
Expectation Maximization for Weakly Labeled Data

Yuri Ivanov yivanov@media.mit.edu

MIT Media Laboratory, 20 Ames St., E15-390, Cambridge, MA 02139, USA

Bruce Blumberg bruce@media.mit.edu

MIT Media Laboratory, 20 Ames St., E15-311, Cambridge, MA 02139, USA

Alex Pentland sandy@media.mit.edu

MIT Media Laboratory, 20 Ames St., E15-387, Cambridge, MA 02139, USA

Abstract
We call data weakly labeled if it has no
exact label but rather a numerical indica-
tion of correctness of the label “guessed”
by the learning algorithm - a situation
commonly encountered in problems of re-
inforcement learning. The term empha-
sizes similarities of our approach to the
known techniques of solving unsupervised
and transductive problems. In this paper
we present an on-line algorithm that casts
the problem as a multi-arm bandit with
hidden state and solves it iteratively within
the Expectation-Maximization framework.
The hidden state is represented by a pa-
rameterized probability distribution over
states tied to the reward. The parame-
terization is formally justified, allowing for
smooth blending between likelihood- and
reward-based costs.

1. Introduction

1.1 Partially and Weakly Labeled Data

Suppose that we want to train an agent to respond to
a set of voice commands. After hearing an utterance
the agent performs an action. We would like to train
the agent to respond correctly by providing (possibly
noisy) rewards and punishments after seeing actions
that it performs in response. In this scenario the agent
needs to learn two things: a) equivalence classes in the
utterance space; and b) what action to select upon
observing a sample from one of these classes.

There exists a variety of algorithms permitting learn-
ing of policies of action selection given that the per-
ceptual system provides a good set of features. But
how can such features be efficiently estimated while

the policy learning is taking place? In this work
we attempt to solve the problem by embedding the
expectation-maximization based algorithm for state
estimation into a reinforcement learning paradigm.

Supervised, unsupervised and transductive learning
methods view label information in a binary fashion
- it is either present or absent. In contrast, in on-
line reinforcement learning algorithms the label is first
“guessed” by the learner. This guess is evaluated by
an external source, which indicates its validity by a
real-valued signal. We call data labeled in this fashion
weakly labeled. This term is meant to properly place
the problem among traditional machine learning tasks
and to emphasize its connections with already exist-
ing techniques for learning with labeled, unlabeled and
partially labeled data.

The EM algorithm is a powerful tool for solving un-
supervised and transductive problems. We would like
to extend its functionality to help us with problems
where training labels are weak. EM is often used as a
clustering algorithm with the objective of maximizing
the likelihood of the data. This is a good heuristic to
use for learning perceptual organization when no other
evidence is available. However, by using an unsuper-
vised technique for learning the perceptual organiza-
tion, we disregard the reward and hence its utility for
the agent.

The utility of a perceptual configuration is measured
by the reward that the agent collects while using it.
Therefore, we are seeking an algorithm which, while
capable of learning from patterns in the input data
alone, can be “directed” with the reward to choose
a different configuration, which would provide higher
payoff. That is, we would like an EM-type algorithm,

1

arm

reward

Figure 1: 10-armed bandit model. Each of the 10 arms
produces a reward by drawing a sample from a correspond-
ing distribution. Each box signifies the reward distribution
with some mean (horizontal bar) and variance (height of
the box).

which would allow for inclusion of reward into its ob-
jective for state estimation, while learning the policy
of action selection. This is the main topic of the paper.

The paper proceeds as follows: after introducing the
multi-state bandit problem and listing the relevant
prior work, section 2 formally justifies modifications
to the EM algorithm that allow for inclusion of the re-
ward information into the parameter estimation. Sec-
tion 3 uses these results to connect the extended EM
with a multi-state bandit problem with hidden state.
Experiments with these models, showing the results
for different objectives, are presented in section 4. We
conclude in section 5 with a brief summary of the al-
gorithm, showing some of the problems with the algo-
rithm and indicating future directions of our work.

1.2 Multi-State Bandit Problem

The problem of the agent training, as described ear-
lier, falls into the category of associative learning with
hidden state. If we model the input space with a mix-
ture distribution, then the problem can be described
as follows: given an observation, estimate the state of
the world from a finite set of states, S = {si}. Given
the belief about the state membership, select an action
(label), which will result in the maximum amount of
payoff received once the action is performed. With
that payoff update parameters of the policy of the ac-
tion selection, and of the input distribution.

This problem is often thought of as a multi-state N -
armed bandit (Sutton & Barto, 1998). The N -armed
bandit is a gambling device with a set of N arms (see
fig. 1). Each arm has a probability distribution asso-
ciated with it, according to which the sample reward is
drawn every time the arm is pulled. Most frequently
the reward generating process is assumed to be sta-
tionary or, at most, slowly varying.

Now imagine that the bandit can be in any one of M
states, each of which have different distributions of the

p(s)

p(x|s)

xn

State 2

State 1

Figure 2: 2-state 10-armed bandit model. The bandit
randomly switches between two states, according to a sam-
ple drawn from p(s). After selecting the state, s, and ob-
servation, xn is produced from a distribution p(x|s).

reward. Before each trial the bandit switches to a new
state and produces an observation, xn, from the dis-
tribution associated with this state (see fig. 2). The
player’s goal is to identify this state and perform ac-
tion selection and model update for that state. When
the state is perfectly known the problem reduces to
M independent N -armed bandits. It is more difficult
when the state is hidden and must be estimated. It is
this problem that we address in this paper.

1.3 Related Work

Our work proposes a variant of the Expectation Maxi-
mization algorithm (Dempster & Rubin, 1977; Redner
& Walker, 1984; Xu & Jordan, 1996) that allows us to
situate it within the context of reinforcement learning.
Neal and Hinton (1998) show a view of the EM algo-
rithm that allows for modifications made in this paper.
At a certain parameter setting and binary reward our
algorithm can be viewed as an on-line version of the
λEM, presented by Nigam et al. (2000), for learn-
ing with partially labeled data (albeit for a Gaussian
Mixture) and transductive inference (Vapnik, 1998).
The goal of the algorithm described here, however, is
to develop a mechanism of perceptual learning for an
agent learning from the environment in a Reinforce-
ment Learning framework. To learn action selection
policy we use an N -armed bandit model, e.g. (Sutton
& Barto, 1998) estimating its parameters with the re-
inforcement pursuit algorithm of Thathachar and Sas-
try (1985), applying it to a set of states simultaneously.

A problem similar to ours was explored by Likas
(1999), who used a variant of the REINFORCE algo-
rithm (Williams, 1987) to learn Vector Quantization
on the batch data, aided by a reward signal.

The technique of probability matching for reinforce-
ment learning used here is similar to that shown by
Sabes and Jordan (1996). Using this technique we can

construct a reward-dependent probability distribution
to guide the convergence of the algorithm.

2. State Estimation With Reward

We use an EM algorithm for estimation of the state
parameters. In this section we introduce a technique
for including the reward function into the EM re-
estimation procedure. The new objective function is
simply implemented in the EM framework while allow-
ing the algorithm to “fall back” to the unsupervised
mode if no reward is provided.

2.1 Reward-driven variational bound

Typically, the EM algorithm for density estimation is
used for unsupervised maximization of the likelihood
function of a parametric density model when obtain-
ing an analytical solution for the gradient in param-
eter space is difficult. This is the case when we need
to learn parameters of a mixture density. In our algo-
rithm we represent the input space by a mixture den-
sity, p(x; θ) =

∑
i p(si)p(x|si; θi), parameters of which,

θ, we would like to estimate. The goal of the algorithm,
however, is to not simply maximize the likelihood of
the data, but also take into account the external re-
ward signal if such is present. To do so, in this section
we justify a new cost function which allows for inclu-
sion of the reward in the traditional EM framework.

EM as a variational bound optimization. The
main idea of EM is based on simple geometric reason-
ing - if instead of maximizing some difficult function
we maximize its convex lower bound that touches the
function at a current parameter value, then a step in
the direction of the gradient of this bound is also a step
in the direction of the local maximum of the function.
For a likelihood function, f(θ) = p(x, θ), where x is
the data set and θ is the vector of parameters, the
EM algorithm is based on the following bound (GAM
inequality):

f(θ) =
∫

p(x, s, θ)
q(s)
q(s)

ds

�
∏
s

(
p(x, s, θ)

q(s)

)q(s)

= g(x, θ)
(1)

Here, g(x, θ) is a lower bound of the likelihood, f(θ),
and q(s) is some positive function of s, integrating to
1. Typically, for the purposes of optimization of f(θ),
the logarithm of g(x, θ) is optimized:

G(x, θ) =
∫

q(s) log p(x, s, θ)− q(s) log q(s)ds(2)

It follows from eqn. (1) that for any density q(s),
G(x, θ) is a lower bound on log f(θ). Now we need
to find the density q(s), which touches log f(θ) at θ.
The cost function in eqn. (2) can be re-written as
follows, (Neal & Hinton, 1998):

G(x, θ) = −D (q(s)||p(s|x, θ)) + log f(θ)(3)

where D(p||q) is a Kullback-Leibler Divergence be-
tween distributions p and q. From here it is easily
shown that G(x, θ) = log f(θ) when q(s) = p(s|x, θ),
that is, the bound will be touching the likelihood func-
tion at the current θ.

Augmented reward bound. In order to let EM in-
clude the expected reward into the optimization we
need to augment the EM bound shown above with a
reward-dependent term. We do that by using the prob-
ability matching technique (Sabes & Jordan, 1996).

To learn preferred cluster configurations, we con-
sider observation-state pairs and construct a reward-
dependent probability distribution, p∗(s|x; r̄). The
task of the learning algorithm is to select from a set of
conditional distributions p(S|X , θ), aided by rewards
that are provided by the environment for some of the
data points. These rewards can be thought of as in-
verse energies - pairs (s, x) receiving higher rewards
correspond to low energy states. Energies can be con-
verted to probabilities via the Boltzmann distribution,
which represents the ideal observation-state mapping -
(s, x) pairs receiving higher rewards being more likely
than pairs receiving low reward. If the parameters of
p(s|x, θ) are adjusted so that it is close to p∗(s|x; r̄),
then the output of the algorithm will typically result
in higher rewards.

We follow this line of reasoning while making p∗(s|x; r̄)
proportional to the Boltzmann distribution as shown
later in the text. We need to consider this distribution
and penalize the estimator for being different from this
distribution in the posterior. We begin with adding an
extra term to the equation (3):

F (x, θ) = −D (q(s)||p(s|x, θ)) +

Eq(s)

[
log

p∗(s|x; r̄)
p(s|x, θ)

]
+ log f(θ)

(4)

When q(s) is set to the posterior distribution, p(s|x, θ),
the expectation term turns into negative divergence
between the posterior and, p∗(s|x; r̄):

Eq(s)

[
log

p∗(s|x; r̄)
p(s|x, θ)

]∣∣∣∣
q(s)=p(s|x,θ)

=

− D(p(s|x, θ)||p∗(s|x; r̄))
(5)

In fact this term induces a different but very intuitive
bound for the likelihood maximization, which is shown
in the proposition 2.1.

Proposition 2.1. F (x, θ) is a lower bound on
log f(θ).

Proof. Starting from (4), we can write:

F (x, θ) =− D (q(s)||p(s|x, θ))

+ Eq(s)

[
log

p∗(s|x; r̄)
p(s|x, θ)

]
+ log f(θ) =

∫
q(s) log

p(s|x, θ)
q(s)

ds

+
∫

q(s) log
p∗(s|x; r̄)
p(s|x, θ)

ds + log f(θ) =
∫

q(s)
[
log

p(s|x, θ)
q(s)

+ log
p∗(s|x; r̄)
p(s|x, θ)

]
ds+ log f(θ) =

∫
q(s) log

p∗(s|x; r̄)
q(s)

ds+ log f(θ) =

−D (q(s)||p∗(s|x; r̄)) + log f(θ)

(6)

In the last line of eqn. (6) the divergence,
D(q(s)||p∗(s|x; r̄)) � 0, from which follows that

F (x, θ) � log f(θ), ∀q(s), θ(7)

with equality holding iff q(s) = p∗(s|x; r̄).
This function has the same form as eqn. (3), which im-
plies that for practical purposes we may simply substi-
tute the EM-induced posterior with our fictitious prob-
ability distribution, p∗(s|x; r̄). It provides the tradi-
tional bound for the likelihood function in the absence
of the reward. With the reward present, the algorithm
performs only a partial E-step. However, the step in
the direction of the gradient of this bound leads uphill
in the future expected reward.

Now we need to construct p∗(s|x; r̄) in a convenient
form. The main constraint that we want to impose is
that the additional term in eqn. (4) vanishes when af-
ter producing a label s for an observation x, the reward
r received from the environment is 0. That is,

Eq(s)

[
log

p∗r=0(s|x; r̄)
p(s|x, θ)

]
= 0(8)

which implies that p∗r=0(s|x; r̄) = p(s|x, θ). We can
simply set p∗r=0(s|x; r̄) to be proportional to the Boltz-
man distribution:

p∗(s|x; r̄) = p(s|x, θ) exp (βr(x, y)p(s|x, θ))
Zβ(x, θ)

(9)

This form of p∗(s|x; r̄) is used throughout the paper.

Summary. In this section we derived a new cost func-
tion for EM parameter estimation which includes the
reward function. This allows to drive learning the per-
ceptual categories to achieve a higher utility with re-
spect to the future reward.

3. Action Selection

Using the results of the previous section to build a
state estimator, we connect it with the multi-state ban-
dit, introduced in section 1.2, to learn the policy of
action selection as shown below.

3.1 Solutions with the Known State

When the state is exactly known, then the solution for
the multi-state bandit is achieved by independently
solving a set of single-state bandits. A variety of
action-value methods, such as sample average, rein-
forcement comparison and pursuit, have been proposed
to solve the single-state bandit problem. The gen-
eral idea is to stochastically search the action space
while updating the estimate of the reward function. A
probability distribution over the action space (action
preference) is built based on this estimate and action
selection is done via sampling from this distribution.

The simplest pursuit method, adapted for the multi-
state agent, maintains an estimate of the payoff struc-
ture of the bandit via action value function, Qt(a, s).
This function is updated at each step based on the re-
ward received from the bandit after pulling the arm
a by, for example, an exponentially-weighted sample-
average method:

Qt(a, s) = Qt−1(a, s) + α(r − Qt−1(a, s))(10)

Based on the value of Qt(a, s), the pursuit method
updates its action preference model, p̂t(a|s), such that
the action with the highest value of Qt(a, s) increases
the probability of being selected by a small fraction,
γ. Actions that are currently found suboptimal de-
crease their probability correspondingly. Let a∗

t+1 =
argmaxa(Qt(a, s)), then:

p̂t+1(a∗|s) = p̂t(a∗|s) + γ(1− p̂t(a∗|s))
p̂t+1(a|s) = p̂t(a|s) + γ(0− p̂t(a|s)), ∀a �= a∗(11)

The convergence of the pursuit method is dependent
upon values of α and γ, which in our experiments we
set to be α = 0.1 and γ = 0.01. In addition, it is
readily combined with ε-greedy techniques to allow for
non-stationary environment.

3.2 Solutions with the Hidden state

In the presence of the hidden state the problem of
estimating the optimal action becomes more difficult.
The uncertainty about the state can be dealt with by
distributing the reward proportionally to the current
belief about the state membership of the observation
xn.

Most of the bandit search algorithms allow for formu-
lating a probability distribution over actions, given a
state, p(a|s). This is an arbitrary distribution which
only expresses the current estimate of “action prefer-
ences”. In our setting we need to map not states, but
observations to actions. We can similarly construct
a probability distribution p(a|x) via a set of hidden
states, s:

p(a|xn) =
∑

s

p(a, s|xn)

=
∑

s

p(a|s, x)p(s|xn)

=
∑

s

p(a|s)p(s|xn)

(12)

The action selection now takes into account the un-
certainty about the state, encoded in the state poste-
rior. For the purpose of bandit updates, the reward
is distributed among M bandits in proportion to their
contribution to p(a|xn): r(si) = rp(si|xn).

Thus, our algorithm folds the action selection policy
estimation into the Expectation step of the EM al-
gorithm while using the immediate reward signal to
control the entropy of the posterior for the Maximiza-
tion step. The algorithm is iterative and incremental,
performing one iteration per data point, keeping only
the sufficient statistics about the density function of
the input space. The goal of the algorithm is to esti-
mate the structure shown in the figure 2. It proceeds
as follows:

1. Initialize
Set parameters of the M-state Bandit model to
starting values; guess initial parameters of the
distribution p(x) and iterate the following Ex-
pectation and Maximization steps; for each new
data point:

2. E-step
(a) calculate p(s|xn) using the Bayes rule and

the current parameters of the observation
model, p(x);

(b) Forward pass
(i) compute p(a|xn) (eqn. 12);
(ii) select an arm by sampling p(a|xn)

0 50 100 150 200 300
0.005

0.01

0.015

0.02

0.025

0.03

0.035

lik
el

ih
oo

d

0 50 100 150 200 250 300
0.2

0.4

0.6

0.8

1

ac
cu

ra
cy

b = -2 b = -1 b = 0 b = 4 b = 10

b = -2 b = -1 b = 0 b = 4 b = 10

Figure 3: Performance of the REM averaged over 1000
runs for different values of the parameter β as compared
with EM.

(c) Backward pass
(i) collect reward and distribute it among

the states in fractions of p(s|xn);
(ii) calculate p∗(s|xn, rn) (eqn. (9));

3. M-step
Maximize the resulting cost, eqn. (6), with re-
spect to parameters, θ.

In the forward pass of the algorithm we break out of
the EM’s Expectation step to select an action and up-
date the Bandit model. The yielded payoff serves as a
control parameter for the EM.

4. Experiments

4.1 EM for state estimation

In the first experiment we confirm the conclusions of
the previous section that we can in fact use the EM
framework for partially supervised tasks. We need to
see that given the context of the classification task the
algorithm will result in choosing the clustering config-
uration, which provides higher expected reward.

In the experiments of this section we compare the per-
formance of the algorithm with the traditional EM.
However, it should be understood that this compari-
son is for a reference only, as the EM is not designed
to perform the task, which we are targeting and can
only provide the “worst case” performance.

As a source of the data we use a Gaussian mixture,
q(x) =

∑
q(s)q(x|s). The algorithm estimates the

density p(x) =
∑

p(s)p(x|s) by adjusting its parame-
ters in an on-line fashion, upon seeing every data point,
xn. The reward is delivered after an attempt of clas-
sifying xn to be generated by a particular component
of p(x|si). The experiment proceeds as follows:

10 0 10
10

0

10
b = -2

10 0 10
10

0

10
b = -1

10 0 10
10

0

10
b = 0

10 0 10
10

0

10
b = 4

10 0 10
10

0

10
b = 10

1 2 1 2 1 2 2 1 2 1

Figure 4: Results of a run of the algorithm for differ-
ent values of β starting from the same initial conditions.
For coefficients with opposite signs the labeling is reversed,
while the uncontrolled EM produces the labeling by chance.

1. Initialize the generator mixture, q(x)
for each state, si, randomly select a Gaussian
observation model - µi ∼ N(0, 2I) and σi = I;

2. Iterate:
(a) randomly choose a generator state, sk;
(b) generate an observation, xn, distributed

with µk and σk;
(c) using current parameters of the model, p(x),

select a label ln;
(d) if ln = sk, deliver a reward of 1, otherwise,

−1;
(e) update parameters of the model

(i) compute p∗(s|xn; r̂) via eqn. (9);
(ii) perform the E-step of the EM algorithm

using p∗(s|xn; r̂) in place of p(s|xn).

The results of the incremental reinforced binary classi-
fication experiments are shown in the figure 3. The top
plot shows the attained likelihood of the data after a
number of randomly generated samples. The horizon-
tal axis shows number of iterations (data points seen
so far) with the likelihood plotted along the vertical
axis. It is curious to see that the unguided EM (with
β = 0) attains the lowest likelihood. This is partially
due to the fact that the EM is more likely to get stuck
in the local maxima, while the reward signal delivers
some extra energy for the algorithm to get out of it.

The second plot in the figure 3 complements the like-
lihood plot by showing the classification accuracy of
the algorithm at different values of the parameter β.
It should be expected that the accuracy of the EM
used for classification would not be better than chance,
since even when EM converges to the correct set of
classes it does not care which source cluster corre-
sponds to which estimated component. Positive val-
ues of the parameter β drive the extended EM towards
correct labeling, while negative β drives the algorithm
away from it, as can be seen in the accuracy plot.

The influence of β is further illustrated in the figure 4.
The figure shows the resulting clustering attained with
different values of β. It can be seen that the clusters for
positive and negative values of β have opposite labeling
while zero-valued β is labeled by chance. This is the
desired behavior.

a) 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100 Annealed REM

REM EM

Supervised

%

b) 0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

Annealed REMREM EM Supervised

di
ve

rg
en

ce

Figure 5: a) Performance on the 2-State 10-Armed binary
bandit. b) Divergence between estimated and true source
distributions.

4.2 Multi-State Bandit with Hidden State

Binary deterministic reward models the situation
where the agent always gets a fixed value of reward
upon selecting the optimal action. The “partially la-
beled data”, or the problem of transductive inference,
is a special case of this setting, as one can regard a
binary reward as providing the label.

4.2.1 Maximization of the likelihood - Binary
Bandit

This section shows the results on problems, in which
the reward function is well aligned with the likelihood.
That is, in which maximization of the reward results
in the maximization of the likelihood. Results for this
task are shown in figure 5. Unlike in the experiments
of the previous section, the cluster identity is not im-
portant, as long as they correctly partition the input
space. The multi-state Bandit essentially implements
the mapping from clusters to labels.

We would also like to see if the reward-based estima-
tor of the input density results in a better fit of the
resulting observation density to the one that gets rein-
forced than the regular EM. In the case of a Gaussian
mixture density with a known number of components
(known number of states), we can measure the fit with
the symmetrized KL Divergence:

S(p||q) = 1
4

[
(µq − µp)T (Σ−1

q +Σ−1
p)(µq − µp)

−tr
(
Σ−1

q Σp +Σ−1
p Σq − 2I

)](13)

For a lack of a better analytical method, we compute
this quantity for every combination of source and es-
timated components and select the minimum value.

We perform the experiment with a 2-state 10-arm Ban-
dit as follows:

1. Initialize the generator
for each state, randomly select a Gaussian obser-
vation model - µi ∼ N(0, 2I) and σi = I;

2. Iterate:
(a) randomly choose a generator state, sk;
(b) generate an observation, xn, distributed

with µk and σk;
(c) using current parameters of the model select

an action an;
(d) if an is the same as the optimal arm in the

generator state, sk, deliver one unit of re-
ward;

(e) update parameters of the model;

The figure 5a) shows the average amount of reward
collected by Bandits trained with the EM, REM, an-
nealed REM algorithms compared to the case where
the input space is estimated via a supervised estima-
tor. As the goal is an accurate reproduction of the
source mixture, these plots need to be considered along
with the divergence plots (eqn. 13), given in figure
5b). The annealed REM algorithm, which slowly in-
creases the value of the parameter β, performs very
well, converging even faster than the supervised case.
It is somewhat puzzling, but easily explained by the
fact that the annealing amounts to simultaneous explo-
ration of all states of the bandit in the initial stages.
This gives a good set of initial conditions for subse-
quent search in each bandit when β increases.

4.2.2 Maximization of the likelihood - Full
Bandit

The algorithm works with the full bandit with no mod-
ifications. The results are shown in the figure 6a). As
in the case with the binary bandit, the initial con-
vergence of both REM and Annealed REM is faster
than the supervised case. The advantage, compared
to EM, however, seems less spectacular than in the
binary case. The divergence plots (figure 6b)), as be-
fore, show better fit of REM and Annealed REM to
the source distribution.

This experiment shows the worst case scenario for the
algorithm. The reward structure here has many lo-
cal maxima and is “distracting” for the on-line search.
The search becomes more difficult and the limitations
of the search algorithm become the deciding factor in
the achieved performance. However, despite the incon-
sistencies in the reward, the perceptual system cap-
tures the input distribution better when aided by the
reward than when no feedback is given.

a) 0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

0

0.5

1

1.5 Annealed REM

REM

EMSupervised

re
w

ar
d

b) 0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

Annealed REMREM EM Supervised

di
ve

rg
en

ce

Figure 6: a) Performance on the full 2-State 10-Armed
bandit. b) Divergence between estimated and true source
distributions.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
30

40

50

60

70

80

90

100

Annealed REM

Supervised

EM

%

Figure 7: Performance of EM, REM and a fully super-
vised estimator on the problem where reward structure
does not coincide with the likelihood (averaged over 2000
runs).

4.2.3 Maximization of the reward

It is interesting to see how this model performs on a
problem in which the reward function is not aligned
with the likelihood. The problem in this section is
as follows - the input data is generated from 4 2-
dimensional Gaussians. However the reward is deliv-
ered in such a way that action a1 is rewarded when
xn

1 < 1.5, a2 - when 1.5 � x1 < 4 and a3 when x1 > 4.

The performance of the model on this task is shown in
the figure 7. After 2000 iterations the EM estimator
yields an average reward of 0.58, Annealed REM - 0.82
and supervised estimator - 0.96 with the maximum
possible reward of 1.

Figure 8 shows results of a single run of the algorithm.
The left column of the figure shows the resulting po-
sitions and outlines of the mixture components. The
middle column shows the classification decision regions
corresponding to the clustering shown on the left. The
right column shows the “cluster assignment” - matrices
that map states to actions, p(a|s). A value in k-th posi-
tion of l-th row of the matrix indicates the probability
of selecting an action k once the point xn is classified as

0 2 4 6

0

2

4

6

1

2

3

4

0 2 4 6

0

2

4

6

1 2 3
4

0 2 4 6

0

2

4

6

1
2

3

4

1

1

1

2

2

2

3

3

3

1

2

3

4

1

2

3

4

1

2

3

4

0

2

4

6

0

2

4

6

0

2

4

6

a)

g)

d) e)

h)

b)

0 2 4 6

0 2 4 6

0 2 4 6

f)

i)

c)

Figure 8: Final cluster positions (left column), decision
regions (middle column) and cluster assignment matrices
(right column) for REM (top row), supervised (middle row)
and EM (bottom row) estimators after a single run.

belonging to the cluster l. Figures (a–c) demonstrate
the performance of the annealed REM algorithm, (d–
f) - that of the supervised model, and the bottom row
(g–i) - the performance of the unguided EM. The su-
pervised case gives the best possible partitioning of the
input while using 3 Gaussians (component 4 is never
used and therefore has a mixing coefficient 0). The
REM uses all 4 components and aligns them with the
reward partitioning. Note that both clusters 2 and 4
select action a1.

5. Conclusions

We have presented an extension to the EM algorithm
that allows for solving a range of learning tasks -
from fully unsupervised, to fully supervised, includ-
ing the partially and weakly labeled data. We pro-
vided the justification for entropic variations of the
posterior to achieve arbitrary component assignment
goals. The algorithm allows for smooth blending be-
tween likelihood- and reward-based costs.

Among the problem areas for the algorithm we can
name the relatively large amount of data necessary to
estimate the input density and learn the policy of ac-
tion selection. Although the learning is performed on-
line, it still takes a large number of iterations, particu-
larly for a larger numbers of states. Another problem
is the appropriate choice of the parameter β. In some
cases it is convenient to have asymmetric schedule for
positive and negative rewards, which adds another pa-
rameter to the set.

In some cases especial care must be taken about the
fact that both reward signal for the clustering algo-
rithm and the state assignment for the action selection

are non-stationary. These problems are easily solved,
but not discussed in the paper in the interest of space.
The interested reader is encouraged to contact the au-
thors if this information is necessary.

6. Acknowledgments

The authors would like to thank the reviewers of this
paper for helping to make the presentation of this pa-
per more clear. We would also like to extend our grat-
itude to Leslie Pack Kaelbling of MIT AI Lab and
Aaron Bobick of Georgia Institute of Technology for
their invaluable help in formulating ideas presented
here. The idea of the reward maximization experiment
is due to Leslie Pack Kaelbling.

References

Dempster, A.P. Laird, N., & Rubin, D. (1977). Max-
imum likelihood from incomplete data via the EM
algorithm. Journal of Royal Statistical Society B,
39, 185–197.

Likas, A. (1999). Reinforcement learning approach to
online clustering. Neural Computation, 11, 1915–
1932.

Neal, R. M., & Hinton, G. E. (1998). A view of the
EM algorithm that justifies incremental, sparse and
other variants. In M. I. Jordan (Ed.), Learning in
graphical models, 355–368. Cambridge, MA: MIT
Press.

Nigam, K., McCallum, A., Thrun, S., & Mitchell, T.
(2000). Text classification from labeled and un-
labeled documents using EM. Machine Learning,
39(2/3), 103–134.

Redner, R., & Walker, H. (1984). Mixture densities,
maximum likelihood, and the EM algorithm. SIAM
Review, 26(2), 195–239.

Sabes, P. N., & Jordan, M. I. (1996). Reinforcement
learning by probability matching. NIPS 8.

Sutton, R., & Barto, A. (1998). Reinforcement learn-
ing: An introduction. Cambridge, MA: MIT Press.

Thathachar, M. A. L., & Sastry, P. S. (1985). A new
approach to the design of reinforcement schemes for
learning automata. IEEE Transactions on Systems,
Man and Cybernetics, 15, 168–175.

Vapnik, V. N. (1998). Statistical learning theory. New
York: Wiley.

Williams, R. J. (1987). A class of gradient-estimating
algorithms for reinforcement learning in neural net-
works. ICNN 87. San Diego, CA.

Xu, L., & Jordan, M. I. (1996). On convergence prop-
erties of the EM algorithm for gaussian mixtures.
Neural Computation, 8, 129–151.

