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ABSTRACT
We present methods for anticipatory behavior in simulated
graphical creatures. We discuss in general terms the
importance of anticipatory behavior through explicit
expectation formation. We present an in-depth description of a
specific type of expectation-formation, namely location-
expectation, or object persistence. A new representation – the
Probabilistic Occupancy Map (POM) – is presented, and it is
shown how this representation can be used to maintain
estimations of the positions of mobile objects in the world
based on both positive and negative knowledge provided by
the creature’s perceptual system. Finally a number of
illustrative results are presented that show Duncan, our
simulated dog, successfully performing a number of tasks that
require a high degree of spatial common sense.

Categories and Subject Descriptors
I.2.0 [Artificial Intelligence]: General – cognitive simulation

General Terms
Algorithms, Design, Theory.

Keywords
Autonomous agents, graphical agents, object persistence,
spatial common sense.

1. INTRODUCTION
As we attempt to build increasingly sophisticated autonomous
interactive agents (or “synthetic creatures” as we will call them
in this paper) an important contributor to a life-like
appearance is the ability to anticipate. Anticipation – or
expectation formation – can be thought of as the ability to
make decisions and react to aspects of the world state that, for
one reason or another, cannot be directly perceived. This might
include events that occur outside the field of view, are
occluded, or that have not yet happened (but are expected to
happen). There are many potential sources for these
expectations, such as reliably observed event correlations
(when the button is pushed, the elevator doors are expected to
open), theory of mind (given an assumed state of mind,
another creature might be expected to perform action A),
physical intuition (when a ball is released, it is expected to
fall), or, as will be discussed at length here, spatial structure (if
a ball rolls behind a wall, it is expected to come out again after
a certain delay). Not only do these types of expectations make
a creature seem more intelligent, but their absence
significantly impairs  any pretensions it might have to

common sense. If the ball disappears behind a wall, it would
appear either broken or colossally stupid for the creature to

then not know where to look for it.

Our research group has, over the past few years, experimented
with various aspects of expectation in graphically embodied
creatures such as Duncan the Virtual Terrier (Figure 1). Duncan
lives in a graphical environment which he perceives through a
synthetic perception system which includes simulated
audition and point-of-view rendering (synthetic vision).
Duncan is a platform for various aspects of our research,
including models of operant and classical conditioning and
motor learning. In the work described in this paper, Duncan
was given a sense of object persistence which allows him to
maintain reasonable models of the locations of mobile objects
in the world.

Section 2 is a brief discussion of expectation theory in
general. Section 3 discusses in depth the problem of location-
expectation. Section 4 introduces Probabilistic Occupancy
Maps (POMs) as a means of maintaining location-expectation
distributions. Section 5 presents some example results and
concluding remarks are given in Section 6.

2. EXPECTATION THEORY
[8] provides an excellent overview of expectation theory. This
discussion will largely parallel its conclusions.

In general, it is an observation of some sort – perhaps of an
unusually salient stimulus – that leads to an expectation
formation by a specialized predictor unit. These expectations
are accompanied by a degree of confidence. The validity of an
expectation is ascertained through verification. The process of
verification can have three possible outcomes:

• Verifiably true: The expectation turned out to be correct.

Figure 1: Duncan the Highland Terrier



•  Verifiably false: The expectation turned out to be
incorrect. This is an expectation violation.

• Unverifiable: The accuracy of the prediction could not  be
determined.

Typically, a verifiable prediction-outcome is followed by
some form of belief revision. The predictor that generated the
expectation might also be revised, for example, its reliability
rating might be modified according to whether its outcome
proved accurate or not. If the prediction accuracy was
unverifiable then neither the expectation nor the predictor
itself is impacted. This entire process is summarized in Figure
2.

The above formulation applies to discrete true/false
predictions. Some expectations, however, are better formulated
as a space of predictions that might naturally be expressed as a
probability distribution over the possible world states, as in
Figure 3. Within this space, each infinitesimal element can be

considered an individual prediction to be verified as true or
false. These individual predictions can affect each other in two
ways: first, in that an observation and confirmation of one
prediction is equivalent to a negation of all the other
predictions, resulting in a “tightening” of the distribution
around the observed value (Figure 3b). Second, a verified
negation of a sub-region of the state-space (effectively a
culling of probability from the distribution) results in a
renormalization of the rest of the distribution (Figure 3c).

2.1 Expectation Violations and Salience
We define salience as the degree to which an observation
violates expectation. As [8] points out there are two types of
expectation violation: unexpected observations and negated
expectations (verified false predictions). For the first kind, a
straightforward inverse relationship exists between salience
and confidence at the observed value (thus unexpected
observations are more salient):

1()()()cxsxcx-=

(1.1)

This maps salience into the range [0,∞] (assuming that c(x) has
range [0,1]). We call this form of salience surprise.

For expectation violations of the second kind, the salience can
be considered proportional to the amount of confidence culled
by the observation. This might be expressed as

()()Rsxcx=Ú
(1.2)

where R  is the region of the state-space of x that has been
verified as false (see Figure 3c). We call this form of salience
confusion.

It is notable that many secondary emotions imply some form
of expectation: fear, delight, disappointment, anticipation,
confusion, dread, worry, etc. They also imply an extended
range of possible interactions. Creatures that can form
expectations can be tricked, teased, deceived and more.

3. OBJECT PERSISTENCE
In this section we introduce an extended example of
expectation-formation: that of location-expectation.  We argue
that the ability to maintain reasonable location-expectations
is tantamount to a sense of object persistence. Object
persistence, as discussed by the psychologist Piaget [Piaget,
1954 #15], refers to the persistence of mental images of
objects after they have stopped being perceived. It also
implies the ability to make basic deductions about where
objects could be, and to act on those deductions. If a child
turns toward a toy that has been hidden from it, it doesn’t
forget about the toy, or remain staring at the toy’s last known
position. Instead it searches for the toy systematically, based
on its last observed position and based on the physical
structure of the environment – could it have been hidden
behind the box, or under the table? The basic problem of
object persistence, which we would like our synthetic creatures
to be able to solve, is: given that an object is not currently
visible, where does the creature presume that object to be?
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A distribution (a) represents a space of predictions with the
indicated confidence. An observation of the true state (b)
results in a tightening of the distribution while the
negation of some region of the state space (c) zeroes the
distribution in that region, and scales the rest of the
distribution up as appropriate.



3.1 Distribution Representation
In forming probability distributions over space, we must come
up with some way of representing those distributions. One
natural representation might be the gaussian distribution –
after all, it is compact, and mathematically convenient, with
notions of confidence and “best guess” built in.

The difficulty with the straight gaussian representation is that
it does not lend itself easily to the incorporation of negative
knowledge. Figure 4 shows an example of this problem. Figure
4a, shows the distribution for an occluded object. A great deal
of negative information – namely, those locations observed to
be empty – is being thrown out. The correct distribution, the
one in which all probability has been zeroed in all visibly
empty space, is shown in Figure 4b. This distribution i s
clearly not gaussian – it is even disjoint. Since the shape of
the distribution relies ultimately on the physical structure of
the environment, it can be arbitrarily complex – and arbitrarily
messy.

3.2 Probabilistic Occupancy Maps
The general strategy we use to overcome the difficulties of the
gaussian representation is to discretize the location-
distribution, through the use of a Probabilistic Occupancy
Map (POM). In this formulation the environment is partitioned
into discrete locations which can be used as “buckets” of
probability. Thus the compact gaussian representation is
replaced with a vector of discrete activations, in which each
activation corresponds to the probability that the target object
is contained in that location. As Figure 4c shows, this scheme
has no problem representing oddly-shaped distributions,
though its accuracy obviously depends on the resolution of
the map itself.

We use a hexagonal grid overlaid on the environment as the
general form of the map. Each node is connected to six
neighbors, and is denoted by a pair of (i,j) indices (to maintain
correct topology, the connectivity of these nodes alternates on
even and odd rows). Each node has a world-space position, and
represents all space for which it is the nearest node. Each node
is also annotated with a probability vector, each element
indicating the probability that the node contains a particular
object. For simplicity, in the following discussion we will
assume that there is only one target object to be tracked, and
that each node is annotated with a single probability, p(ni, j), of
containing that object.

In some experiments the maps themselves were learned, such
that higher resolution was used in more “interesting” parts of
the environment, such as around prominent landmarks. This
strategy is very useful in terms of representational economy.
However, it is not essential to the basic implementation, and
so will not be discussed here. See [6] for details.

3.2.1 Probability Diffusion
On timesteps in which the target object is not observed, a
discrete diffusion step is carried out to reflect the decreased
confidence in the target’s location.

Simple isotropic diffusion works well. The update expression
for a single map element, or node, can be given as
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 (1.3)

where 
l

 is a diffusion constant in the range [0,1] and 

()tpn

is the probability of the node n at time t. Thus at each timestep,
each node passes some fraction of its own activation to its
neighbors. The diffusion constant should be roughly
proportional to the mobility of the object (such that an object
that has been observed to be stationary has a low diffusion
constant, and so on).

When the target was last observed in motion, the probability
should diffuse preferentially in the direction of the target’s
last observed velocity. This can be used in the example in
which the target object disappears behind an occluder – the
creature can form an expectation about when it should
reappear. The most obvious way to achieve this is to modify
the diffusion rates so as to favor diffusion in the correct
direction.

Assuming that a target object’s velocity can be estimated
through simple averaging of position changes over recent
timesteps, we might set the diffusion rate at a specific node as

(a)

(b)

(c)

Figure 4: Distribution Representation

A gaussian distribution (a) cannot incorporate negative
information about regions of space observed to be empty
(b). In this work, we discretize the space itself, and allow
each element to become a “bucket” of probability (c).
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where v is the velocity vector, li is the position offset between
the current node and the node’s ith neighbor, and li is the

diffusion rate along the ith connection. lc is a constant
diffusion rate, ensuring that some probability is diffused to
every neighbor, even if that neighbor does not lie in the
direction of the velocity vector.

At each timestep, therefore, each node gives li of its total
activation to each of its i neighbors, and keeps the remaining
activation for itself. If the sum of these rates is more than 1,
then the rates are normalized to add to 1 (since a node cannot
give away more probability than it has). Note that if the
velocity v is zero, then the entire expression is equivalent to
equation (1.3).

To keep distributions from shooting off into infinity, we also
slowly decay the velocity vector over all timesteps in which
the object is not observed.

3.2.2 Observation
On timesteps in which the target object was observed, we pick
the node n* that is closest to the target’s position. We tighten
the distribution around this node by setting its probability to
1, and zeroing the probabilities of all other nodes:

*,,0,()ijijnnpn"≠¨
(1.5)
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As in section 2.1, we determine a salience for the observation
with the expression

**1()()pnspn-=

(1.7)

While this gives a valid mapping for a salience in the range
[0,∞], it has one undesirable property: that when the
distribution is very diffuse, even the most likely location (the
location with the highest p *) returns a high salience if
confirmed. Since the desired behavior should be for the most
expected prediction not to be considered salient when
confirmed, we normalize the previous expression by phighest, the
probability of the most likely location. Thus,

**))((highestppnspn-=

(1.8)

3.2.3 Verification
Verification in this domain requires us to use information
about locations observed to be empty. If a map node with a
certain probability is considered a prediction about an
object’s location, then the observation of that location
without the corresponding observation of the object can be
considered a negation of that prediction. In such a case, the
probability content of the node is zeroed. Once all visible
locations are zeroed, the remaining distribution in non-visible
locations is renormalized.

On timesteps in which the target object was not observed, the
map nodes are divided into a visible set, V, and a non-visible
set, N . First a total amount of culled probability pculled i s
calculated as

()cullednVppnŒ=Â
(1.9)

Then the probabilities of all visible nodes are set to zero:
0,()nVpn¨"Œ

(1.10)

Finally the remaining probabilities are renormalized
1,()()1cullednNpnpnp"Œ¨-

(1.11)

Note that by the definition given by equation (1.2), the value
pculled is also the measure of the surprisingness of the failure to
observe the target object.

4. IMPLEMENTATION
The POM scheme was implemented on top of C4, a character
simulation platform described in [2] and [7]. Currently,
Duncan (Figure 1) is our most sophisticated character, and i t
was in his brain that most of the following was implemented
and tested.

4.1 Synthetic Vision
A simple model of synthetic vision was used as the primary
source of perceptual information for Duncan. Similar to
schemes used in [1] and [18]. The vision model consisted of a
rendering of the world from the point of view of Duncan’s left
eye. This rendering was color-coded (as shown in Figure 5)
such that individual objects were recognized by color (i.e. no
shape-analysis was performed). From these renderings, screen-
space object-centroids were extracted, and combined with the
contents of the depth-buffer to produce eye- and then world-
space coordinates. Two implications of this strategy are that an
object is considered visible if any portion of that object i s
visible, and that the location is taken as the centroid of the
visible portion.

4.1.1 The Test-point Method
Another crucial function of the vision system is to determine
the visibility of map-locations for the purposes of negative
verification (i.e. in separating the N and V sets, from section

Figure 5: Duncan’s Synthetic Vision



3.2.3). A number of schemes are possible here, the “truest” one
probably involving pixel-sampling over the expected screen-
space extent of the node. This scheme is not used due to run-
time considerations.

Instead, we use a vastly simplified Test-Point approximation,
in which a single point is imagined floating half a body-
height above the world location of the map-node to be tested.
The world-coordinates of this point are transformed back into
NDC coordinates. The depth-buffer is then queried to see
whether an object at that point would be visible. If the depth of
the pixel to which the test-point transformed  is less then the
NDC-depth of the test-point, then the test-point is hidden, and
the entire location is considered non-visible (and placed in the
N  set). If the depth is greater, then the location is considered
visible (and placed in the V set).

Unlike object-observation, in which the view of any part of the
object counts as a full observation, it is generally
advantageous in location-visibility to err on the side of non-
visibility. In other words, it is advantageous to demand that
the entire location be visible before the corresponding node i s
considered visible. The danger is that if the target object is in a
location that is considered visible without being observed,
then its true location will be discounted as a possible location.
On the other hand, the risk of mistaking a visible location for a
non-visible location is only that a location the creature is not
at might be considered for a longer period than otherwise,
especially since the likely reaction will be to approach that
location and examine it further. Note, however, that our test-
point method does not follow this guideline.

4.2 Working Memory and Object Matching
Duncan maintains a Working Memory model that consists of a
recent perceptual history of all objects in the world. On each
timestep, the perceptual input from each object – color, shape
and location – from the vision system is bundled up into a
belief object. These beliefs are compared to a list of persistent
beliefs stored in the creature’s Working Memory. Since many
of the new beliefs probably represent a new observation of an
old belief (if it represents the newest data from an object that
has been tracked over multiple timesteps, for example), all
incoming beliefs undergo a process of belief matching, in
which the “distances” between the new belief and each of the
old ones is found. If the lowest of these “distances” is below a
threshold then, the two are considered a match, and the data
contained in the new belief is added onto the perceptual
history contained in the old one. If the lowest distance i s
above the threshold, then the new belief is considered to
represent a new object, and is itself added to Working Memory.

In finding the distance between two perception tuples (each
consisting of <color, shape, location>), each component in
one tuple is compared with the corresponding component of
the other. The total distance is then considered the sum of the
component-distances. For the purpose of this system, both
shape and color are symbolic binary matches returning
distance infinity or zero depending on whether there is an
exact symbolic match or not (e.g. “red” = “red”).

In comparing location however, we can again make use of the
location distributions of the POM, since ultimately we are
more interested in the likelihood of the target appearing at the
new location, than the straight distance between the new
observation and the last one (although straight distance might
be an economical stop-gap). This likelihood is exactly what

the POM gives us. When a new observation is made, the
incoming location data can be ascribed a nearest node, n*. This
node holds some probability, p(n*) of containing the target
object. To find the “distance” between a location-distribution,
and a new observation at n*, we use

**))((highestppndpn-=

(1.12)

where 
highestp

 is again the highest probability value of any

node in the map. This is, of course, simply a re-casting of the
salience function of equation (1.8). This follows the intuition
that if an observation is too unexpected, we might reject i t
altogether. Thus location and location-expectations are central
to Duncan’s ability to distinguish between different objects in
the world.

When a new belief is merged into the old one, the appropriate
distribution tightening, as per equations (1.5) and (1.6)
occurs. For all non-visible objects, the appropriate
distribution culling is carried out, as in equation (1.10),
followed by the diffusion of all location-distributions, as in
equation (1.3).

4.3 Action Selection and Motor Control
Having updated his perceptual image of the world, Duncan
must decide what to do. Though the problem of Action
Selection is a major focus of our research (particularly with
regards to learning), it is largely irrelevant to this work. In
many of the experiments conducted on this system, Duncan
was given just three behaviors: “look at target”, “approach
target” and “approach shepherd” (the shepherd being a user-
controlled character inhabiting the same space). Duncan
decided between these behaviors deterministically at the
instruction of the shepherd. These high-level behaviors are
translated by the action selection system into low-level
navigation and motor commands. A Navigation System was
use to control locomotion toward a goal and obstacle
avoidance, and a Motor System was used as the lowest-level
interface with the graphics system to control Duncan’s
animation.

5. RESULTS
This section presents a few scenarios as examples of Duncan’s
new spatial capabilities with the POM system in place.

5.1 Salient Moving Objects
One result of the POM system is that moving objects
–especially irregularly moving objects – automatically
become salient. If an object remains still, its distribution
looks like a roughly gaussian cluster of probability centered
on the observed location of the object. When the object starts
moving, the object is matched into a relatively unlikely part of
this distribution – thereby making that observation salient.
When velocity-based (anisotropic) diffusion is used, an object
that zigzags is more salient than an object that moves at a
constant speed in a constant direction.

5.2 Search Behaviors
There are a number of examples of “emergent search” that fall
out of the POM system almost for free.



5.2.1 Emergent Look-Around
Intelligently moving the eyes over a visual scene, from an
animation point of view, can be important in maintaining the
illusion of life [16]. However, there is no practical point to this
if the negative information about empty space is not used.
Typically, the “look-around” behavior is a canned animation.
However, a convincing “look-around” happens naturally with
the POM system. Consider a situation in which a target (in this
case, a sheep) has not been seen in some time (and has been
moved since it was last observed), and is represented by a
wide, diffuse distribution. When instructed to look at the
sheep, Duncan turns towards the most likely position for the
sheep, namely the center of the distribution. Not finding it
there, he looks first one way, then the other, always looking at
the current most likely position. The result is an alternating
sweep-left, sweep-right behavior, until the sheep is found at its
new location.

5.2.2 Emergent Search
If Duncan is instructed to approach the sheep, rather than just
look at it, then the emergent look-around becomes an emergent
search. As in the emergent look-around, Duncan approaches at
every point the most likely location for the target object. He i s
preceded by his gaze however, which rules out open areas of
the environment. This leaves only areas occluded by barriers,
and the resulting behavior is what looks like a systematic
search of these occluded areas.

In one example, Duncan is introduced to the environment
shown in Figure 6. After a brief view of the environment and
the objects in it, Duncan is called to the shepherd. Behind his
back, the sheep is moved behind the nearest wall. When told to
approach the sheep, Duncan immediately goes to search
behind the correct wall. Duncan is called away again, and this
time the sheep is moved from its original hiding place to a new
one behind the other wall. When again instructed to approach
the sheep, Duncan first looks in the original hiding place. Not
finding it there, he comes out and again scans the scene, this
time concluding that the only place the sheep can now be i s
behind the second wall. Again, he finds the sheep in its hiding
place.

What is perhaps most interesting about this example, is that at
a behavioral level – at the level of the Action Selection
mechanism – Duncan has only two behaviors to chose from:
“approach the sheep” and “approach the shepherd”. However,
the result is much more sophisticated, and has the appearance
of deliberative reasoning.

This “emergent search” behavior is extremely important for
keeping the process of action-selection clean. If “search”
needed to be included at this level of the system, it would need
to be listed explicitly as a strategy for “approaching the
sheep,” “approaching the shepherd,” “biting the sheep”,
“eating the sheep” etc. Matters would be even worse if we
expected learning to occur at this level of control – thus
pushing onto the learning mechanism the burden of deciding
when “biting the sheep” necessitates a “search.” With the
architecture described here – in which some of the decision-
making has been pushed up into the perceptual/memory
system and down into the navigation/motor system – some
degree of search capability is implied in a l l  targeted
behaviors.

5.3 Distribution-Based Object-Matching
To show the advantage of distribution-based object-matching,
a scenario was set up as shown in Figure 7. Like in a previous
example, Duncan tracks a moving sheep as it passes behind a
long wall. This time, however, the wall has a large gap in it. The
scene is staged, because at a certain time where the sheep,
unimpeded, might have expected to come out from behind the
right wall, a second sheep, initially hidden, appears there. A
single sheep would have been observed to pass through the
gap. Since it did not, the intelligent observer is forced to
conclude that there are, in fact, two separate sheep. Happily,
Duncan makes the same determination, since his constant
viewing of the space between the two walls keeps any of the
probability from diffusing from behind one wall to behind the
other. Thus when the second sheep appears, it appears in a
location for which the first sheep’s location-distribution i s
zero. Since it is impossible for the two observations to
represent the same object, the belief-matching step fails and a
new persistent belief is added to Working Memory. This is
apparent, because when Duncan is subsequently asked to
approach the nearest sheep, he looks behind the left wall first.

This is an exciting result for two reasons. First, it shows a very
different kind of “reasoning” from the previous examples – a
kind of negative reasoning, reflecting the ultimate
determination that the two objects are not the same. Second, i t
shows a kind of reasoning that is highly distributed: the
vision system provides observation data, the Verification
System extracts visible locations, the Spatial System
maintains the POM itself, and the Working Memory system
makes the ultimate decision to allocate a new persistent belief.
In the best sprit of the Society of Mind [9], it is the confluent
effect of all these systems that results in the “intelligent”
behavior.

Figure 6: The search task environment

Figure 7: The object-matching task environment



5.4 Emotional Behavior
Duncan maintains a list of variables to represent various
aspects of internal state. Some of these variables are explicit
“emotional” variables. In one series of experiments, Duncan
was given the variables of “surprise”, “confusion” and
“frustration”. The first two of these were simply the outputs of
equations (1.8) and (1.9) run through an asymmetric low-pass
filter (for sharp rising edges and soft falling ones). The
“frustration” variable grew by some factor on every timestep
that Duncan’s target was not directly observed. Figure 8 shows
a stereotypical trace of these variable values over time in a
“search for the sheep” task.

Currently, the only effect that these variables have is to change
Duncan’s facial expression (as shown in Figure 9). However,
the ultimate hope would be to feed these emotional variables
back into Duncan’s basic decision-making processes, such
that, for example, frustration could act as a signal to “stop
whatever you’re doing and try something else”, and surprise
could indicate “examine more carefully your object of
attention” etc.

Beyond being interesting from a procedural animation point
of view, we consider this type of emotional behavior to be an
important element of the appearance of intelligence. Even
naïve viewers can observe Duncan’s actions and facial
expression and come to fairly sophisticated high-level
conclusions about what Duncan is doing, what he wants and
what he expects of the world. We are all very accustomed to
making assumptions and reasoning about expectations.
Allowing a synthetic creature like Duncan not only to have but
also to express those expectations gives observers more
reason to ascribe to him the characteristic of intelligence.

6. CONCLUSIONS
In this paper, we have presented a model of object persistence
and a representation – the Probabilistic Occupancy Map – that
implements it. We draw a number of major conclusions.

Architecturally, the POM is an important lesson in multi-layer
decision-making. The section on emergent search shows that
even with a simple explicit behavior-selection layer, many
complicated behaviors can result with the right
perception/space-modeling mechanisms. The behavioral level
could be completely user-directed, or scripted, or could be run
by a complex automatic behavior simulation system. Whatever
the case, there is clear benefit to separating out this series of
spatial competencies into separate layers.

Another important point is that a good representation is worth
a lot. In this case, the POM structure was tuneable enough to be
useful, but also general enough to account for many
interesting effects. For example, it was fairly simple to
incorporate a sense of momentum for velocity-based
probability diffusion. It was also general enough that
unforeseen behaviors emerged without being designed for.

Most importantly, this work is an illustration of the
expectation theory that is presented in section 2. It should
show that (a) representations based on this theory are
conceptually simple and easy to implement, (b) the
representations are powerful, and lead to interesting behaviors
and abilities and (c) these new abilities contribute
substantially to a creature’s believability and apparent
common sense. It is hoped ultimately that this work can serve
as a model for how other kinds of expectation formation

abilities might be incorporated into a behavior simulation
framework.

7. RELATED WORKS
The field of artificial life is relatively new, but already has
such seminal works as [1] and [15]. More recently, work by
Terzopoulos and his colleagues (e.g. [5] and [18] and) has
proved very impressive, and relevant to the current work for
their concern with higher-level cognitive processes and
cognitive modeling.

There has been work on expectation theory. [12] points out
another source of surprise: events for which there were no
expectations but that are inherently unusual. The example
given by the author is that of a brick flying through a window:
no prior expectation existed over where or when such an event
would occur, but it should nonetheless register a surprise. We
do not treat this form of surprise in this work, though we
believe that such models of inherent salience could easily be
incorporated into this framework. As already mentioned
before, [8] was very influential to this work.

Drescher did work specifically on cognitive processes leading
to object persistence [3] though only in a toy world. His work
was itself an exploration of the computational side of Piaget’s
theories (as in [13]).
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Probabilistic Occupancy Maps are clear derivatives of the
Occupancy Grids, or Evidence Grids used in the mobile
robotics literature (e.g. [10]). The major difference is that the
“probability” held by each spatial element in Occupancy Grids
refers to the probability of that element being occupied, rather
than the probability that it should contain any particular
object. Occupancy Grids are not position-distributions over
space, rather they are a method for sensor-fusion over space.

More generally, there has been a tremendous amount of work
done on the modeling of emotions, such as [11], [14], and [19]
to name but a few. Recent work on modeling emotional social
agents has come out of the Synthetic Characters group itself,
with [17]. In terms of emotion modeling, the current work
seeks to go beyond the simple happiness/sadness models of
emotion (e.g. [4]) to secondary emotions such as confusion or
surprise that express more subtle aspects of a character’s
internal state.
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