
attention would be the sheep around which he’s running.  But further suppose his shepherd is shouting 
“Sit! Sit! C’mon boy, sit!" which he is choosing to ignore.  This belligerent canine might acknowledge 
the (increasingly frenetic) vocalization by setting his object of attention to his master, thus causing his 
Motor System to dart a glance over his shoulder in the direction of the shouting.  But because his target 
object remains the sheep, he’ll still run around the sheep (and not start running around the shepherd). 

We now describe the exploit, explore and reaction operations in more detail.  These operations are 
supported by three special action states: approach, avoid, and observe, that represent different reactions a 
creature might have to a stimulus (either perceived or predicted).   

Once again, although we are light on mathematical details in this section, a summary of operations is 
found in Appendix B. 

3.2.2 Exploit 

The exploit operation causes the creature to use its knowledge about the world to select an action it 
believes will help satisfy its drives.  This may mean performing a consummatory action, or performing 
an appetitive action that the creature predicts will move it closer to performing a consummatory action.   

The creature can exploit by using its direct perceptions of the world to choose a new action state with a 
high utility.   

Or, the creature can exploit by reacting to something it predicts is about to happen.  If a painful 
stimulus is almost certainly about to appear, it should be avoided if at all possible.  Similarly, if a 
stimulus about to appear will facilitate a consummatory action, the best course of action might be to 
approach the stimulus in preparation for its arrival.  These represent preventative and preparatory action 
states. 

One useful property of the drive -based utility metric described in Section 3.1 is that it can be reduced to 
a scalar value that represents common value currency for different things in the world.  In this case, we 
can use that currency to compare two kinds of action states: those triggered by perceptions, and 
preventative and preparatory action states that are triggered by predictions. 

The scalar utility values obtained using both methods are used as input for a histogram probability 
distribution, from which the creature selects a single course of action in a winner-takes-all decision.  A 
distribution is used here to heavily favor options with high magnitude values.  The function used to 
map utility values to the histogram provides a useful degree of freedom representing “curiosity” that 
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can be used to tweak the creature’s propensity to exploit the very best option.  The spirit of this 
mechanism is to typically cause the creature to select the very best available option, while still 
occasionally selecting another option that seems very promising but not necessarily the “best.” 

3.2.3 Explore 

There are many ways a creature can explore its world.  It can redirect its attention toward an interesting 
object.  It can explore that interesting object by performing actions on it; perhaps randomly, or perhaps 
by selecting actions that produced useful results for similar objects.  It can select an action state because 
that state is interesting, rather than obviously useful.  It can test predicting mechanisms in which it has 
low confidence , possibly by generalizing and discriminating the trigger contexts that cause them to 
make predictions .  There are sufficiently many exploration techniques that, instead of peppering them 
throughout the action selection mechanism, we formalize our notion of exploration by encapsulating its 
many forms within the explore operation. 

Like the exploit operation, the explore operation should end with the selection of the creature’s next 
desired action state .  However, unlike exploit, which culminates in a single action selection guided by a 
probability distribution, the explore operation requires at least two different selections.  First, Attention 
Selection chooses an interesting target object for the creature.  Next, Drive Selection chooses the drive that 
will guide exploration.  Finally, de pending on the result of these two selections, the creature may 
perform Strategy Selection to choose the exploration strategy it will use to select its next action state.  
Let’s examine each of these Selections in more detail. 

The process begins at Attention Selection with the creature choosing the object it will use as the target for 
exploration.  Objects are selected on the basis of their “level of interest,” an arbitrarily complex metric.  
In the current implementation, a creature’s interest in an object tends to drift upward over time, decline 
when the object is the creature’s focus of attention, and increase when unusual or salient perceptual 
activity is detected within the object.  The creature’s current object of attention is given preference, as 
are objects that are spatially proximate to the creature.  

The creature now performs Drive Selection to decide what it’s going to do with its newly acquired Object 
of Attention.  A drive is selected probabilistically on the basis of its magnitude.  If the drive selected is 
not the curiosity drive, the creature activates the previously-selected action state , setting the new Object 
of Attention to be its Target Object.  As a result, the creature explores an interesting object in the world 
using existing techniques. 

However, if Drive Selection returns the curiosity drive, the creature performs Strategy Selection, invoking 
more complex forms of exploration that possibly involve generating new action states.  A number of 
strategies are possible here, including genera lizing and discriminating the contexts in which the 
creature performs various actions. 

3.2.4 React 

The react operation gives the creature a chance to interrupt its current behavior and react to the 
perception of a salient stimulus. 

The first thing a creature does when it perceives a salient stimulus – for example, a loud noise – is to try 
to explain it, by looking at the TimeLine for a prediction of the event.  The creature’s affective response 
will be largely determined by whether or not this event was predicted, and which action states, good or 
bad, the event will facilitate.   

The creature may choose to interrupt its current behavior in favor of one that provides a reaction to the 
stimulus.  Depending on the utility of the action states that the stimulus facilitates, the appropriate 
reaction may be to approach, observe or avoid it.  Or, it may be to perform an action that is directly 
facilitated by the presence of this stimulus.  The creature must decide whether to interrupt its current 
action to pursue one of these responses, again weighting the decision so that the currently active action 
will tend to persist unless a new option is significantly better. 
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If the creature can’t explain the appearance of a stimulus, it is given an opportunity to invent an 
explanation for why it appeared, marking the beginnings of the apparent temporal causality process we 
will discuss in Section 3.3.  For further discussion of “explaining away” unexpected events using 
probabilistic reasoning, see [Pearl 1988]. 

3.2.5 Startle (Reflex actions) 

Sometimes, the creature must react to a stimulus with a reflex action more sudden and unstoppable than 
the mechanism provided by the react operation.  The basic idea is that sometimes, due to constraints 
beyond the creature’s control, the action selection mechanism must interrupt its current behavior to do 
something outside of behavioral control.  A deafening noise unexpectedly occurring behind the 
creature should cause such a “startle” response.  Similarly, coming in contact with a potent enough 
electric shock will cause the creature to convulse involuntarily.  The action selection mechanism checks 
if it must initiate any such “startle ” before performing one of the explore, exploit or react operations .  

3.2.6 Action Selection Summary 

The explore, exploit and react operations describe the approach the creature uses from moment to 
moment to explore the world, exploit knowledge about the world, and react to salient stimuli.  In the 
next section, we will see how these operations guide the creature’s attempts to learn how the world 
works. 

3.3 Apparent Temporal Causality: What, Why and How? 
The explore, exploit and react operations assume that the creature has the ability to represent apparent 
temporal causality relationships.  But first things first: what do we mean by apparent temporal causality 
relationships?  They are cause-and-effect relationships that a creature believes it has discovered in its 
world.  They are apparent, because they are how the world appears to work to the character, whether or 
not the world actually works that way.  They are temporal, because cause and effect are somehow 
related in time.  And they represent causality, in that the creature can use them to generalize from 
specific examples to arrive at general principles about how the world works.  Similar temporal logic, as 
surveyed by de Kleer in [deKleer, Brown 1986], has been used in the past to extend the problem solving 
abilities of traditional planning systems (see [Allen 1991], [Iwasaki, Simon 1986] and [deKleer 1986]). 

As noted by Moray in [Moray 1990], four kinds of cause have classically distinguished (with classically 
meaning in the sense of going back at least to Aristotle).  A switch may cause a pump to operate 
because it is in the “on” position (formal cause), because it closes a pair of contacts (material cause), 
because it allows current to flow through the pump (efficient  cause), or because we need cooling (final 
cause).  In this thesis we are discussing an attempt to learn about formal causality, although extending 
this work to consider the other forms of causality is an intriguing prospect. 

While some causality relations hips can be specified a priori, many others must be learned during the 
creature’s lifetime.  To learn these relationships, the creature needs to collect statistical information 
about its sensory input.  It needs to filter its representation of the world state and consider only the 
most interesting things it perceives.  It then needs to discover apparent temporal causality relationships 
in those perceptions, and use that knowledge to inform its action selection decisions .  While performing 
action selection, the creature needs to reinforce prediction mechanisms that are doing a good job, and 
refine or remove those that are unreliable.   

In Section 3.3, we consider what it will take to build a creature that does these things, and as a result 
makes use of apparent temporal causality. 

3.3.1 First of all, we represent Stimuli 

A Stimulus is a signal provider in the creature’s brain that can serve as a component of an apparent 
temporal causality relationship.  The stimulus can thus represent a wide range of potential signals, from 
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Percepts indicating external world state, to some component of self-action, or an Autonomic Variable 
representing a facet of the creature’s internal state. 

We ask that any signal provider that backs a stimulus also provide an activation threshold.  Much 
discussion in behavioral psychology revolves around the animal’s perception of the “onset” and 
“offset” of a stimulus, suggesting that at some point, the creature distinguishes between the boolean 
presence or nonpresence  of a stimulus.  Thus, any object that will be used to back a stimulus must be 
capable of indicating whether or not it is currently active. 

bellSoundPerceptActivation

 

Figure 15: How stimuli are depicted in this document.  The onset of the depicted stimulus occurs when the 
activation level of the bellSound Percept exceeds the activation threshold.  

In order to discover apparent temporal causality relationships, we will need to keep some statistics 
about the relationships between stimuli.  For example, in order to implement Rate Estimation Theory as 
proposed by Gallistel and Gibbon, we generate the temporal concurrence matrix, which consists of the 
cumulative duration of the conjunction of each pair of stimuli.  In principle, this is sufficient to 
implement RET, as it allows us to compute  the true rate of reinforcement for any stimulus using the 
technique described in Section 2.4.1.3.  However, as we shall see later on, our implementation uses 
heuristics to approximate many of the underlying principles of RET. 

3.3.2 Predictors represent apparent temporal causality relationships  

Now that we have a means for representing stimuli, we need a way to represent apparent temporal 
causality relationships between those stimuli.  We introduce the Predictor, our representation for a 
nugget of apparent causality information, which provides the basic unit of prediction in the system. 

perceived event now

the futurethe past

trialStarter

predicted event

goodTrials
badTrials

explainedTrials
context statistics

trial management stimulus reliability stats

reliable stimuli for refining context

Predicted Event (future stimulus onset)
Predicted Interval
Predictor Context

satisfies Predictor Context

generates Prediction event

Predictor

TimeLine  

Figure 16: A Predictor interacting with the TimeLine. 



It’s about Time: Temporal Representations for Synthetic Characters 39 

A Predictor represents an apparent temporal causality relationship by recording the perceived interval 
between two events.  The first event is recorded as the Predictor Context  that consists of one or many 
stimuli denoting both external and internal context.  The second event is recorded as the Predicted Event 
that is expected to occur in the future, after the Predicted Interval. 

In Figure 16 we see the basic interaction between a Predictor and the TimeLine: when an event occurs 
that causes all of the stimuli that comprise the Predictor Context to become concurrently active , the 
Predictor begins a Trial, causing the expectation of a future event.  Just as a Predictor is analogous to SET’s 
Reference Memory because it stores the perceived interval between two events, a Trial is analogous to an 
instance of SET’s timing mechanism, in that it represents an individual prediction that the Predicted Event 
will occur, with a given reliability, during a particular time window.  Also directly analogous to Scalar 
Expectancy Theory, the size of the time window during which the event is predicted to occur is determined 
simply by a scalar function of the Predicted Interval.  The importance of this property is depicted in Figure 
17, where two Predictors with significantly differing Predicted Intervals produce predictions of events 
that are expected to occur within time windows of substantially different size .   

In the Figure, the perceived event at the present time satisfies the Predictor Context for the two 
(unrelated) Predictors.  Each of them begins a Trial, resulting in the prediction of two future events after 
their two Predicted Intervals .  The Predicted Interval for Predictor 2 is twice the length of the Predicted 
Interval for Predictor 1, and so the size of the windows in which their two future events are predicted 
reflects this. 

perceived event

now the futurethe past
predicted event 1

TimeLine

predicted event 2

Predicted Interval: i2=2i1

trialStarter

Predictor 2

Predictor 1

Predicted Interval: i1

trialStarter

te/i1=β1
te = i1 te/i1=β2 te/i2=β1

te = i2 te/i2=β2

 

Figure 17: The timing of a Pre dictor’s window. 

Figure 17 also illustrates the mathematics of how the decision thresholds, ß1 somewhat less than 1 and ß2 
somewhat greater than 1, are used for the “when decision” to decide when the subject should respond.  
When the ratio (te/ipredictor) between the subjective duration of the currently elapsing interval (te, which 
has its zero at the time when the Trial begins) and the interval encoded in the Predictor (ipredictor) exceeds 
the decision threshold (ß 1), the creature begins to expect the appearance of the predicted stimulus.  
When the ratio exceeds another decision threshold (ß 2), the Predictor ceases to predict the event, and 
generates an expectation violation response.  Thus the Predictor effectively generates a “window” in 
which it predicts an event will occur.  The window’s dimensions can thus be mathematically described 
as:  
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 1 2epredictor predictori t iβ β≤ ≤  (1) 

where 

ipredictor is the Predictor Interval in the Predictor that began this Trial 

ß1 is a creature-global constant slightly less than 1 

ß2 is a creature-global constant slightly greater than 1 

t e is the elapsed time since the Trial began (when the Predictor Context was met) 

Some subtlety exists in the moment at which we start a Trial.  If the stimuli in the Predictor Context 
denote an external context – for example, hearing a bell ring – we begin a Trial when those external 
conditions are perceived.  If they instead denote self-action – for example, the act of pulling a lever – we 
begin a Trial when the creature ’s motor system begins to perform that action.  (Intent to perform the 
action is insufficient, as the creature may be interrupted before its motor system is able to carry out the 
request.)  The Predictor Context can also include a combination of external and internal conditions – for 
example, it may require that the creature pulls a lever when a bell rings in order to start a Trial. 

An ongoing Trial can expire in one of three ways.  If the predicted event does occur during the time 
window as expected, the Trial is declared successful.  If, without explanation, the predicted event fails to 
occur within the time window, the Trial can be declared a failure.  If the predicted event fails to occur, 
but an external mechanism can provide an explanation for why the Trial failed, the Trial is declared 
explained.  An example of an explained Trial is one in which the event fails to occur during the predicted 
time window, but instead appears shortly before or after that window.  Instead of calling that Trial a 
failure, we declare it explained. 

The Predictor keeps track of its short- and long-term reliability by recording the number of successful, 
explained and failed Trials it has generated.  We’ll now see how this allows Predictors, through a 
process of reinforcement, to learn about causality on the job. 

3.3.3 How to Learn Causality on the Job  
Although some Predictors might be built offline, thus representing apparent temporal causality 
relationships the creature knows a priori, much of this knowledge must be learned during the 
creature’s lifetime.  We now describe how a creature comes to generate and refine a new Predictor. 

3.3.3.1 Concern yourself with interesting things 
The first thing we need to do in order to learn about apparent temporal causality is to concern the 
learning mechanism with only the most interesting things.   

An immediate challenge for anything but the most trivial of systems is the tremendous size of the 
perceptual state -space.  Each stimulus might be considered another dimension of a massively 
multidimensional space that is probably only sparsely populated with areas of perceptual interest.  We 
thus need a filter that separates the interesting from the uninteresting stimuli.   

We use two heuristics for determining whether or not a stimulus is interesting.  A stimulus can be 
interesting on the basis of its novelty (how often it has been perceived) and its inherent salience (as 
reported by its signal provider).  Or, the action selection mechanism can report that it finds a stimulus 
interesting for other reasons.  For example, a stimulus that can be temporally correlated with important 
consequences may be of interest, even though its inherent salience is low. 

Adding a salience filter between perception and action selection provides an important barrier that lets 
the creature focus on the important things – the things it might find useful to learn about. 
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3.3.3.2 Generate Predictors to explain unexpected Stimuli 
The creature would like to be able to predict changes to the stimuli it considers interesting.  In fact, it is 
the inability to explain changes to an interesting stimulus that prompts a creature to learn.  In terms of 
the action selection mechanism described in Section 3.2,  if the react operation is unable to find a 
Predictor that explains a salient stimulus onset, it is provided with an opportunity to consider 
generating a new explanation.   

Explanation generation is guided by salient events that are temporally proximate to the unexpected 
stimulus.  Recent Perception events on the TimeLine provide a convenient collection of all such 
candidates.  To generate the appropriate Predictor, we need simply identify the stimulus (or group of 
stimuli) that seems the most likely explanation for the appearance of the unexplained stimulus.  That 
stimulus may represent some component of self-action, or some perception that has its origins in the 
external world. 
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Figure 18: One possibility for selecting a likely context during Predictor generation.  We model the choice of a 

likely explanation with the tail of a Gaussian stretching from the present into the past.  We assign each 
of the recently-perceived stimuli a value produced by multiplying the appropriate value from the 
Gaussian tail with the inherent salience of the stimulus.  We add these values to a probability 
distribution from which we select a reasonable explanation. 

As illustrated in Figure 18, the explanation generator chooses a likely explanation that is both salient 
and temporally proximate to the unexplained stimulus.  It then builds a Predictor of the unexplained 
stimulus with this explanation as its context.  Although the particulars of function used to select an 
explanation are unimportant, the probabilistic nature of its operation is crucial.  It is impossible in most 
complex systems to determine with absolute certainty which of the potential formal causes produced 
the perceived effect.   

The length of the Predicted Interval recorded in a new Predictor is equal to the perceived length of the 
time between the selected explanation and the unexplained event.  Thus, when creating a Predictor, we 
effectively initialize it with its first “Trial” – the Trial that caused its creation.  It’s very possible that this 
recorded interval is not optimal, so we allow a recorded interval to drift toward the intervals perceived 
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in future every time there is a successful Trial; in other words, every time it gets a new data point.  The 
interval update equation that updates the recorded interval in a Predictor upon a successful Trial is 

 1( ) *(1 )n n predictor predictori i kR t kR−= + −  (2) 

where 

in is the new interval length 

in-1 is the previous interval length 

t* is the perceived interval of this Trial (see Section 2.4.1) 

Rpredictor is the Reliability of this predictor (to be discussed; see equation (3) ahead)  

k is a constant slightly less than 1. 

3.3.3.3 Refine Predictors by tracking their reliability 
After we generate Predictors, we need to track their reliability.  If we find that a Predictor is reliable, our 
confidence in its predictive power will increase.  On the other hand, if the Predictor is unreliable, we 
may either declare it invalid, or choose to refine it in an attempt to improve its effectiveness.  One 
method for allowing a Predictor to detect a change in a non-stationary predictive relationship would be 
to encode both its recent and long term reliability, so that it can detect when those reliabilities differ.   

The ability to distinguish between periodicity and probability is also important.  A Predictor able to 
ideally predict a periodic reliability schedule (for example, predicting that the event will appear on 
every third trial) also requires a periodic function detector (like the one described in [Aittokallio, 
Gyllenberg et al. 2000]).  Note that a Predictor that expects an event to occur once every four times its 
context is observed causes quite different expectations  than does a Predictor believed to be valid 
twenty-five percent of the time on a fixed ratio schedule.  The former will generate a high-confidence 
expectation every fourth time the Predictor Context is observed; the latter will generate a low-confidence 
expectation every time the Predictor Context is observed. 

A very simple metric for the long-term reliability of a Predictor is  
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where 

gT is the number of successful Trials 

eT is the number of explained Trials 

bT is the number of failed Trials 

The Short-term reliability can be computed similarly by taking into account only several of the most 
recent Trials. 

A discrepancy between the recent and long-term reliability of the Predictor might alert us to one of 
several possible circumstances.  It is possible – perhaps because of a change in the outside world – that 
the Predictor has become erroneous.  (This may happen frequently when dealing with a non-stationary 
predictive relationship.)  We may conclude that this spurious Predictor should be culled.  Or, we may 
wish to refine its Predictor Context, perhaps by a conjunction, generalization, or discrimination, in 
order to improve its accuracy. 

We guide the refining of a Predictor by determining the reliability and frequency of salient stimuli that 
are observed at the onset of the Predictor’s Trials.  If a particular stimulus (or the onset of a particular 
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stimulus) is both frequently present at the onset of successful Trials (those trials where the stimulus 
appears as predicted), and frequently not present at the onset of Trials that fail, then that stimulus could 
potentially be added to the Predictor Context.   

At the completion of a Trial, the Predictor looks back along the creature’s TimeLine at a window 
around the Trial’s start, and records all the events that occurred around that time.  At the same time, the 
Predictor also records salient stimuli that were present in the creature’s target object . All of these stimuli 
are potentially reliable indicators of the Predictor’s validity: those found in the external world, in self-
action, and in properties of the target of that action.   

From these recorded stimuli, we need to select the ones that could be most useful if added to the 
Predictor Context.  Candidates should be salient and reliable, meaning frequently present during 
successful trials and frequently not present  during unsuccessful trials.  We offer two metrics that satisfy 
those conditions. 

Let gT denote the count of successful trials, and bT denote the count of failed trials.  If ga denotes the 
number of times a stimulus a  was present during a successful trial, and ba denotes the number of times 
a  was present during a failure, then the equation 
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where 

gT is the number of successful Trials 

bT is the number of failed Trials 

ga is the number of times stimulus a was present during a successful Trial 

ba is the number of times stimulus a was present during a failed Trial 

satisfies these features.  The first factor (ga/gT) provides the ratio of successful trials in which the 
stimulus was present; the second factor (bT-ba/bT) provides the ratio of unsuccessful trials in which the 
stimulus was not present.  The additive term in the denominator prevents division by zero before we 
have at least one good trial and one bad trial.  Thus the reliability increases as the stimulus is present in 
successful trials, and decreases as the stimulus is present in unsuccessful trials. 

Another formulation, which treats a rare stimulus more favorably, is as follows: 

  

 [ ])(0)]([12
)(2

1
2 ααααα bbgbgg

bg
R TT

TT

++−++
+

=  (5) 

In this formulation, the stimulus is effectively rewarded two points for every time it appears in a good 
Trial (the first term), one point every time it does not appear concurrent with a Trial (the second term), 
and no points when it appears concurrent with a Trial that fails (the third term).  The multiplying factor 
scales the results to the range 0 to 1.  The intuition works as follows: each stimulus gets a default of 1 
point for every Trial, so every stimulus will receive the same score by default.  But, if the stimulus 
appears concurrent with the Trial and the Trial is successful (ga), the stimulus scores 2 points instead of 
1.  And if the stimulus appears concurrent with an unsuccessful Trial (ba), it scores 0 points for that 
Trial.  So again, the metric looks favorably on stimuli that are present during successful trials, and 
unfavorably on stimuli present during unsuccessful trials. 
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3.3.4 The representation of action reflect ideas about causality 

We now have a representation for Prediction, but it will only be useful to the creature if the action 
selection mechanism can take advantage of apparent temporal causality knowledge . 

Until now, our discussion of action selection has been rather general.  At this point, we introduce a 
more concrete example of an action sele ction representation, so that we can show how it accommodates 
a dynamic representation of causality. 

We introduce the ActionTuple, the fundamental representation of action originally proposed by 
Blumberg (see [Burke, Isla et al. 2001]), that we have augmented to include the previously-discussed 
Predictor representation. 

TriggerContext Action ObjectContext doUntilContext Results

intrinsic
value

when to do it?

what to do it to?

how long to do it?

why do it: what will be the future results?

and how will this particular action affect me?

what to do?

 

Figure 19: Anatomy of an ActionTuple.  In English, from left to right by slot: “In a certain context,” “if I perform 
an action,” “on something,” “for a certain amount of time,” “how will it change the world,” “and how 
will it affect my drives?” 

As seen in the Figure 19, the ActionTuple encapsulates the concepts of trigger, object, action, doUntil, and 
in this new formulation, results.   

The TriggerContext indicates external conditions that must 
be met in order for the ActionTuple to be activated. 

“When should I do it?” 

The Action represents what the creature should do if the 
ActionTuple is active. 

“What should I do?” 

The ObjectContext describes necessary conditions on the 
things to which that Action can be applied. 

“What should I do it to?” 

The doUntilContext describes the conditions that cause the 
ActionTuple to deactivate. 

“How long should I do it for?” 

The Results slot contains Predictors , as described in the 
previous Section, each of which predicts that when the 
ActionTuple is activated, an event will occur after an 
interval with a certain probability. 

“What will be the results?” 

The Intrinsic Value is a multidimensional value (with the 
same dimensions as the DriveVector – see Section 3.1) that 
describes the ActionTuple’s perceived effect on the 
creature’s Drives. 

“How will this affect my drives?” 
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In Section 3.3, we indicated that each Predictor has a corresponding Predictor Context that determines 
when it generates expectations .  We now see that the Predictors found in an ActionTuple’s Results slot 
inherit their Predictor Context from the ActionTuple in which they are found.  The TriggerContext, 
Action and ObjectContext slots conveniently denote external context, self-action, and the target of that 
action.  All three of these context-denoting slots are represented by lists of stimuli.  If the 
TriggerContext is the only one of these three slots that contains stimuli, it represents an external 
context, and the Predictors begin a Trial when that external context is perceived.  On the other hand, if 
the ActionTuple contains an Action, its Predictors only begin a Trial when the creature performs that 
action.  This prevents the creature from generating unfounded expectations if it is interrupted before its 
motor system has a chance to perform the requested action. 

Intrinsic value is provided as a fixed value for some ActionTuples, which we refer to as consummatory 
ActionTuples.  (This is a bit of a misnomer, because although high-magnitude, negative intrinsic values 
suggest the satisfying of drives, other ActionTuples have large , positive intrinsic values, suggesting that 
they will cause an increase in the creature’s drives, thus serving as punishment rather than a reinforcer.)  
Consummatory ActionTuples therefore represent particular states (either action states or states defined 
by the context of the world) that the creature considers inherently “good” and “bad.” 

Although performing a particular action may not have an effect on the creature’s drives, an 
ActionTuple’s predicted Results may change the world in a way that would facilitate  satisfying drives 
in the future.  Thus the utility of an ActionTuple is defined by more than just its intrinsic value.  We 
combine an ActionTuple’s intrinsic value with the Predictors contained in its Results slot to compute its 
perceived value .  The perceived value factors in the probability that the ActionTuple’s activation will 
facilitate the future activation of consummatory ActionTuples.  Importantly, a predicted Result is 
valuable if and only if it will help satisfy a currently unsatisfied prerequisite of a consummatory ActionTuple.  
Thus the perceived value of an ActionTuple changes as our needs change, and as the perceived external 
conditions in the world change.   

The perceived value of an ActionTuple is calculated as 
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predictors facilitatedTuples
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where 

where 

vi(t) is the intrinsic value of ActionTuple i 

Rm is the reliability of each associated Predictor 

pvn(t) is the perceived value of each facilitated ActionTuple 

k is a discount factor  

In this implementation, this perceived value equation uses a maximum recursive depth of 4.  In the next 
subsection, we provide a concrete example of how perceived value is calculated. 

3.3.5 Changing ideas about causality 

We’ve seen how the ActionTuple combines representations of action and apparent temporal causality.  
We next examine how this representation can accommodate changing ideas about causality.  We’ll use 
an example to show how ActionTuples can be used to represent and learn an apparent temporal 
causality relationship.  Consider an experiment wherein a dog is conditioned to salivate upon hearing a 
bell ring, because the bell provides a reliable predictor of the appearance of steak.   
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We begin with the assumption that the dog has the inherent idea that consuming steak will reduce his 
hunger drive.  We construct the consummatory ActionTuple that represents this relationship (assuming 
the animal has only two drives, hunger and sex).  

TriggerContext Action ObjectContext doUntilContext Results

[-10, 0]
foodShape
PerceptActivationeatAction foodShape

PerceptDeactivation

eating some food until it's gonein English: satisfies hunger drive

 

Figure 20: Consummatory ActionTuple representing eating food.   

The consummatory act of eating the food is represented by the  ActionTuple depicted in Figure 20: with 
a null TriggerContext (meaning no external conditions need to be met), the eat Action in the Action slot, 
the foodShape stimulus as an ObjectContext (meaning the action must be performed on food, and thus 
can’t be performed unless food is present), and the notion “until consumed” in the doUntilContext.  
The intrinsic value indicates that the creature ’s hunger drive will be mitigated if this ActionTuple is 
activated.  If the creature has a sufficiently high hunger drive, any sensible action selection mechanism 
(like the one described in Section 3.2) would be inclined to activate this ActionTuple when the creature 
perceives food, on the basis of its ability to reduce the hunger drive . 

During this experimental procedure, the dog will be presented with two salient stimuli: the sound of 
the bell, and the appearance of a steak.  In her attempts to explain these unexplained stimuli, the dog 
will, after a time, come to the idea that the sound of the bell is reliably followed by the appearance of 
food. 

TriggerContext Action ObjectContext doUntilContext Results

null
bellSound
PerceptActivation

hearing a bell predicts food in 5sin English: which itself isn't consummatory

foodShape
Percept in 5s (33%)

 

Figure 21: The ActionTuple representing the prediction that the bell sound predicts the future appearance of 
food. 

This bell-predicts -steak notion is represented by an ActionTuple , shown in Figure 21, which produces 
the conditioned anticipation response when the creature hears the bell.   (It turns out it that is not 
whimsical to speak about a real dog’s “expectation of food,” as evidence from Rescorla’s lab, 
Dickinson’s lab and Colwill’s lab suggests that in classical conditioning protocols, subjects do learn to 
expect the reinforcer, using what is called a stimulus-outcome association (Gallistel, pers. comm.).)  The 
TriggerContext for this ActionTuple is the bellSound, the ObjectContext null, the Action null, and the 
doUntilContext null.  The Results slot contains the Predictor indicating that something with the 
foodShape property will appear in a few seconds , at this point with 33% reliability.   
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TriggerContext Action ObjectContext doUntilContext Results

null
bellSound
PerceptActivation

hearing a bell predicts food in 5sin English: which itself isn't consummatory

foodShape
Percept in 5s (33%)

TriggerContext Action ObjectContext doUntilContext Results

[-10, 0]
foodShape
PerceptActivationeatAction foodShape

PerceptDeactivation

eating some food until it's gone which satisfies hunger drive

but it would facilitate

context that needs to be satisfied

thus the perceived value of hearing a bell is [-10, 0] * 0.33 = [-3.3, 0]
 

Figure 22: How the concept of perceived value makes hearing the bell a good thing. 

Although the intrinsic value of the “hearing a bell” ActionTuple (depicted again at the top of Figure 22) 
is null (zero), the concept of perceived value makes its activation seem like a good thing to the dog.  It 
indicates that the activation of this ActionTuple can reliably lead in future to the activation of another 
ActionTuple that will satisfy the hunger drive. 

The perceived value of the “hearing the bell” ActionTuple is calculated by the sum of its intrinsic value, 
and the intrinsic values of the ActionTuples it facilitate s multiplied by a discount factor.  The discount 
factor for each term is a function of the probability that the required stimulus will appear.  In this 
example, the dog is conditioned that food will appear on average every one in three trials .  Thus the 
discount factor is 1/3, and since the perceived effect on the hunger drive of eating the predicted food is 
negative 10, the perceived value of the “hearing the bell” ActionTuple is -10/3. 

TriggerContext Action ObjectContext doUntilContext Results

null

predicts food in 5sin English: which itself isn't consummatory...

foodShape
Percept in 5s (33%)sitAction duration of

sitAction

sitting for an appropriate interval

 

Figure 23: Self-action variation of the experiment, part 1. 

A variation of this experiment might involve only providing the dog with a food reinforcer when it sits 
down after the bell rings .  In this case, the dog may begin with the hypothesis (suggested by the 
ActionTuple in Figure 23) that simply sitting down predicts the treat.  Because some of the Predictor’s 
trials will be reinforced and others will not, the Predictor will eventually realize that whether or not the 
bell sounds around the start of a trial reliably predicts the trial’s success.   
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Thus, the new ActionTuple in Figure 24 will be created.  The Action is still the sitAction, but now the 
bell sound has been added to the TriggerContext.  The Results slot, as in the above example, contains a 
Predictor predicting the foodShape’s onset in a few seconds.  Thus, predictions can, but do not have to, 
involve self-action. 

TriggerContext Action ObjectContext doUntilContext Results

null

predicts food in 5shearing the bell ring which itself isn't consummatory...

foodShape
Percept in 5s (33%)sitAction duration of

sitAction

and sitting for an appropriate interval

bellSound
PerceptActivation

 

Figure 24: Self-action variation of the experiment, part 2. 

3.3.6 Forgetting must accompany learning 
We have discussed how the various learning mechanisms generate Predictors and ActionTuples.  But as 
Minsky notes in Society of Mind [Minsky 1985], we have good reasons to occasionally forget things.  A 
culling mechanism is needed to remove information that is no longer useful to the creature.  In this 
architecture, this means removing ActionTuples and Predictors that aren’t useful for predictive 
purposes, or have been inactive for an extremely long time. 

We can think of ourselves as managing a cognitive economy.  For every source (for example, of 
Predictors and ActionTuples) there must also be a sink, or the creature will be overwhelmed by growth.  
Matching each source with a sink allows a creature to adapt to changes in the world without leaving 
vestigial knowledge lying around. 

It is exceedingly difficult to distinguish between negative and unimportant knowledge.  Arguably, the 
most pressing avenue for future work (discussed below) is an improvement to the culling sentinel that 
would allow it to handle  negative knowledge.  Perhaps a  list of “inactive” ActionTuples that were once 
useful would allow the creature to exhibit spontaneous recovery.  The “inactive” list could continue to 
guide innovation without overloading the action selection mechanism. 

3.4 Apparent Temporal Causality lets us model the Effects on Affect  
Apparent temporal causality does more than just help us select actions.  It also provides feedback from 
the action selection process that informs the creature’s motivational and affective state.  Not only can 
affective state help the creature to exhibit intentionality and convey its motivational and affective states 
to a viewer, but it also can inform the creature’s action selection decisions .   

Recall that a creature’s DriveVector can be used to determine the scalar utility of something in the 
world.  This utility can also be interpreted as a creature’s affective stance towards something.  The 
creature can use its affective stance toward a stimulus to generate appropriate reactions to its onset and 
predictions of its impending onset.  A creature can also use the affective stance to determine whether or 
not it wishes to encourage the onset or offset of a stimulus.  Thus an interesting effect of the 
DriveVector approach is that a creature’s emotional memories of some context (an object, action, or 
whatever else) are affected by its current needs . 

We have already discussed how the creature’s motivational state (summarized in the DriveVector) has 
an effect on the action selection mechanism.  Its affective state also has an influence on action selection, 
although not as pronounced.  Affect doesn’t have a direct influence on the generation, testing or 
refinement of Predictors.  However, feedback from the Affective Variables does impact the creature’s 
special curiosity drive.  The curiosity drive, as noted in Section 3.2.1, influences the creature’s decision 
of whether to explore or exploit, and also has an influence on the inner working of the explore 
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operation (Section 3.2.3).  Thus, by altering the creature’s propensity to explore rather than exploit, its 
affective state has an indirect but important effect on learning by altering the rate at which the action 
selection mechanism generates and refines Predictors in the explore operation.   

There are four events related to apparent temporal causality that may lead to a change in affect: the 
perception of a salient stimulus that triggers a prediction, an expectation violation, an explanation of an 
expectation violation, and expectation fulfillment.    Concurrent with each of these events is an 
appropriate change in the creature’s level of arousal, as well as a change in stance proportional to the 
affective weight of the event. 

It is obvious how the creature’s level of arousal should change  at each of these events .  Appropriate 
changes to the creature’s stance can be summarized as follows: 

• Upon perceiving a salient stimulus , calculate the change in affective stance , w, based on the 
ability of that stimulus to predict intrinsically valuable states in the future .  This generates 
either eager anticipation or trepidation, depending on the sign of w. 

• On expectation violations , lose (1+k)w, where k is some number between 0 and 1.  This generates 
disappointment or relief, depending on the sign of w. 

• On explanations of expectation violations , gain kw back, counteracting the disappointment or 
relief factor. 

• On expectation fulfillment , gain w2-w1, where w2 is the affective weight of the new ActionTuple, 
and w1 if the affective weight of any ActionTuple that predicted w2.  This generates satisfaction 
when the expectation comes true.  (Satisfaction in the sense that the expectation was satisfied, 
but not in the sense that it satisfies the creature’s drives.  It is important to distinguish between 
effects on a creature’s motivational state and its affective state – a challenge exacerbated by the 
fact that the vocabularies used for the two discussions often overlap!)  
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Figure 25: An example of conservation of affect during predictions, perceptions, and expectation violations. 
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Figure 25 provides an example of how various events cause changes to affective stance.    Here we have 
four stimuli, A through D.  A predicts B with 30% reliability, B predicts C with 80% reliability, and C 
predicts D with 30% reliability.  D has a utility of 1000.  The “typical chaining” example shows the 
affective changes that occur when all four stimuli appear in sequence, the former three each predicting 
the appearance of the next.  The “timing errors” example shows what happens when the intervals the 
creature uses to predict B and C are too short.  When each stimulus fails to appear in the predicted 
window, this generates an expectation violation and the creature’s affect drops below the original level, 
thus representing disappointment.  Then, the stimulus appears late, generating an explanation and thus 
renewed anticipation.   

3.4.1 Generating New Reward Markers 

Our ability to compute the affective value of a stimulus offers us fle xibility in the way we produce 
reward markers for machine learning algorithms elsewhere in the system.  Many machine learning 
algorithms, such as the one that drives acoustic category formation in the acoustic pattern matcher, 
employ a reward marker (and sometimes a punishment marker) to inform the classifier of the results of 
a recent classification.  (See Appendix A and [Ivanov, Blumberg et al. 2000] for further discussion.) 

The fundamental question is: which stimuli constitute reward markers?  An obvious answer is a 
stimulus that indicates the appearance  of a reinforcer like food.  However, there may be times when we 
can predict the impending onset of a reinforcer with sufficiently high confidence that we can proceed to 
post the reward marker before the reinforcer actually appears .  We do this at the moment when we can 
first predict, with confidence above a threshold, the future appearance of all the stimuli necessary to 
activate a consummatory ActionTuple.  In the “ringing bell reliably predicts steak example” depicted in 
Figure 22, the sound of the bell ringing may become a new reward marker. 

3.5 Summary 
We began this section with the notion that creatures have internal needs that they seek to satisfy.  These 
are represented by Autonomic Variables that we combine together into a multidimensional DriveVector 
(Section 3.1).  We then discussed the fundamental choice the action selection mechanism needs to make 
– whether to explore, exploit or react (Section 3.2).  To help the action selection mechanism make this 
choice, we integrated an understanding of apparent temporal causality into the action selection 
mechanism.  Because Predictors allow a creature to reason about apparent temporal relationships 
between stimuli, they allow an understanding of cause and effect that can accommodate changing ideas 
in a dynamic world (Section 3.3).  Finally, we showed how this understanding allows us to model the 
effects on a creature’s emotional state, and even generate new reward and punishment markers that can 
facilitate perceptual learning (Section 3.4). 
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4.0 Results for Synthetic Characters 

As members of the Synthetic Characters group, we are interested in what happens when the 
architecture described in Section 3 is integrated into a complete system.  Does it allow us to create more 
compelling and clever interactive creatures? 

The results in this Section seem to suggest so.  We describe here the results we have achieved 
implementing the architecture and its representations, and using them to build two very distinct 
autonomous virtual characters.  Both characters are able to learn about apparent temporal causality in 
their respective worlds.  Building them has provided insight into the strengths and weaknesses of our 
approach. 

Describing these characters in more detail will provide  us with an opportunity to discuss the learning 
process in more depth, using output obtained from visualizers that allow observers to witness the 
learning process occurring within a creature’s brain. 

All of the results in Section 4 were obtained from a working implementation.  In contrast, we have yet 
to carry out the hypothetical experiments described in Section 5 that describe how this system should 
be able to reproduce psychological phenomena.   

4.1 Integration into a complete Architecture 
The action selection mechanism and the representations of apparent temporal causality discussed in the 
previous Section have been integrated into the Synthetic Characters System Architecture that we 
discussed in Section 2.3.  (For the curious, the description in [Burke, Isla et al. 2001] is anything but 
brief.)  In Figure 26, we show the structure of the new architecture, highlighting the important changes. 

Action and Attention Selection

Navigation and Motor Control

Sensory System

Perception System

Working Memory Autonomic Variables

external internal

Represent the world

Decide what to do

Figure out how to do it

Salient Stimuli

High-level action requests

Integration of causality representation

Maintain Statistics

Stimuli

Salience filter

Study interesting things

Informed by past, present and predicted future

 

Figure 26: Integration of concepts described in Section 3 into the complete system architecture  shown in Figure 2.   
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We discuss three aspects of the integration here that may have more general application: how the 
Stimulus abstraction is integrated, where we maintain statistics, and how we implement the salience 
filter. 

4.1.1 Finding Stimuli in existing Perceptual Representations 

We’ve already seen how the Sensory System filters the creature’s sensory input, and the Perception 
System uses Percepts to classify and organize  perceived features into an object representation in 
Working Memory.  But how do Stimuli fit into all of this? 

At first glance, it may appear that a Pe rcept and a Stimulus are equivalent.  Both have an activation 
threshold, and both represent an atomic component of the creature’s perceptions.  Suppose we wanted 
the creature to learn that “when the tone sounds, food will appear in five seconds.”  Representing this 
relationship involves two Percepts: the toneSound Percept, and the foodShape Percept.  However, 
consider the relationship “when the object to my left makes a tone, food will appear.”  Here, the “object 
on my left making a tone” is represented in Working Memory as the toneSound Percept history of the 
“object to my left” Belief.   Perhaps more importantly, the reader can no doubt come up with arbitrarily 
complex causal relationships that would require representations not found within this architecture.  
With that in mind, we propose that the Stimulus provides a useful abstraction distinct from the Percept. 

We have integrated three sources of stimuli in the current system. 

The first source, not surprisingly, is the Perception System’s Percept Tree.  Each Percept is potentially a 
signal provider for a Stimulus that indicates whether or not some sensory nugget has raised the 
Percept’s evaluation above its activation threshold.  Each Percept can also provide a second signal that 
causes a stimulus onset to occur whenever the Percept’s evaluation falls below the activation threshold.  
The resulting stimulus can be used to represent relationships like “when the tone stops, food will 
appear.” 

The second source of stimuli is Working Memory.  A Belief is capable  of producing stimuli based on 
each of its Percept activation histories.  The onset of a S timulus based on the toneSound Percept history 
of the “object to my left” Belief represents the event “the object to my left made a tone.” 

Finally, Autonomic Variables provide a source of stimuli.  They can back stimuli that allow a creature to 
represent apparent temporal proximity relationships involving changes to internal state. 

4.1.2 A Separate Statistics and Filtering Agent 

Separating the statistics from the perceptual representations  proved very useful.  A separate agent we 
call the TimeRate  System provides a centralized location for the statistics kept for all the different kinds 
of stimuli, reducing to negligible the changes that need to be made to the other parts of the architecture 
in order to provide this service. 

The TimeRate  System treats other parts of the creature ’s brain, such as the Percept Tree and Working 
Memory, as stimulus providers.  On each timestep, it asks stimulus providers if they have discovered any 
new StimulusBackings – signal providers that the TimeRate  System can turn into Stimuli. 

The TimeRate  System also implements the salience filter (described in Section 3.3.3) that exists between 
the massively multidimensional sensory input space, and the action selection mechanism that follows  it. 

4.1.3 Roadmap for the rest of the Section 

The best way to describe the implementation in more detail is to show a how creature implemented 
with the system learns about apparent temporal causality in its world.  With this in mind, we now 
introduce the two rather dissimilar characters (at least in terms of morphology) that have been built to 
date using the architecture.  First, we describe how the timing mechanisms facilitate new, more flexible 
learning in Duncan the Highland Terrier.  Then, we introduce a new character, and demonstrate in 
depth the learning process occurring in that character’s domain. 
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4.2 How Time Learning Affects Duncan 
Duncan the Highland Terrier is one in a long line of canine creations to come from the Synthetic 
Characters Group.   

 
Figure 27: Duncan the intrepid terrier. 

Duncan’s previous learning mechanism used a variation on the ActionTuple representation described 
in this paper to implement the “click and treat” training paradigm described by Wilkes in [Wilkes 
1995].  With that mechanism, creatures had no sense of apparent temporal causality, but instead used 
back -propagation of intrinsic value in order to attribute value to the context-action pairs described by 
ActionTuples.  Instead of having a concept of perceived value that was derived from a representation of 
causality, the creature would back-propagate a part of the intrinsic value of each activated ActionTuple 
to the previously activated ActionTuple.  Certain consummatory ActionTuples were attributed fixed 
intrinsic values.  These would tend to propagate their value back into the action-states that reliably led 
to the consummatory states.  Duncan would learn by generating new ActionTuples, each time 
discriminating an increasingly precise context for the new ActionTuple which reflected which stimuli 
were perceived to be the most reliable indicators of whether or not the old ActionTuple ’s activation 
would lead to a “good” consummatory state.   

Thus the previous incarnation of Duncan began his life by randomly selecting between different 
behaviors.  The user, playing the role of Shep the shepherd, was able to reward Duncan’s behavior and 
encourage him to perform particular actions, which he could eventually learn to associate with acoustic 
patterns by discriminating an increasingly precise context in which he should perform each action.   

The representation for apparent temporal causality offers the new incarnation of Duncan many bene fits, 
all of which arise from his ability to make explicit how he expects the world will change as a result of 
his actions. 

Instead of back-propagating intrinsic value, an ActionTuple obtains a perceived value because of its 
predictive power, which is represented by Predictors in its Results slot.  The capacity for an 
ActionTuple to predict the appearance of food increases its perceived value if the creature is hungry.  
This allows the creature to integrate the current state of the world into its appraisal of the value of an 
ActionTuple .  An action is only useful if it will change the world in a way that moves the creature closer 
to performing a consummatory action.  Thus an action that facilitates the appearance of food is not 
valuable if there is already a  vast amount of food available.   
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Another benefit gained from Scalar Expectancy Theory is increased flexibility in the timing of the 
reinforcer.  Because of the nature of back-propagation learning, in Duncan’s previous incarnation the 
reinforcer needed to immediately follow the action we wanted to reinforce.  Now, if Duncan comes to 
expect a reinforcer to appear a slightly longer time after performing an action, he can form an 
expectation of future reinforcement after performing the action, and as long as the Predictor is 
reinforced around the expected time in the future , the perceived value of its ActionTuple would rise, 
and thus the correct behavior would be reinforced. 

The use of a salience filter that limits the sensory input being processed by the action selection 
mechanism, in concert with the statistics-gathering properties of the Predictors, makes it possible for the 
creature to generalize as well as specify the contexts for ActionTuples.  In the previous implementation, 
Duncan would progress down the Percept Tree, selecting increasingly specific contexts in which to 
perform an action, at each step taking the path that seemed the most reliable.  In the current 
implementation, Duncan may start this process with any stimulus (that may represent any point in the 
Percept Tree, or perhaps some other perceptual signal), choosing a context for a Predictor that seems to 
be a reliable indicator of whether or not an action will lead to a reward.  He can then use the results of 
that Predictor’s Trials to generalize or specify the context from there, employing the principle of 
parsimony to arrive at the simplest explanation for how the world works. 

Finally, while the previous incarnation would perform an action because that action was perceived to 
move the world into a “better state” (as represented by the intrinsic value of the active ActionTuple ), 
creatures in this architecture make  explicit their expectations of how the world should change as a 
result of their actions.  For example, a trained Duncan will sit when the shepherd says “sit” because that 
action in that context will cause the explicit expectation that a food treat is forthcoming.  This has 
ramifications on Duncan’s affective model.  As described in Section 3.4, expectation allows for eager 
anticipation (or trepidation) followed by either satisfaction or disappointment (or relief).   

Thus Duncan reaps several benefits from an understanding of apparent temporal causality, all of which 
stem from his ability to make explicit expectations about how the world will change as a result of his 
actions. 

4.3 The Goatzilla Domain 
Goatzilla is the grizzled 200-foot-tall beast who inhabits the Scottish Highlands.  What little we know of 
his origins is a tale passed down in the oral tradition (Eaton, Dowling, Isla, Ivanov, McDarby, McDarby, 
McDonnell, Nolan et. al., pers. comm.).  As Duncan’s master Shep tells it, Goatzilla was spawned in a 
freakish accident.  From time to time he emerges to graze on Shep’s sheep, and then stumbles off into 
the mist from whence he came.  Shep insists that neither he nor Duncan have ever been considered 
targets for one of Goatzilla’s feeding frenzies.  Speculation abounds: one expert is adamant that 
Goatzilla feels guilty after eating the sheep, but a mental representation for guilt has yet to be found.  
Perhaps the simplest explanation is best: Goatzilla is largely misunderstood; just a creature trying to 
satisfy his drives.  What’s clear is that he can represent apparent temporal causality, and it’s giving him 
the capacity to cause some serious damage.   
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Figure 28: Goatzilla and Shep share a moment. 

To restore our previous tone… Goatzilla’s deepest secret, of course, is that he’s just a big dog.  Because 
he provides a superset of Duncan’s functionality, we use him as our primary example, and discuss his 
various Systems here in more detail.  He exists in a complex domain where the ways in which he can 
satisfy his drives sometimes involve external context, sometimes involve his actions, and sometimes 
involve properties of the targets of his actions. 

4.3.1 Perception System 

 

Figure 29: Goatzilla begins his life with a Percept Tree containing over 50 percepts.  Colors indicate whether or 
not the Percept is above its activation threshold; numbers indicate inherent salience. 

Highlights on the External side of his Percept tree (everything under “location” in the Figure ) include 
two Classifier Percepts: the UtteranceClassifier Percept and the GestureClassifier Percept (neither are 
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visible in this Figure).  Both of these are containers for classification mechanisms used to classify audio 
and video input respectively.   

The Proprioceptive side of the Percept Tree (everything under the Proprioception Percept) contains the 
Percepts that activa te when particular motor states are  achieved.  These Percepts are provided with 
moderately high inherent salience, so that the creature is interested in self-action and is guided to the 
idea that self-action is a likely candidate for apparent causality relationships. 

4.3.2 Autonomic Variable System  

4.3.2.1 Drives 
Goatzilla has five autonomic variables that are integrated into his DriveVector. His drives provide an 
example of the various levels of abstraction that Autonomic Variables can represent (see Section 3.1).    

Hunger is self-explanatory.  It drifts upwards at a relatively low rate, has a moderate drive multiplier, 
and decreases when Goatzilla consumes food. 

Pain avoidance has a downward drift (suggesting healing), a fairly high drive multiplier value, and 
increases autonomically when he is attacked, shocked, or otherwise injured.  Goatzilla tends to avoid 
painful situations, especially if already in pain. 

Dominance is a more abstract drive that provides Goatzilla’s desire to dominate other creatures.  The 
magnitude of the dominance drift increases when he perceives other Goatzillae.  The drive declines 
when he performs various acts of dominance (posturing, kicking, goring, and so on).   

Curiosity is used by the action selection mechanism to help mediate between explore and exploit 
operations  (as described in Section 3.2).   

The most recent incarnation also uses a praise drive  that represents  the social concept of being pleased to 
receive verbal praise from the Shepherd, which the user can provide through a special interface.  Unlike 
the rest of the drives described here, the desire for praise is insatiable.  The motivation for this 
functionality came from the need for the creature to receive praise during a sheep herding scenario, 
where the Shepherd wouldn’t provide food treats as rewards for extended periods of time.  A creature 
might learn a social drive like this by first identifying conspecifics during a critical period, and later 
seeking to please conspecifics perceived to be superior in a social hierarchy. 

4.3.2.2 Affective Response 
Both Goatzilla and Duncan use the stance and arousal autonomic variables (shown in Figure 12, page 32) 
to represent their current affective state. 
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4.3.3 Action System 

 

Figure 30: Visualizer of Goatzilla’s default ActionTuples (without Results slots).  The Reflex group is not shown.   

Goatzilla begins with the simple Action System shown in Figure 30 that contains almost no a priori 
knowledge.  Most of his knowledge is learned through experience with the world.  Each of his default 
actions (sit, kick, pirouette, etc.) is represented by a very simple ActionTuple: a null TriggerContext, a 
null ObjectContext, the corresponding Action, and a doUntilContext appropriate to the Action (either 
one that expires at a particular interval after the motor action’s activation, or one that waits for the 
motor action’s completion). 

The Approach, Observe and Avoid ActionTuples are also initialized in the Action System.  The 
Approach ActionTuple causes Goatzilla to approach until near the target stimulus.  The Observe 
ActionTuple only causes Goatzilla to approach the target stimulus if he is particularly far away.  The 
Avoid ActionTuple causes Goatzilla to send a “flee” command to his Navigation System until he is far 
away from the target Belief. 

Two examples of consummatory ActionTuples are the “eat food” and “be shocked” ActionTuples.   

The “eat food” ActionTuple is provided with a DriveVector with a negative hunger value, suggesting 
that the creature has an innate sense that eating food will reduce hunger.  In other words, the creature 
considers the activation of this ActionTuple to be the “goal state ,” or something that is inherently 
satisfying (see [Lorenz, Leyhausen 1973]).   

The “be shocked” ActionTuple is an example of an action state that is added to the creature’s group of 
Reflex (or “Startle”) ActionTuples.  Unlike the other ActionTuples that are arbitrated between using the 
explore, exploit and react mechanisms, when the TriggerContext of an ActionTuple in the Reflex group 
is active, that ActionTuple is immediately activated, and remains active until its doUntilContext is no 
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longer active.  The ActionTuple’s DriveVector contains a high, positive pain value, suggesting the 
creature’s innate knowledge that being shocked will cause pain.     

4.3.4 Navigation and Motor Control 

Goatzilla’s Navigation System provides the ability to override  incoming “approach” and “avoid” 
commands with the appropriate locomotive action.  His Motor System uses a verb graph representation 
of different animations and transitions between those animations.   

4.4 Experiments: How This Works in Practice 

4.4.1 Learning about the World, and Recovering from Mistakes 

The first test, which demonstrates the action selection mechanism and apparent causality 
representations at work, involves unleashing a fresh Goatzilla into a world with the Shepherd and his 
Sheep.  Situated beside the Shepherd are several boulders, and a shed which serves as a “feeder”: when 
kicked by Goatzilla, it emits sheep.  As the behemoth’s hunger increases, he seeks and consumes any 
sheep he can find. 

Left to his own devices in this world, Goatzilla eventually realizes that kicking the feeder reliably leads 
to the appearance  of sheep.  This is a nontrivial discovery.  There are many objects in the world – sheep, 
the feeder, boulders, a human, a boat, and so on, each of which has the potential to generate a variety of 
different salient perceptual inputs.  Added to which, the creature has in practice about a dozen different 
actions he can perform at any moment.  From this considerable space of both external and internal 
context, the creature must arrive at the conclusion that apparently, an action (kicking) performed on a 
particular type of object (the feeder) is followed about a second later by the appearance of food.   

We now examine in more depth how this process occurs.   

When all the sheep are consumed, Goatzilla’s exploration operation causes him to explore by 
generating new ActionTuples that perform actions on objects in the world.  Those ActionTuples are 
generated by replicating an existing ActionTuple containing the Action of interest, and adding to the 
new ActionTuple an ObjectContext containing a salient stimulus from an interesting object in the world 
(see Section 3.2.3 on exploration).  When exploring the feeder, the mechanism at some point chooses to 
perform the kick  action, using the feederShape  Percept’s stimulus as the ObjectContext.  Shortly after 
kicking the feeder, Goatzilla perceives the appearance of sheep. 

The appearance of the sheep causes Percepts  like the sheepShape  Percept to be activated in the 
creature’s Perception System.  In the TimeRate System, the onset of the stimulus corresponding to the 
sheepShape  Percept’s activation occurred.  For many reasons, this is a salient event: the sheepShape 
Percept allows  the creature to activate the consummatory ActionTuple eat food (“perform eat at 
sheepshape”), an inherently good thing because of its ability to help satisfy the creature’s hunger drive ; 
and, additionally, as if that weren’t enough, the sheepShape  Percept’s activation is unusual.  Thus, the 
“sheepShape  Percept onset” stimulus event is added to the list of salient events to be passed through 
the salience filter. 

The onset of this “appearance of food” stimulus is passed to the action selection mechanism, where the 
react operation is called upon to process the stimulus onset event.  The react operation polls the 
TimeLine for any Predictors that predict the appearance of the sheepShape  Percept.  Finding none, and 
noting that the sheepShape  Percept seems highly salient, the react operation generates an explanation of 
the perception in the form of a Predictor.  This is done by looking back at recent events on the 
TimeLine, and using a combination of the salience of these events and their temporal proximity to the 
unexpected event to come up with a potential explanation (Section 3.3.3).  The creature may have come 
up with the right solution – that the unexplained event was a result of his previously kicking the shed, 
causing the results are shown in Figure 31’s Predictor Visualizer.  
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Figure 31: The Predictor visualizer.  Predictors are arranged by ActionTuple, and a TimeLine for each Predictor’s 
timing mechanism is shown.  Here, the “perform kick” ActionTuple causes the prediction of something 
sheep shaped to appear after an interval of about 1.8 seconds with a long term reliability of 33%.  
Recently, 50% of that Predictor’s Trials have been either successful or explained, and 25% have been 
successful. 

We now examine how the creature can recover from any one of a number of possible mistakes. 

 

Figure 32: A Predictor that will soon prove unreliable : that begging produces sheep.  Grey vertical bars on the 
TimeLine indicate the start of a Trial; the colored region that follows indicates the window in which the 
onset of the stimulus is expected to occur.  Color indicates the status of the trial: ongoing blue; 
successful green; failed red; explained orange. 

Let us assume for a moment that the creature formed an erroneous Predictor based on another self-action; 
for example, the notion that begging in front of the shed results  in the appearance of the sheep.  The 
creature would then proceed to test this Predictor, in the process producing superstitious behavior, 
until the Predictor proved sufficiently unreliable.  When the creature is next hungry and there are no 
sheep present, the “perform beg ” ActionTuple will have a high perceived value because of its perceived 
ability to predict the appearance of sheep a few seconds after the creature performs  the begging action.  
The creature will activate this ActionTuple, sitting down and thus causing an expectation that sheep 
will appear momentarily, complete with a corresponding change in affect (anticipation).  When the 
sheep do not appear, there will be an expectation violation and another corresponding change in affect 
(disappointment).  As repeated occurrences of this expectation violation occur, the reliability of the 
Predictor will decline toward zero, until it is finally culled. 

 

Figure 33: A Predictor with the right Action (kick), but no ObjectContext (so he’ll kick anything  and expect food). 

The creature may also form a hypothesis with the correct Action but incorrect ObjectContext ; for example, 
the hypothesis that kicking anything leads to the appearance of sheep (an ActionTuple with the kick 
Action, no ObjectContext, and a corresponding Predictor in the results slot).  In this case, assuming the 
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creature occasionally kicks both the shed and other objects  in its world, the reliability of the Predictor 
will be reasonably high, but still result in expectation violations every time the creature kicks another 
type of object.  After enough such expectation violations, the Predictor will almost certainly be refined 
by the inclusion of the feederShape  Percept as an ObjectContext, creating a reliable predictor of 
successful trials.  (Ideally, the TriggerContext will also be modified to include the qualification that the 
sheepShape  Percept be inactive, so that the entire Predictor reads , “When no sheep are present, and I 
kick a feeder-shaped object, I predict something sheep-shaped will appear in n seconds.”) 

Finally, the creature may form a correct Predictor with an incorrectly recorded interval length.  To recover 
from this mistake, instead of creating a new Predictor, we allow the peak of the interval recorded in the 
existing Predictor to drift toward the interval perceived by the creature in subsequent trials.  The time 
scale invariance of Scalar Expectancy Theory is convenient here, as it will cause the size of the 
prediction window to automatically increase as the estimated interval increases. 

 

Figure 34: Learning the right thing.  The “perform kick produces sheepShape” Predictor at the top of the Figure 
has a lower long term reliability than does the “perform kick at feederShape produces sheepShape” at the 
bottom of the Figure.  After a few more Trials, the former Predictor will be culled.  The active prediction 
suggests the creature jus t kicked the feeder.  A few moments ago, he kicked something other than the 
feeder, activating the upper predictor and causing a failed trial. 

To summarize, we have looked at how the creature can recover from several mistakes it might make 
while trying to learn a nugget of apparent temporal causality – forming an erroneous Predictor based 
on another self-action, forming a Predictor without a discriminating ObjectContext, or incorrectly 
recording the interval between stimuli. 

4.4.2 Learning Curves for “Kicking Produces Food” Predictor 

We examine the learning curve for a Predictor by detailing the response of the “perform kick produces 
sheepShape” Predictor described in Section 4.4.1 as it responds over the course of 20 Trials, each trial 
representing the act of kicking an object.  Eventually, the Predictor refines its context to generate the 
more accurate  and precise “perform kick at feederShape produces sheepShape” Predictor. 
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Figure 35: The results of 20 trials.  Trials without bars were not reinforced, and thus declared “failures.”   

In Figure 35 we see the creature’s perce ived results of the 20 trials.  The Predictor was generated at the 
end of the first trial, after the feeder was kicked the first time and food appeared unexpectedly.  On 
most of the trials where the creature kicked the feeder, food appeared in approximately three-quarters 
of a second.  On the fifth trial, the Predictor drew the erroneous conclusion that kicking a boulder 
resulted in the appearance of sheep.  Those events, while temporally proximate, were not causally 
related. 
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Figure 36: Learning the predicted interval. 

In Figure 36, we see how the Predictor’s recorded interval adjusts toward the perceived interval of each 
reinforced trial.  The magnitude of the “drift” experienced by the recorded interval toward each 
perceived interval is proportional to the long-term reliability of the Predictor, a metric we show below 
in Figure 37. 
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Figure 37: Long-term and Short-term reliabilities of the Predictor.  

The Predictor’s reliability, computed using the simple metric shown in the Figure, changes as trials 
succeed or fail.  For the short-term metric, only several (in this case seven) recent Trials are used to 
calculate the reliability.  At the seventeenth trial in this example , the difference between the short-term 
and long-term reliabilities exceeded the refinement threshold, and the Predictor was prompted to refine 
its context.  It did so, using data like those shown in Figure 38 that indicate the reliability of stimuli that 
are present around the start of trials. 
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Figure 38: Reliability data for Predictor Context candidates, using reliability metric 1 (equation (4)). 

For clarity, we show in this Figure  only three of the salient stimuli that are potential candidates for the 
Predictor Context.  However, it is important to note that there are many other such candidates; in fact, 
the Predictor is tracking the reliability of every salient stimulus.  It is obvious from the data that the 
feeder is the most reliable candidate , and, as mentioned above, it is selected at the seventeenth trial to 
be added to the Predictor Context. 
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Figure 39: For comparison to Figure  38, reliability data for Predictor Context candidates, using reliability metric 
2 (equation (5)). 

4.4.3 Clicker Training 

The time and rate learning mechanisms also provide a robust implementation of a form of 
reinforcement learning known as clicker training.  Clicker training is form of applied operant 
conditioning used to train live animals like dogs and dolphins, as described by Wilkes in [Wilkes 1995].   

The trainer employs a hand-held “clicker” device that emits a short, sharp clicking noise.  During the 
first phase of tra ining, the trainer associates the click with a food treat by clicking, and then 
immediately giving the creature a treat.   

When the animal has learned that click precedes treat, the second phase of training begins, in which the 
trainer provides a click-and-treat only when the animal performs the desired behavior.  The click acts as 
a salient event marker, indicating to the animal the precise time at which it performed the desired 
action.  In accordance with Thorndike’s Law of Effect, described in [Thorndike 1911], the frequency of 
the behavior that leads to the reward will tend to increase.  In practice, the desired behavior does not 
simply appear, but rather is “shaped” by the rewarding of increasingly accurate versions of the 
behavior. 

If some other signal, such as an utterance, should trigger the appearance of the behavior, we enter a 
third phase of training, in which the desired trigger signa l is made to appear some of the time when the 
animal performs the action, and the animal rewarded only when it performs the action with the signal 
present.  The signal then becomes a reliable indicator of the context in which the action should be 
performed in order for the creature to receive  a reward. 

The architecture described in the previous section allows for a robust form of clicker training to take 
place in synthetic characters.  The creature is able to recover from any mistakes or incorrect guesses it 
makes along the way without “bogging down” its mind with useless, superfluous, or out-of-date 
information.  We now describe how the architecture facilitates the three phases of clicker training. 

4.4.3.1 First Phase: Associate Click with Treat 
In the first phase of clicker training, the trainer clicks, and then follows that click with a treat.  Because 
the TimeRate  System interprets the sound of the clicker as both an unusual and salient stimulus, the 
clicker stimulus onset will be passed on to the action selection mechanism, causing a react operation to 
be performed.  The creature will not be able to explain the click, and, assuming that the trainer is 
randomly clicking, any Predictors that are generated to explain what causes a click will eventually be 
discarded as unreliable . 
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Figure 40: Results of phase 1: A Predictor indicating that the click precedes treat. 

Similarly, the appearance of food will be passed as a salient event to the action selection mechanism.  
The creature will again attempt to explain this stimulus onset.  There is a very high probability that it 
will form a Predictor indicating that the click stimulus precedes the food stimulus, as the onset of the 
click stimulus was not only highly salient, but also temporally proximate to the treat stimulus.  When 
the creature creates the appropriate “click precedes food” Predictor, it will encode the predicted 
interval between the two stimuli as equal to its perception of the initial interval between those two 
events .  During subsequent trials, the prediction interval will drift toward the average click-to-treat 
interval used by the trainer. 

Although when training live animals with the clicker-training procedure  a click should always be 
followed by a treat, the computational architecture will still work if this is not always the case.  The 
creature may instead grow accustomed to a long-term reliability for the clicker much less than 100%.  In 
fact, it is a change in the rate of reinforcement that motivates learning.  When the creature  detects a 
difference between the short- and long-term reliability of a Predictor, an affective change is produced 
that causes an increase in curiosity, and the Predictor is provided with an opportunity to refine itself. 

4.4.3.2 Second Phase: Associate Action with Click  
In the second phase of clicker training, the trainer clicks when the animal performs a certain action.  At 
this time, the creature still doesn’t have a reliable Predictor for the appearance of the click stimulus, but 
the action selection mechanism’s react operation is particularly prone to finding such a Predictor, as the 
creature has a strong affective stance toward the click stimulus (because of its ability to predict the 
appearance of food).   

 

Figure 41: Results of phase 2: A Predictor indicating that begging predicts a click (top of Figure).   

The creature will generate a Predictor suggesting that when it performs a particular action – for 
example, sitting down – an onset of the click stimulus will occur after an interval.  When the creature 
performs the action again, the Predictor places on the creature’s TimeLine a Prediction Event indicating 
that the click stimulus will appear momentarily.  As Trials like this are successful and the Predictor is 
reinforced, the creature will exhibit Thorndike’s Law of Effect, increasing the percentage of the time it 
sits down when it is hungry.   

4.4.3.3 Third Phase: Associate Signal-plus-Action with Click  
In the third phase of clicker training, the trainer will take advantage of the creature ’s propensity to 
perform a particular action in order to associate a particular signal with that action.  The trainer causes 
the onset of the signal around the time that the creature performs the action, and only provides 
reinforcement when the creature pe rforms the action while the signal is present.   
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Figure 42: Phase 3: the “begging when you hear the ‘beg sound’ results in a click” Predictor (top of Figure) 
becomes more reliable than the simpler “begging results in a click” Pre dictor (middle of Figure). 

The creature finds that the reliability of the Predictor it generated in the second phase of training 
continues to decline until its recent reliability is substantially different from its long term reliability.  
This will trigger the Predictor to refine its context in an attempt to become more reliable.  It should note 
that the presence of the trainer’s signal at the onset of Trials is a particularly reliable indicator of the 
success or failure of those Trials.  Thus, the refined Predictor will include the trainer’s signal in the 
TriggerContext. 

Over time, the simpler “beg produces click” Predictor formed during the second phase of training will 
be culled, and the new “beg when I observe the signal produces click” Predictor will prove to be much 
more reliable. 

4.5 Summary 
In discussing how we have integrated apparent temporal causality into the architecture, we have 
introduced two characters – one in an applied operant conditioning domain, and the other in the more 
whimsical Goatzilla domain – that demonstrate in more depth how the learning process occurs.  
Duncan’s example showed how an understanding of apparent temporal causality allows the system to 
perform new and more robust forms of learning.  Goatzilla showed how the action selection mechanism 
and causality relationships allow a creature living in a complex domain to learn about its world.  Both 
examples illustrate how the system is able to create virtual creatures that operate in real-time in non-
trivial domains, solving problems, even capable of being trained like their real-world counterparts. 
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5.0 Results for Cognitive Psychology 

In the previous Section, we described results obtained by integrating the representations for apparent 
temporal causality and action into an existing behavior system, and observing two characters built with 
the augmented architecture.  We now discuss this architecture’s ability to reproduce a variety of 
conditioning phenomena  well-known to the cognitive psychology community.   

We begin with a discussion of how useful and elegant Scalar Expectancy Theory’s concept of time scale 
invariance has been, and the challenges we have faced integrating Rate Estimation Theory into a 
computational system.  Inspired by Gallistel and Gibbon’s contrast between the associative (Rescorla -
Wagner) framework and the timing framework, we then provide ActionTuple answers to some basic 
questions from an introductory course on learning that demonstrate how our architecture differs from 
the associative and timing models .   

Finally, we discuss this architecture’s theoretical capacity to recreate cue competition and background 
conditioning phenomena.  Although we have not yet had the opportunity to set up each of these 
experiments and observe the resulting behavior, we offer here a theory of how the system should 
perform in a variety of experimental setups. 

5.1 The Utility of Time Scale Invariance 
The time scale invariance suggested by Scalar Expectancy Theory provides an elegant representation of 
internal timing in the Predictor representation.  Because Predictors record the perceived interval 
between two stimuli and use ß-thresholds to generate windows in which stimuli are predicted, the 
creature is able to predict short intervals with high precision, and exhibit a plausible amount of 
uncertainty for longer intervals.   

Consider the alternatives.  We could have used an associative framework that did not include a temporal 
window.  We have already discussed (as do Gallistel and Gibbon) how this prevents us from explaining 
many observable conditioning phenomena.  We could have used a default interval length, assuming that 
any predicted events would occur “very shortly” in the future.  This technique, used with some success 
in the previous architecture, prevents the creature from reacting appropriately when the interval 
between events is more than a few seconds in length.  If a shock is predicted to arrive in roughly twenty 
seconds, the creature should probably wait nearly that long before taking action to avoid the shock.  We 
could have used a variable interval length and a fixed window size.  The window size then becomes a free 
parameter that would have to be arbitrarily set. 

A final alternative would be to derive an algorithm for simultaneously learning both the interval length 
and window size.  This would allow us to express some temporal intervals that might be useful, say, for 
having a creature learn a piece of classical music in the western tradition, for which it would need to 
represent intervals of varying length with high prevision.  To do this would require maintaining 
additional statistics every time a stimulus is perceived.  Without constraints, this would produce the 
biologically-implausible result that creatures could learn to predict high-resolution events in the distant 
future.  There may yet be some heuristic that would allow us to learn interval length and window size 
in a reasonable, biologically-plausible way.  But for now, time scale invariance has helped us create an 
intuitive and elegant representation for the causality relationships the system has needed to represent.   

5.2 The Rate Estimation Challenge  
As a computational model, Rate Estimation Theory is capable of explaining a wide variety of 
observable conditioning phenomena in a particularly elegant way.  Its underlying principles – the 
principle of parsimony and the principle of rate additivity – have provided the foundation of this 
architecture’s design. 
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Implementing a pure form of RET’s computational process (described in Section 2.4.1.3) into the 
computational architecture has posed two significant difficulties.   

The first is one of scale: RET requires that we maintain a temporal coefficient matrix that contains 
stimulus concurrence information for all perceived stimuli.  For a system that must contend with 
hundreds or possibly thousands of stimuli, the n2 scaling factor is a challenge.  There are two beacons of 
hope.  First, this matrix is undoubtedly sparse, and it contains large regions that could possibly be 
approximated.  Second, the salience filter’s ability to reduce the size of the input space offers us an 
opportunity to reduce the magnitude of n. 

The second challenge is one of computational complexity.  Arriving at the corrected rates of 
reinforcement for the stimuli involves at least one matrix inversion and a matrix multiply, plus a 
recursion on this process for each redundant stimulus that needs to be removed.  To add to this 
complexity, in this architecture the values of stimuli are computed relative to their perceived effect on 
the creature’s current drive state, thus rendering it very difficult to cache the corrected rates of 
reinforcement for various stimuli, or compute those rates of reinforcement “offline” with a process 
happening in the background. 

We have not been able to address these challenges, but our implementation provides an approximation 
to RET that incorporates both of its fundamental principles in the way a creature attempts to explain its 
world by building reliable Predictors.  When trying to explain a surprising stimulus (during the react 
operation), and when new stimuli are being chosen (while refining a Predictor), rate additivity is used 
to assess the perceived value of a stimulus.  The principle of parsimony is also fundamental in that the 
creature is only motivated to learn the simplest explanation for how its world works.  The stimuli 
chosen to be added to the context of a Predictor during innovation are those that most simply and 
reliably allow the creature to predict the future onset of a stimulus. 

One thing worth noting here is that this architecture’s Predictor implementation makes it very difficult 
for the creature to represent random rate processes, something we discuss in more detail under “Future 
Work” in Section 7.3.1. 

The best way to illustrate how the approximation heuristics work is to take a cue from Gallistel and 
Gibbon, and compare and contrast this architecture with the associative and timing models. 

5.3 Different Answers to Basic Questions Redux 
Inspired by Gallistel and Gibbon’s contrast between the associative (Rescorla -Wagner) framework and 
the timing framework, we provide ActionTuple answers to some basic questions from an introductory 
course on learning.  The standard and timing answers are reproduced from [Gallistel, Gibbon 2000]. 

1. Why does the conditioned response appear during conditioning? 

Associative answer: Because the associative connection gets stronger. 

Timing answer: Because the decision ratio for the whether-to-respond decision grows until it exceeds a 
decision threshold. 

ActionTuple answer: Because the confidence in a Predictor is sufficiently high to trigger a response 
during a react operation. 



It’s about Time: Temporal Representations for Synthetic Characters 71 

2. Why does the CR disappear during extinction? 

Associative answer: Because there is a loss of net excitatory associative strength.  This loss occurs either 
because the excitatory association itself has been weakened or because a countervailing inhibitory 
association has been strengthened. 

Timing answer: Because the decision ratio for the whether-to-stop decision grows until it exceeds the 
decision threshold. 

ActionTuple answer: Because the confidence in a Predictor declines until it is below the culling 
threshold. 

(The e xtinction protocol is one wherein the CS is presented without the US until the CR disappears.) 

3. What is the effect of reinforcement? 

Associative answer: It strengthens excitatory associations. 

Timing answer: It marks the beginning and/or termination of one or more intervals: an inter-
reinforcement interval, a CS-US interval, or both. 

ActionTuple answer: It marks the beginning and/or the termination of one or more intervals: an inter-
reinforcement interval, a CS-US interval, or both.   

4. What is the effect of delay of reinforcement? 

Associative answer: It reduces the increment in associative strength produced by a reinforcement. 

Timing answer: It lengthens the remembered inter-reinforcement interval, the remembered CS-US 
interval, or both. 

ActionTuple answer: It lengthens the remembered inter-reinforcement interval, the remembered CS-US 
interval, or both. 

5. What is the effect of non-reinforcement? 

Associative answer: The non-reinforcement (the No-US) weakens the excitatory association; or, it 
strengthens an inhibitory association. 

Timing answer: The timer for the most recent inter-reinforcement interval continues to accumulate. 

ActionTuple answer: The timer for the most recent inter-reinforcement interval, and the timers for any 
Predictions on the TimeLine predicting the appearance of reinforcement (each corresponding to a 
Predictor Trial), continue to accumulate.  When significantly past the predicted time of a reinforcement, 
the Trial associated with a Prediction will be flagged as a failure, reducing the corresponding 
Predictor’s predictive confidence. 

6. What happens when nothing happens (during the inter-trial interval)? 

Associative answer: Nothing. 

Timing answer: The timer for the background continues to accumulate. 

ActionTuple answer: Any timers from any TimeLine Predictions continue to accumulate, as do the 
creature’s background time r (its internal clock). 
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7. What is the effect of CS onset? 

Associative answer: It opens the associative window in the mechanism that responds to the temporal 
pairing of two signals.  That is, it begins a trial during which the updating of associative strengths will 
occur. 

Timing answer: It starts a timer (to time the duration of this presentation) and it causes the cumulative 
exposure timers to resume cumulating. 

ActionTuple answer: Each Predictor with the CS as its Predictor Context starts a Trial, causing a 
Prediction Event to be placed on the TimeLine and its timer started.  The cumulative exposure timers 
for each Stimulus (and any concurrence duration exposure timers) resume cumulating, although the 
cumulative exposure times are not used in this architecture. 

8. What is the effect of varying the magnitude of reinforcement? 

Associative answer: It varies the size of the increment in the excitatory association. 

Timing answer: It varies the remembered magnitude of reinforcement. 

ActionTuple answer: Predictors  predicting various magnitudes of reinforcement are generated.  These 
magnitudes are assumed to be discretized by the available Percepts in the creature’s Percept Tree (big 
reinforcement, small reinforcement, etc.)  The expectation violation results in an increase in the curiosity 
drive, encouraging exploration. 

9. Why is the latency of the conditioned response proportional to the latency of reinforcement? 

Associative answer: There is no widely accepted answer to this question in associative theory. 

Timing answer: Because the animal remembers the reinforcement latency and compares a currently 
elapsing interval to that remembered interval. 

ActionTuple answer: Because the animal remembers the reinforcement latency and compares a 
currently elapsing interval (that of the Prediction found on the TimeLine) to the remembered interval 
(the interval encoded in the corresponding Predictor). 

10. What happens when more than one CS is present during reinforcement? 

Associative answer: The CSs compete for a share of a limited increment in associative strength; or, 
selective attention to one CS denies other CSs access to the associative mechanism (CS processing 
deficits); or, predicted USs lose the power to reinforce (US processing deficits). 

Timing answer: The rate of reinforcement is partitioned among reinforced CSs in accord with the 
additivity and predictor-minimization constraints. 

ActionTuple answer: Each CS will have a Predictor that predicts the appearance of reinforcement; thus 
the creature will be highly confident that reinforcement is forthcoming, and the confidence in both 
Predictors will rise when reinforcement appears.  Predictor minimization constraints are handled by the 
culling sentinel, which may observe redundancy among the Predictors. 

11. How does conditioned inhibition arise? 

Associative answer: The omission of an otherwise expected US (the occurrence of a No-US) strengthens 
inhibitory associations. 

Timing answer: The additive solution to the rate -estimation problem yields a negative rate of 
reinforcement. 

ActionTuple answer: A Predictor that uses inverted Percept activations is formed.  Its containing 
ActionTuple obtains a perceived value that indicates a negative rate of reinforcement.   
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12. What happens when a CS follows a reinforcer rather than preceding it? 

Associative answer: Nothing.  Or, an inhibitory connection between CS and US is formed. 

Timing answer: A negative CS-US interval is recorded, or, equivalently, a positive US-CS interval.  
(More precisely: subjective intervals, like objective intervals, are signed.) 

ActionTuple answer: An area for future investigation.  The representations used – including signed, 
subjective Predictor intervals – are sufficient for representing Backward Conditioning phenomena.  
Either allowing the generation of negative CS-US intervals, or considering Predictors as bi-directional, 
would allow Timing results to be reproduced. 

13. How does a secondary CS acquire potency? 

Associative answer: An association forms between the secondary CS and the primary CS, so that 
activation may be conducted from the secondary CS to the primary CS and thence to the US via the 
primary association. 

Timing answer: The signed interval between the secondary and primary CS is summed with the signed 
interval between the primary CS and the US to obta in the expected interval between the secondary CS 
and the US. 

ActionTuple answer: Two Predictors are generated: one representing the signed interval between the 
secondary and primary CS, and the other representing the signed interval between the primary CS and 
the US.  These intervals are summed to obtain the expected interval between the secondary CS and the 
US.  The utility of the secondary CS is recursively computed using these two Predictors.  (The concept 
of perceived value makes this possible.  The confidence of the two Predictors is multiplied to obtain the 
expected confidence that the secondary CS will produce the US.) 

14. How is CS-US contingency defined? 

Associative answer: By differences in the conditional probability of reinforcement. 

Timing answer: By the ratio of the rates of reinforcement. 

ActionTuple answer: By ActionTuples representing the perceived confidence in a temporal relationship 
between the CS and the US. 

15. What is the fundamental experiential variable in operant conditioning? 

Associative answer: Probability of reinforcement. 

Timing answer: Rate of reinforcement. 

ActionTuple answer: The reliability with which one event follows another after an interval. 

5.4 Cue Competition  
Conditioning to one conditioned stimulus does not occur independe ntly of the conditioning that occurs 
to other stimuli.  Gallistel and Gibbon’s model is particularly effective at explaining cue competition 
phenomena , which describe the interplay of different stimuli during a conditioning procedure.  It 
would be constructive to consider how this architecture should reproduce or approximate these 
phenomena , even though we have not yet had the opportunity to formally reproduce these 
experiments . 

In the following sections, we will adopt some terminology and abbreviations from the psychological 
literature.  The conditioned stimulus, or CS, is represented in this architecture by a stimulus found in the 
TriggerContext or ObjectContext of an ActionTuple.  The unconditioned stimulus, or US, is a stimulus 
predicted by a Predictor.  Each Predictor contains one and only one US, although an ActionTuple may 
contain multiple Predictors and thus predict multiple unconditioned stimuli.  In most experiments, the 
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US is “unconditioned” because its appearance is considered to be inherently rewarding or punishing; 
for example, the appearance of food, or a foot shock. 

5.4.1 Blocking 
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A, B reinforced togetherA reinforced

time

Result

 
Figure 43: Blocking procedure. 

Blocking describes the phenomenon that occurs when one CS is presented alone some of the time, and 
together with a second CS some of the time.  If the rate of reinforcement during presentations of the first 
CS – Stimulus A in Figure 43 – is unaffected by the presence or absence of the second CS (Stimulus B), 
then the second CS does not get conditioned no matter how often it is reinforced. 

During a blocking procedure, this architecture would first cause the creature to form the Predictor that 
the first CS (Stimulus A) predicts reinforcement.  The creature’s confidence  in this Predictor would 
increase as repeated appearances of Stimulus A are followed by reinforcement.   

After this “A-predicts -US” Predictor has been generated, the creature will have no reason to generate 
another Predictor the next time the US appears.  It will have already been predicted by the first 
Predictor.  Thus, in accord with the principle of parsimony, the architecture finds no reason to learn 
about a relationship between Stimulus B and the US , and blocking is correctly reproduced. 

5.4.2 Overshadowing 
When two CSs are always presented and reinforced together, a conditioned response generally 
develops much more strongly to one than to the other.  This phenomenon is known as overshadowing .   
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Figure 44: Overshadowing procedure. 

For any combination of CSs that have always occurred together, Rate Estimation Theory allows the 
stimuli to register an infinite number of rate estimates that sum to the observed rate of reinforcement.  
The principle of predictor minimization eliminates the redundant CSs, resulting in the selection of an 
“overshadowing” stimulus that dominates the other stimuli and minimizes the number of stimuli 
credited with predictive power.  The stimulus that ends up overshadowing the others seems to be often 
arbitrarily selected.  Some work suggests that creatures may have innate biases toward selecting a 
particular type of stimulus [Foree, LoLordo 1973].  



It’s about Time: Temporal Representations for Synthetic Characters 75 

RET explains overshadowing and blocking without involving any free parameters for stimulus salience.  
While those free parameters already exist in this architecture (and have already proven valuable during 
action selection), our philosophy parallels RET in that the method we use for predictor minimization 
does not depend on the salience of stimuli.  Instead, it relies on the culling sentinel mechanism that 
seeks to preserve only the simplest explanation for the appearance of a stimulus. 

The culling sentinel, as described in Section 3.3.6, would not generate overshadowing phenomena, but 
it could readily be augmented to do so.  It currently eliminates the more complex of a pair of equally-
reliable Predictors that both predict the same outcome.  The sentinel could similarly remove a Predictor 
if another Predictor of the same outcome  already exists , and the contexts for both Predictors consist of 
stimuli with very high concurrence.   

5.4.3 One-Trial Overshadowing 

Overshadowing effects can become apparent after only one trial during which redundant CSs are 
reinforced.  This one-trial overshadowing effect should also be produced by this architecture as a result of 
the react operation’s attempt to isolate a single, simple explanation for the appearance of an unexpected 
stimulus.  It generates a single Predictor to explain an unexplained stimulus, immediately producing 
overshadowing effects.   

No attentional process is needed to exclude other CS candidates from “access to the associative 
process,” as Gallistel puts it.  However, when the creature needs to randomly choose between two CSs 
to select one explanation for use in a Predictor, it makes sense to take advantage of the creature’s 
attentional process by weighting the decision slightly in favor of a CS found in the creature’s current 
object of attention. 

5.4.4 Relative Validity 

The architecture should correctly model the relative validity effect, first demonstrated by Wagner and 
discussed in [Wagner, Logan et al. 1968].  Consider three stimuli labeled A, B, and X which are used for 
two types of trials: AX trials, in which A and X are presented; and BX trials, in which B and X are 
presented.  There are two protocols: P1, for which AX trials are reinforced and BX trials are not; and P2, 
for which half the AX trials and half the BX trials are reinforced.  Subjects that are exposed to the P1 
protocol develop a conditioned response to stimulus A only, and subjects exposed to the P2 protocol 
develop a conditioned response to stimulus X only.  Hopefully Figure 45 will help make this 
comprehensible. 
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Figure 45: Relative validity procedure.  In the P1 protocol, subjects have AX trials reinforced; in the P2 protocol, 

subjects have half the AX and half the BX trials reinforced.  P1 subjects  develop a response to stimulus 
A only; P2 subjects develop a response to stimulus X only. 

The Predictor generation and culling mechanisms in this architecture should accurately arrive  at the 
result for the P1 protocol.  A creature exposed to the P1 protocol will begin by generating a Predictor 
with either X or A as the context.  If A is chosen, no further surprises will occur.  If X is chosen, the 
creature will experience expectation violations during each BX trial, until the Predictor is no longer a 
sufficiently reliable predictor to explain the reinforcer.  Through Prediction refinement – or, if the first 
Predictor is culled, another react operation – the expected Predictor involving A will be generated. 

A creature exposed to the P2 protocol will begin with one of three hypotheses: that either A, B or X 
results in a reward.  If the creature chooses A or B, on a subsequent trial it will also hypothesize  that one 
of the remaining two stimuli also predicts  a reward.  The challenging case is the one wherein the 
creature selects both A and B, and thus is on the road to developing a conditioned response to both A 
and B.  In this case, the formation of the prediction that X results in a reinforcer should come from the 
partial reinforcement schedule, because neither A nor B will predict reinforcement with particularly 
high reliability.  The react operation, when performed on the appearance of the reinforcer, may 
determine that the reinforcer was not sufficiently predicted by any existing Predictor, and generate a 
new hypothesis that X predicts reward.   

As is the case with Overshadowing, to perfectly reproduce this phenomenon, an augmentation to the 
culling mechanism is needed that that would recognize A and B’s concurrence relationship with X, 
eventually causing the  first two Predictors to be culled. 

5.4.5 Inhibitory Conditioning 

Inhibitory conditioning describes a procedure in which the presence of a stimulus predicts the omission 
of reinforcement.  Two features of the architecture make it possible for creatures to respond 
appropriately to this procedure .   

First, the SET/RET model records subjective rates of reinforcement.  In this architecture, although we do 
not incorporate rates of reinforcement, we record subjective DriveVectors which can be negative as well 
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as positive.  Value is represented in terms of those DriveVectors, which contain a perceived effect on the 
creature’s drives relative to how they would change otherwise.  Thus, if the creature predicts that in the 
absence of action it will feel increasing amounts of pain, but in the presence of action A its level of pain 
will remain constant, then the DriveVector that will come to be associated with action A is not zero but 
rather very high.  Similarly, if the creature predicts that a reinforcer is imminent except if a particular 
stimulus is perceived, then that stimulus will have a high magnitude value, representing a relative 
increase in drives. 

The second feature of the architecture that makes this possible is that the creature is able to represent 
the absence of a Percept as easily as it can represent its presence.  It is a well-established fact that 
animals do not represent the absence of a stimulus as readily as they represent its presence (Gallistel, 
pers. comm.), an effect that we could model using different levels of inherent salience  for each of the 
stimuli.  But regardless, both “absence” and “presence” Stimuli can potentially considered interesting 
by the TimeRate System (see “Finding Stimuli in existing Perceptual Representations ,” Section 4.1.1). 

We note that in this formulation, as in Gallistel’s, the conditioned effects of an inhibitory stimulus have 
nothing to do with inhibition in the neurophysiological sense.   

5.5 Background Conditioning 
Another class of conditioning experiments it would be useful to consider is the set of Background 
Conditioning  procedures.  The truly random control protocol describes an experiment where the 
background rate of reinforcement is the same as the rate of reinforcement when a transient CS is also 
present.  The important result here is that conditioning depends on the CS-US relationship, rather than 
simply the pairing of the CS and US. 

In this architecture, truly random pairing between the CS and the US will prevent the creature from 
arriving at a reliable apparent temporal causality relationship.  As the two stimuli continue to randomly 
appear, assuming they are both salient, the creature will attempt to explain their appearance and 
generate appropriate Predictors during the react operation.  The Predictors formed will suggest that one 
stimulus follows the other after a particular interval described by Scalar Estimation Theory.  Any such 
Predictor will inevitably be proven unreliable and discarded. 

As a result, during the truly random control experiment, the creature will continuously be generating 
low-confidence expectations as it perceives the CS and US.  These expectations will not be met in a 
sufficiently reliable way and the Predictors making those expectations will eventually be discarded.  
Thus this architecture should perform like a real subject during a truly random control procedure: 
Conditioning does depend on a CS-US relationship. 

5.6 Backward Conditioning 
Backward conditioning produces an association where the subject learns that the US precedes the CS.  
From a prediction point of view this is problematic, as the CS does not enable the creature to anticipate 
the US.  But an elegant experiment by Cole et. al. demonstrates how backward conditioning can 
sometimes provide a creature with a mechanism for predicting an event forward in time [Cole, Barnet et 
al. 1995]. 
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Figure 46: The  Cole experiment (after [Gallistel, Gibbon 2000], Figure 22A). 

There are two versions of Cole’s experiment.  In the first, a delay protocol is used, whereby a tone CS is 
followed after a delay by a foot shock US.  In the second version, a trace protocol is used, in which the 
tone is sounded, and then stopped, and then after a n interval the foot shock US appears.  (see the above 
Figure).  In both protocols, there is then a second stage of backward second-order conditioning, in 
which the tone CS is followed by a clicking CS.  This phase must be kept brief to prevent extinction of 
the conditioning that occurred during the first stage. 

Subjects who experience the trace conditioning protocol followed by the backward second-order 
conditioning show signs of fear after perceiving the clicking CS.  Explanations of this phenomenon from 
associative and timing perspectives are found in Gallistel’s paper [Gallistel, Gibbon 2000].  The 
architecture described here should be capable of simulating this phenomenon by generating the 
prediction of a tone CS backward in time, which in turn could generate a prediction of impending foot 
shock US forward in time (past the present), thus triggering an avoidance response to the predicted 
shock. 

Subjects who experience the delay protocol instead show little or no fear.  For those subjects, the 
expected interval to shock at the onset of the secondary CS (the clicker) is 0.  Thus, by the time they 
perceive the onset of the  CS, there is nothing to fear. 

The TimeLine and Predictor mechanisms, as well as the implementation of the action selection 
mechanism, are capable of representing the prediction of an event in the past.  The intuition for why 
this might happen is that the creature may believe it failed to perceive the event in the past.  However, 
Backward Conditioning will not emerge under the current Predictor generation procedure , as all 
explanations  it correctly created to account for the unexpected appearance of a stimulus look backward 
in time for an appropriate explanation.  We propose two ways that this problem could be addressed in 
the Future Work section that follows . 

5.7 Section summary 
The cognitive architecture benefits from a tight integration of Scalar Expectancy Theory (Section 5.1).  
We have developed heuristics that let us incorporate the principles behind Rate Estimation Theory, and 
discussed challenges inherent in a direct implementation of its computational model (Section 5.2).  We 
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summarized the architecture’s relationship to the existing associative and timing models of 
conditioning (Section 5.3).   

The architecture should, in theory, correctly reproduce several cue competition phenomena (blocking, 
one -trial overshadowing, inhibitory), and would likely be able to reproduce others (relative validity, 
overshadowing) with additional augmentation (Section 5.4).  The system should correctly reproduce 
background conditioning phenomena (Section 5.5), but a change to Predictor generation would be 
required to perform backward conditioning (Section 5.6).  Further discussion of avenues for future 
work follows in Section 7. 
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6.0 Related Work 

This work borrows heavily from the impressive work that has come before.  We summarize here some 
of our inspirations from the fields of virtual ethology and conditioning. 

6.1 Virtual Ethology 
Using a simple perception-output mapping, Braitenberg ascribed to his vehicles affective qualities 
ranging from love to fear, representing one of the original forays into the realm he called “synthetic 
psychology” in [Braitenberg 1986].  Reynold’s boids algorithm represented the first behavior-controlled 
animation; see [Reynolds 1987]. Tu and Terzopolous’s physically-based artificial fish model, described 
in [Tu, Terzopoulos 1994], incorporate d a perceptual model and a behavior system.  Perlin’s Improv 
system is designed to create interactive actors.  As opposed to beginning with intelligence, Perlin is 
interested fundamentally in creating “actors” with powerfully scripted behaviors  [Perlin, Goldberg 
1996].  Damasio’s somatic markers , described in [Damasio 1995], are a precursor to our drive -based 
value attribution.  A number of recent commercial software products have focused on interactive 
characters, including PF-Magic’s Dogz series [PF.Magic 1996], Cyberlife’s Creatures series [Cyberlife 
1998] and Evans’ remarkable titans  in Black and White , which he describes in [Evans 2001].  Our 
Predictor innovation mechanism is functionally analogous to his entropy-based dynamic decision trees.  
The Synthetic Characters Group’s system architecture, known as c4, is described in [Isla, Burke et al. 
2001], and in excruciating detail in [Burke, Isla et al. 2001]. 

The importance of considering perception and learning together was emphasized by Barlow in [Barlow 
1990], in which he concludes that perception must play an important role in providing a representation 
that promotes the efficient learning of predictive associations.  Kline provides a discussion of prediction 
for synthetic characters, and discusses the differences between surprise and expectation violation in 
[Kline 1999].  Maes and Drescher also provide insight into working with reliability in [Maes 1989] and 
[Drescher 1991].  Allen’s work on temporal logic integrates temporal reasoning into a planning system 
[Allen 1991].   

deKleer provides a solid introduction to causal theories in [deKleer, Brown 1986].  Further discussion of 
the application of causality is found in [Iwasaki, Simon 1986] and [deKleer 1986].  Pearl’s discussion of 
how we try to “explain away” why an event occurred in [Pearl 1988] influenced this architecture’s 
explain operation.  Sheridan discusses the purpose of cognition and mental models in [Sheridan 1992], 
and also describes behaviorist and hermeneutic challenges to mental models and rationality in 
cognitive science.  Also see Moray for more on the structure of mental models and the different types of 
causality in [Moray 1990]. 

Finally, the structure of this thesis is largely inspired by Blumberg’s Ph.D. work, [Blumberg 1996], in 
which he describes how the architecture of the Alive project synthesized ethological principles and 
classical animation.  In this thesis, we similarly detail a model inspired by ethology, provide a robust 
implementation in a creature, and discuss how that virtual creature is able to emulate many phenomena 
observable in live subjects.  

The shoulders of giants, indeed. 

6.2 Models of Conditioning 
As described in Section 5, Gallistel and Gibbon’s timing model, detailed in [Gallistel, Gibbon 2000], 
contrasts sharply with the standard model of conditioning mathematically formalized by Rescorla and 
Wagner in [Rescorla, Wagner 1972] and [Wagner, Rescorla 1972], and described by Domjan in [Domjan 
1998].  Using a nonstationary, multivariate time series analysis, Gallistel developed a spreads heet 
model of conditioning that incorporated SET and RET, available as [Gallistel 1992]. 
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7.0 Concluding Remarks 

7.1 Important Ideas 

7.1.1 Causality and Action Selection are integrated 

While it may require a leap of faith for cognitive psychologists  to assume that animals can implement a 
subjective timing mechanism with neurons, computer scientists require no such leap, just a few lines of 
code.  But although it was easy code Scalar Expectancy Theory’s timing mechanisms into Predictors , it 
was much more difficult to figure out how the action selection mechanism could make use of the 
expectations those mechanisms were generating. 

The single most important realization that allowed us to take advantage of causality information was 
that the contexts a creature uses to trigger actions can be equivalent to the contexts they use to trigger 
predictions.  If we use the same structure for both (in our case, the context of an ActionTuple), we reap 
tremendous benefits, in that the creature can easily integrate knowledge of how the world works into 
its action selection. 

If a creature would like an event to occur in the future, it can perform an action that causes the 
expectation that that event will occur after a given interval.  Even if the appearance of some stimulus 
should apparently cause a prediction of some useful future event, the creature can look for strategies 
that result in the appearance of that stimulus.  From an affective point of view, a creature can attribute a 
value to each stimulus based on how its onset can help move the world toward a more desirable state. 

7.1.2 Attention Selection and Action Selection are integrated 

The previous Synthetic Characters architecture distinguished between an attention selection mechanism 
and an action selection mechanism.  We have found it useful to tightly integrate the two in the new 
architecture. 

The old attention selection mechanism employed a series of heuristics to set the object of attention.  The 
action selection mechanism could override that decision if it believed it had a better idea of what the 
creature should attend to.  The decisions made by the attention selection mechanism, however, did not 
influence the action selection mechanism. 

The heuristics used to guide the attention selection mechanism – the observation of things that are 
large, moving fast, suddenly appear, and so on – are precisely the kind of events that the react 
operation is called upon to process in the new architecture.  Each of these events should have an effect 
on the creature’s object of attention, and in addition, each should also cause the creature to consider 
interrupting its current behavior in order to provide a more involved response.  A change in the 
creature’s focus of attention could be considered one part of such a response.   

We also note that the target object chosen by the explore operation is influenced by the current object of 
attention.  Thus the action selection mechanism takes advantage of attention selection results. 

7.1.3 A Desire to Understand the World Drives Learning 

Our fundamental assumption is that learning is driven by a creature’s desire to understand its world. 
When an event occurs that the creature  doesn’t predict, the creature is surprised and invents an 
explanation for why the surprising event occurred.  When an explanation (in the form of a Predictor) 
turns out to be erroneous, an expectation violation occurs and the creature either refines the explanation 
or invents a new one.  In the absence of unusual stimuli, a creature’s curiosity drive motivates it to explore 
the world.  Thus, it bears repeating that all three fundamental motivations for learning emerge from a 
desire to understand the world. 
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Certainly, the creatures described here are highly motivated to satisfy their drives by obtaining 
reinforcement from the world.  An attempt to maximize rate of reinforcement (or value) is fundamental 
to many existing architectures and learning techniques.  But in this case, instead of motivating a 
creature’s learning with a perpetual attempt to maximize rate of return, these creatures instead seek to 
understand enough about the world to satisfy their drives effectively and predict the onset of salient 
events .  They are then motivated by curiosity to discover new things, some of which may lead to new 
techniques for maximizing rate of return.  One observer called this the “curious slacker” approach.  

The results suggest it creates creatures that are better able to sustain the illusion of life.  Perhaps we 
ourselves are curious slackers.  Or perhaps it’s just me. 

7.1.4 The Cognitive Economy  

For every source there must be a sink.  For every mechanism that deposits topology, there must be a 
mechanism that performs withdrawals.  The architect of a brain must consider these issues when 
thinking about the performance of the system on various time  scales – eight seconds, eight minutes, 
eight hours, eight days – as well as in the theoretical limit.  What will happen, for example, to 
knowledge that is rendered useless by a change in the environment? 

When virtual financial economies reach a critical mass, they predictably behave like their real-world 
equivalents, and their management is wrought with similar challenges, such as those described by 
Simpson in [Simpson 2000].  We have sought to address many of these challenges in the cognitive 
economy already: over- and underproduction of commodities (like ActionTuples, Predictors, Beliefs, 
and Percepts for classifiers) causing deflation and inflation accordingly (the value of learning an 
important bit of knowledge relative to the computational cost of that knowledge); an unwillingness of 
participants in the economy to use the available sinks (for example, ActionTuples refusing to be 
removed by the culling sentinel); and above all, the tremendous challenge presented to an “economist” 
who seeks to understand and predict the behavior of the system at macro- and micro-economic levels. 

Animal brains are necessarily a sort of cognitive economy, as they are restricted by the finite number of 
neurons that can fit into the brain skull cavity.  An intriguing recent study suggests that licensed 
London taxi drivers have significantly larger posterior hippocampi.  Hippocampal volume was found 
to correlate with the amount of time spent as a taxi driver.  The researchers conclude there is a capacity 
for local plastic change in the structure of the adult human brain in response to environmental 
demands.  [Maguire, Gadian et al. 2000]  That the human brain can accommodate  such change without 
compromising the functionality of other systems is astonishing.  Perhaps we need to develop an agent 
or group of agents like the “B-Brain” watchdog proposed by Minsky (see [Minsky 1985]) that would 
similarly accommodate changes to a virtual brain in response to environmental demands.   

7.1.5 Nothing is Deterministic, and Many Distributions aren’t Linear 

An important part of designing a system that behaves reasonably like a real creature is coming up with 
fitting (and hopefully intuitive) probability distributions for many of the operations that the system 
needs to perform.  Every Selection in Section 3.2.3 provides an example – Action Selection, Drive 
Selection, Strategy Selection, and so on. 

It is almost always the case that when a system in a virtual creature makes a deterministic decision 
based on the “best option,” the creature is afforded an opportunity to get stuck in a mindless loop.  It 
invariably will.  Even during operations like exploit that are meant to produce the “best” option, each 
decision should always employ some degree of randomness.   

That being said, it’s rare that a linear histogram probability distribution produces the desired results .  
There is evidence to suggest that in some selection processes, animals behave like ideal detectors, 
dividing their time between two or more behaviors in such a way as to maximize the reward provided 
by the various options (see [Gallistel, Mark et al. 2001]).  But in other kinds of selections, such as the one 
performed by the DogEar Utterance Classifie r when it classifies a new utterance, a linear probability 
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distribution produces frustrating results (see Appendix A).  If the match metric between an utterance 
and the “sit” group is 0.4 out of 1.0, the match between the utterance and the “down” group is 0.5 of 1.0, 
and the match for all other groups negligible, we should want to select “down” much more often than  
5/9 ? 56% of the time!  On the other hand, under these conditions, we should want to select “down” 
somewhat less than 100% of the time, or we may never explore the possibility that the utterance is being 
misclassified.   

Time spent choosing an optimal and intuitive distribution for a selection process is rarely wasted.  The 
theory of probabilities, noted Laplace, “is nothing more than good sense confirmed by calculation.” 

7.1.6 A Good Visualizer Is Worth Thousands of Lines of Debug Spew 

The Percept Tree, Autonomic Variable, Action Selection, TimeLine and other visualizers proved 
indispensable  during the creation of this architecture.  Many problems were  diagnosed and solved as a 
result of watching the creature in action and concurrently monitoring the state of its brain.  For 
example, the need for an affective model that responds appropriately to predictions, expectation 
violations, and explanations (see Figure 25 and Section 3.4) became apparent while observing the 
results of an earlier, more naïve affective model. 

The author marvels at Tufte ’s capacity to visualize information, although he can only aspire to his 
elegance  (both [Tufte 1990] and [Tufte 2001] are highly recommended).  We offer two important lessons 
here.  First, the visualization apparatus should be implemented as an entirely separate entity from the 
rest of the architecture.  Second, low-pass filters and other embellishments that alter the information 
being presented are entirely unwelcome  in the display.  Such techniques reduce the amount of 
information presented, and cause uncertainty about whether an effect comes from the underlying 
process or the visualizer, whose function should be to effectively convey information. 

7.1.7 The World Resists Oversimplification (Beyond Simple Credit Assignment) 

Many credit assignment and machine learning algorithms  make subs tantial assumptions about how the 
world is represented.  Q-Learning, for example, requires that the world is divided into discrete states, 
transitions between those states and is always only in one state . 

There is a large class of problems for which this technique is demonstrably useful (see [Kaebling, 
Littman et al. 1996] for a survey).  But even the relatively simple virtual worlds described here resist 
reduction into simple states.  The real world isn’t ever in a single simple state , nor does it conveniently 
transition from a single state to another single state.  If we are overzealous in our attempts to simplify 
our mental representations of the world, we risk introducing what McCallum calls aliasing  – the 
inability for learning representations in the system to learn the right things, because the perceptual 
representations can’t distinguish between the things they need to learn about (see [McCallum 1995]). 

Credit assignment in this architecture is guided by apparent temporal causality, but many of the 
causality relationships doesn’t fall nicely into the category “A obviously precedes B, thus A predicts B.”  
Some, but not all, are a result of self-action.  Learning is guided by temporal proximity, but also 
salience, existing knowledge, and common sense about how the world works.  In summary: the world 
is not a simple place, and our representations and learning algorithms must embrace this. 

7.2 Summary of Contributions 
We summarize here the key implementation and functionality de tails that distinguish this framework 
from the previous Synthetic Characters architecture . 

7.2.1 Implementation 

• All value in the system is subjective and drive-based.  Subjective values are fundamental to the time 
and rate representation found in [Gallistel, Gibbon 2000], and multidimensional drive-based 
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values have been re -incorporated from their use in the Alive project, described in [Blumberg 
1996]. 

• The TimeLine provides a convenient collection of salient events both perceived and predicted in 
the past, present and future. 

• The Stimulus representation and TimeRate System provide useful abstractions for maintaining 
statistics and filtering salient perceptual information that will be processed by the action 
selection mechanism. 

• Predictors provide a means for interacting with the TimeLine to represent knowledge of 
apparent temporal causality. 

• A Results augmentation to Blumberg’s existing ActionTuple representation that integrates causality 
into the action selection representation. 

• A new attention- and action-selection mechanism with explore, exploit, react and startle as the 
fundamental operations allows the creature to perform coherent, relevant actions and generate 
appropriate affective responses to perceptions and predictions. 

7.2.2 Functionality 

• The ability to predict future events and react to those events, thus integrating elements of reactive 
and planning systems. 

• The ability to discover and refine knowledge of causality relationships in the world which may or 
may not involve self-action by a process of hypothesize, test, refine. 

• The reproduction of a variety of new conditioning phenomena, including blocking, overshadowing, 
and other cue competition phenomena, as well as generalization and discrimination. 

• An affective model that produces emotional memories about how things in the world – objects, 
creatures, actions, and so on – affect the creature’s drive state, facilitating a utility metric that is 
a function of the creature’s current drive state. 

• The ability to perform reinforcement learning, even when a reinforcer does not immediately follow 
the action being rewarded, by a process of learning new reward states and generating 
perceived values. 

7.3 Future Work 

7.3.1 Further integration of rate information 

A fundamental difference between this system and the representations suggested by Rate Estimation 
Theory is that this architecture places much more weight on events such as the onset and offset of 
stimuli.  The creature does not make predictions based on the sustained presence of a stimulus.  Thus, 
the architecture is adept at modeling causality relationships between discrete “events.” It is also 
effective at modeling rates of reliability.  But it is not yet capable of modeling rates of reinforcement in 
the sense described by Rate Estimation Theory. 

One problem with this architecture’s emphasis on Predictors is that their assumption of “trials” is very 
awkward for events that are generated by a random rate process, and thus do not regularly occur a 
fixed interval after the onset of some context (the Predictor Context).  When events are generated by a 
random rate process, the creature ends up generating multiple, low-confidence Predictors that predict 
the appearance of the stimulus after varying interval lengths.  It would be better if the  representation 
actually encoded in a single Predictor the concept “an event will occur with a given (low) probability at 
some point in the next while, but I can’t be much more precise about the interval.”  One way to “retro-
fit” this functionality into the existing architecture would be to have a sentinel detect the existence of 
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many similar Predictors with differing interval lengths, and amalgamate them into such a “random 
rate” Predictor.  

7.3.2 Integration of other Explanations 

Conc urrent work by Isla on spatial competence will provide the action selection mechanism with new 
explanations for expectation violations that arise from spatial common sense (see [Isla 2001]).  For 
example, occlusion may explain the creature’s inability to perceive a predicted stimulus.  Integrating 
Isla’s work into the architecture would provide an intriguing testbed for merging knowledge of 
temporal causality and common sense. 

7.3.3 Grouping of ActionTuples 

One way the system won’t scale is that innovation eventually results in an unmanageable number of 
ActionTuples that reside in one big list in the action selection mechanism.  We need some way to 
partition them so that they are perhaps task-oriented, or at least easier to manage and search through.  
Minsky notes (in [Minsky 1985]) that the human mind’s ability to recall useful information when it is 
needed without being swamped with useless information requires an effective way to organize our 
memories.  Unfortunately for those of us trying to implement such a mecha nism, the techniques our 
own minds use to perform this task are inaccessible to consciousness. 

7.3.4 Long-Term Memory 

The creature’s Working Memory currently contains Beliefs which represent caches of Percept activation 
data for the various objects in the world.  Each of the Percepts acts like a feature, and the Belief provides 
the object representation.  When the creature does not perceive or predict the presence of an object for 
an amount of time, its corresponding Belief is eventually culled from Working Memory.  But we would 
like to learn about the predictive properties of these particular objects in the world! 

At a more fundamental level, this architecture lacks a long-term semantic memory that would allow it 
to store and recall objects the creature has perce ived in the world.  Such a system would allow it to 
manage the Beliefs in Working Memory, possibly associating them with long-term concepts like “my 
friend the shepherd” and “the shed beside the shepherd’s dwelling” in a semantic memory.  The 
persistence of a concept about these objects beyond their stint in Working Memory could allow the 
creature to learn about objects on a more permanent basis, perhaps by providing the TimeRate System 
with Stimuli based on concepts on Long-Term Memory. 

7.3.5 Learning Higher-Level Goals and Concepts  

An exciting future direction would be to extend the learning mechanisms so that a creature can discover 
– and then learn how to satisfy – higher-level goals.  For example, in the Trial By Eire installation, 
Duncan the terrier can learn that the shepherd wants him to circle the sheep clockwise, but he can’t 
understand that the shepherd’s intention is to move the sheep south down the field.  To understand an 
intention like this, Duncan would need to represent more abstract, high-level changes to the world.  In 
the Goatzilla domain, it would be exciting for that creature to learn about and practice resource 
management.  In his current state, at the rate he’s going through sheep, it’s unlikely he’ll survive the 
harsh Highland winter.  More abstract goals and concepts would facilitate many exciting new kinds of 
behavior. 

7.3.6 Theory of Mind 

The creatures in the current system have no theory of mind.  Although many ethologists would argue 
it’s unlikely that dogs are capable of theory of mind (see [Shettleworth 1998] for discussion), integrating 
theory of mind would be an exciting avenue for future research.   

Goatzilla kicks the shed because he knows that action will eject the sheep, but he has no concept of the 
fact that they’re running because they’re scared out of their wits.  Without theory of mind, he can learn 
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that kicking the shed causes a loud noise and makes the shed rumble, and the sheep bolt as a result .  
But what if he could learn that kicking the shed causes a loud noise and a rumble, and that terrifies the 
sheep, who end up bolting out of fear?   Understanding even a little about the sentience of other creatures 
would give the learning mechanisms new insights into which strategies and avenues for exploration 
might prove effective in the future.  For example, if a creature wants to make sheep bolt, and he knows 
they bolt when they’re afraid, that creature might ask himself: well, what would make me afraid? 

Theory of mind would assist in understanding final causality as described by Moray in [Moray 1990], 
and discussed previously in Section 3.3.  The notion of integrating the other types of causality – material 
causality, efficient causality and final causality – to this system’s  understanding of formal causality is 
both exciting and daunting. 

7.3.7 Augmented Predictor Generation: Playing with Cause and Effect 

Backward Conditioning is not possible under the current scheme , as all explanations  generated by the 
explain function to explain the onset of a stimulus look backward in time  for a cause (cause, it assumes, 
precedes effect).  We propose two untested techniques for augmenting Predictor generation that might 
allow for effects like Backward Conditioning. 

The first would be to consider every Predictor to be bi-directional; that is, we employ the knowledge 
that the effects of a Predictor may have been caused by the earlier appearance of that Predictor’s 
context.  Thus, when the react operation is called upon to explain the appearance  of a stimulus, if it fails 
to find a Predictor on the TimeLine that explains the event, it could look for Predictors that would have 
reliably predicted the event had they been previously activated.  It is possible that the creature simply 
did not perceive the  activation of a Predictor Context; and if it had, then it would have predicted the 
appearance of this stimulus.  A significant difficulty with this approach would be determining which, if 
any, of the possible causes we should attribute to an effect. 

The second way to perform Backwards Conditioning would be to generate Predictors that specifically 
predict the prior appearance of a stimulus.  (Since the interval encoded is already relative, we are able 
to represent this as a “negative” interval.)  It remains  unclear why the creature would want to form 
such a Predictor.  Why generate the Predictor that A precedes B instead of the more useful one that says 
B follows A?  Perhaps because A predicts the reinforcer C. 

7.3.8 Negative Knowledge and the Culling Sentinel 

Whe n is negative knowledge useful and when is it simply a waste of memory?  The culling sentinel 
could also be improved to implement some of the protocols discussed above if it employed knowledge 
from the RET temporal correlation matrix that is now stored in the TimeRate  System.  The most obvious 
implementation of the Overshadowing protocol, for example, requires the culling of ActionTuples that 
are identified as redundant because their start contexts exhibit a high degree of temporal correlation.  
Such a mechanism would also make the architecture’s ability to model the P2 protocol of Relative 
Validity much more reliably (see Section 5.4.4). 

7.3.9 Spontaneous Recovery and the Culling Sentinel 

Two major reasons why the culling sentinel exists to remove Predictors and ActionTuples are that they 
take up space, and that a superfluity of ActionTuples slows down the action selection mechanism.  We 
have already described above (see Section 7.1.4) how Predictors that were once useful might be 
“retired” without being culled completely.  Storing the maximum reliability ever achieved by a retired 
Predictor might help us implement a spontaneous recovery mechanism if that Predictor was perceived 
to become useful again in the  future. 
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Appendix A: Classification Techniques 

Utterance Classification: DogEar  
The DogEar system inte grated into the UtteranceClassifier Percept mediates verbal communication 
between a human participant and one of the virtual creatures.  It converts a human participant’s 
utterance data into a Cepstral coefficient format that the creature processes.  The integration of the 
classifier into the Perception and Action Systems demonstrates one way in which the results of action 
selection can influence perceptual categories. 

Sound bites (recorded at 11025Hz) are obtained by using a thresholding algorithm that averages the 
signal over windows of 512 samples.  Recording starts when the signal is above the threshold, and ends 
when it has been below the threshold for three successive windows.  The sample is then trimmed at 
each end to the nearest zero-crossing. 

We have chosen to use a vector of Cepstral coefficients as a representation.  Inspired by the way a dog 
interprets the sound it hears, the creature does not comprehend language, nor does it have a concept of 
language.  What matters is the acoustic pattern of the  speech signal; thus, a Cepstral coefficient 
representation is sufficient to encode the necessary information.  Cepstral analysis is a technique that 
removes the pitch ripple from high-resolution speech spectra, as examined by Rabiner and Juang in 
[Rabiner, Juang 1993].  The goal of Cepstral analysis is to obtain the vocal tract response after removing 
the pitch ripple. 

The DogEar system performs this task robustly, even in high-noise environments, by filtering the log-
magnitude of the signal with an inverse FFT.  This is followed by truncation of the coefficients beyond 
the pitch frequency, and then a forward FFT [Intel 1998].  In the Fourier domain, we use 10 filters 
placed linearly on a scale from 100 Hz up to 2 kHz, followed by 10 additional filters laid out on a Mel 
scale up to 6400 Hz.  Analysis is performed using a window size of 512 samples and an overlap of 256 
samples per window.  Dynamic Time Warping, as described in [Rabiner, Juang 1993] and [Intel 1998], is 
used to implement the distance metric between two utterances. 

We have used two previous methods to group the utterances obtained in this way.  In the incarnation 
described in [Yoon, Burke et al. 2000], the system included a short-term memory module with a fixed 
number of memory cells, each of which represented a group of classified utterances.   When a new 
utterance was heard, it was compared to the utterances in all the groups to see if the distance of the 
newly arrived data in any of the groups is closer than a threshold.  In the Clicker version described in 
[Isla, Burke et al. 2001], the second incarnation of Duncan used the token associated with each action to 
generate groups of classified utterances.   

In the new architecture described by this thesis , instead of associating utterance groups with Actions, 
we associate utterance groups with ActionTuples.  The result is increased flexibility in the sort of token 
a creature can learn.  For example, the creature could learn to touch a blue object upon hearing the 
word “blue,” and touch a yellow object upon hearing the word “yellow,” a representation that would 
have been difficult to produce in the previous system without providing special-case ActionTuples.  
Additionally, the new learning mechanism’s ability to generate a new reward marker using reliable 
predictions of a reinforcer’s impending appearance allows the creature more flexibility for when it 
sends a reward signal to the classifier. 

Deciding to add a new group to the classifier is a decision of great consequence, as the performance of 
the classifier degrades as the number of categories it must distinguish between increases.  Thus a new 
group is added only when the creature creates a new ActionTuple based on the UtteranceClassifier 
Percept.  When the action selection mechanism, through an act of innovation, creates an ActionTuple 
that is associated with the UtteranceClassifier Percept, the UtteranceClassifier Percept spawns a new 
child Percept that represents a new Utterance group.  An ActionTuple can then be formed based on the 
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new Utterance group.  If all ActionTuples based on the SpecificUtterance  Percept are removed from the 
action selection mechanism, that utterance group is destroyed.   

Gesture Classification  
A similar ClassifierPercept scheme is used to implement gesture classification in the system.  For the 
details of the system, please see [Ivanov, Blumberg et al. 2000].  The implementation similarly uses a 
GestureClassifier Percept and its children, GestureModel Percepts, to allow the creature to interpret and 
learn from the input coming from a video stream. 
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Appendix B: Mathematics 

We summarize here many mathematical details of the mechanisms described in Section 3. 

Scalar Expectancy Theory 
First, we restate Scalar Expectancy Theory’s timing equation (see Section 2.4.1.2): 

 * * Tt k t=  (7)  

where 

t* is the  recorded interval 

k* is the  timing error 

tT is the cumulative subjective time recorded by the timing 
mechanism 

Drives and DriveVectors 
Evaluation of a drive dn (see Section 3.1.1): 

 n n( ) ( )nd t eval t setpoint= −  (8) 

where 

dn(t) is the evaluation of drive n at time t  

evaln(t) is the evaluation of Autonomic Variable n at time t 

setpointn is the set point of Autonomic Variable n. 

How Drives d1..dn are combined into DriveVector DV: 
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 
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 (9)  

where 

dmn(t) is the drive multiplier for drive n at time t  
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Utility and Affective Stance 
The utility u of something with value v (Section 3.1.1): 

 ( ) ( ) ( )u t v t DV t= ⋅  (10) 

where 

v(t) is the value of the thing at time t  

DV(t) is the evaluation of Autonomic Variable n at time t 

· is the dot product operator 

Note that for ActionTuples, the perceived value pv(t) is substituted for v(t) in equation (10). 

The affective stance a toward something with utility u (Section 3.4) is: 

 a( ) u( )t k t=  (11) 

where 

u(t) is the utility of the thing at time t  

k is some constant  

Predictors: Reliability 
The Long-term Reliability of a Predictor, R, is  computed (as in equation (3), Section 3.3.3.3) as 

 T T
predictor

T T T

g eR
g e b

+
=

+ +
 (12) 

where 

gT is the number of successful Trials 

eT is the number of explained Trials 

bT is the number of failed Trials 

The Short-term reliability is computed similarly, but only takes into account the seven most recent 
trials. 

Predictor innovation occurs when the difference between the long-term and short-term reliability 
metrics exceeds the innovation threshold, 0.25. 

Within a Predictor, the reliability of a stimulus a, Sa, that may become part of the starting context 
(reproduced from equation (5)) is computed as 

 [ ]1 2 1[ ( )] 0( )
2( ) T T

T T

S g g b g b b
g bα α α α α= + + − + +

+
 (13) 

where 

gT is the number of successful Trials 

bT is the number of failed Trials 

ga is the number of times stimulus a was present during a successful Trial 

ba is the number of times stimulus a was present during a failed Trial 
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When selecting a new Predictor context, the predictors compete probabilistically on the basis of their 
stimulus reliability values S (equation (13)).  They are each processed by the following Boltzmann 
distribution function before being added to a histogram for selection of a single  new stimulus to be 
added to the Predictor Context. 

 ( ) ikSf i e=  (14) 

where 

k is the Boltzmann constant  

Si is the reliability metric value for stimulus i (equation (13)). 

Predictors: Trials and Interval Learning 
The interval update equation (Section 3.3.3.2, equation (2)) that updates the recorded interval in a 
Predictor upon a successful Trial is 

 1( ) *(1 )n n predictor predictori i kR t kR−= + −  (15) 

where 

in is the new interval length 

in-1 is the previous interval length 

t* is the perceived interval of this Trial (as in equation (7)) 

Rpredictor is the Reliability of this predictor (as in equation (12)) 

k is a constant slightly less than 1. 

A Trial (Section 3.3.2) predicts an event to occur between the times 

 1 2epredictor predictori t iβ β≤ ≤  (16) 

where 

ipredictor is the Predictor Interval in the Predictor that began this Trial 

ß1 is a creature-global constant slightly less than 1 

ß2 is a creature-global constant slightly greater than 1 

t e is the elapsed time since the Trial began (the Predictor Context was met) 
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ActionTuples 
The perceived value of an ActionTuple (reproduced from equation (6)) is calculated as 

 i i npv ( ) v ( ) pv ( )
predictors facilitatedTuples

m
m n

t t k R t
 

= +  
 

∑ ∑  (17) 

where 

vi(t) is the intrinsic value of ActionTuple i 

Rm is the reliability of each associated Predictor 

pvn(t) is the perceived value of each facilitated ActionTuple 

k is a discount factor  

In this implementation, the equation uses a maximum recursive depth of 4. 

Action Selection 
Exploit: The exploit operation selects a single ActionTuple to activate by taking the utility value of each 
ActionTuple and selecting one option out of a normalized histogram probability distribution after they 
are processed by the function  

 
( ( ) ( )) ( )exploit( , ) curiosity ik t d t pv ti t e=  (18) 

where 

dcuriosity(t) is the magnitude of the curiosity Drive (equation (8)) 

pvi(t) is the perceived value of ActionTuple i 

for each ActionTuple i.  The Boltzmann constant k(t) is arbitrarily set, although it provides a useful 
degree of freedom for tweaking the histogram’s propensity to select the “best” option.  This winner-
take -all selection chooses one ActionTuple to become active. 

Explore: The explore operation performs several selections, each using a similar distribution. 

Attention Selection is performed by ta king each of the Beliefs in Working Memory and selecting one 
option out of a histogram probability distribution after they are processed by the function  

 ( )attentionSelection( , ) ikB ti t e=  (19) 

where 

Bi(t) is the interest level in Belief i at time t. 

for each Belief i.   

Drive Selection is performed by taking each of the  creature’s Drives and selecting one option out of a 
histogram probability distribution after they are processed by the function  

 ( )driveSelection( , ) 1ikd ti t e= −  (20) 

for each Drive i.  The subtracted term prevents the selection of a drive with a magnitude of exactly 0. 

Action Selection is then performed using equation (18). 
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React:  The react operation must make a decision whether or not to respond to an unexpected stimulus.  
When it observes an unexpected stimulus, it calculates the utility (equation (10)) of all new 
ActionTuples representing actions and reactions  (approach, avoid, observe) facilitated by the stimulus.  
It selects one option out of all of these options, as well as the currently active ActionTuple (which has its 
utility multiplied by a factor slightly greater than 1 to encourage persistence) using equation (18). 

 

 


