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Introduction: The Synthetic Characters Philosophy 
Is it possible to build an artificial intelligence that’s as clever, as adaptive and as captivating as the average dog?   

That’s the question that drives the Synthetic Characters group at the MIT Media Lab.  We draw inspiration from 
animal behavior, experimental biology, and the brain and cognitive sciences, and apply lessons learned from 
those fields to the study of artificial intelligence.  While there are many research groups that focus on a particular 
cognitive ability, we have found it instructive to build complete systems – creatures that can interact with each 
other and with human participants.   

Our philosophy is influenced by Daniel Dennett's theory of the intentional stance, which states that if you know a 
being's beliefs about its world, and you also know its desires, then you can predict that being's actions [Dennett 
1987].  Thus, if a virtual creature can represent beliefs about its world, and also has a capacity for desires, then 
we should be able to generate appropriate actions for that creature. 

A complementary influence is Disney’s notion of the illusion of life.  As animators Frank Thomas and Ollie 
Johnson explain, “It is the change in shape that shows what the character is thinking.  It is the thinking that gives 
the illusion of life.  It is life which gives meaning to the expression.”  [Thomas 1981]  If we provide characters with 
the means to express their mental state, an observer can infer their beliefs and desires.  

Towards a Deeper Gaming Experience 
We seek to build creatures that are:  

• Robust.  They can base decisions on imperfect knowledge of the world. 

• Reactive.  They can react appropriately to sudden changes in their environment. 

• Adaptable.  They can learn from their experience of the world. 

• Honest.  They possess enough perceptual integrity to be surprised when things don’t go as planned. 

• Expressive.  They have personality, can express their surprise and remain in character. 

• Sensible.  They display some basic common sense, regardless of their personality. 

• Scalable.  How about a whole pack of creatures like that? 

Over the past few years, the popularity of networked games has skyrocketed.  These games are appealing partly 
because human opponents (and comrades) are so much more sophisticated – and thus offer a wider range of 
interactions – than any of the artificial intelligence seen in games today.  At the same time, the gaming community 
has begun to explore the potential that exists for games that incorporate more intelligent and engaging creatures.  
AI will never replace the richness of human interaction, nor would we want it to.  However, by building creatures 
with the characteristics listed above, we seek to emulate some of the richness that today is only found in 
interactions between humans.  Interactions with synthetic characters could be just as rich, offering a new range of 
gaming experiences for which interaction with only humans would be not desirable.  Who wants to play “man in 
background #4” anyway? 

Imagine your average dog. Without any special effects or a sci-fi backdrop, a dog is interesting, fun and gives at 
the very least the appearance of understanding. You can form a relationship with a dog, and establish a common 
history.  When you interact with a dog, you know you are in the presence of a fellow intelligence.  How can we 
capture that fleeting quality?  We might find out by studying the very creatures that exhibit it. 

Why look at Natural Systems? 
Existing biological systems (like ourselves) are able to sense, react to, and manipulate their environments.  Many 
such systems also have a tremendous capacity for adaptation and learning.  We look to natural systems for clues 



and design principles.  Animals do what they ought to do, and learn what they ought to learn.  In short, we look to 
animal behavior, or ethology, because nature "does things right."   

Intelligence is a highly multi-faceted discipline – each of ethology, psychology, neuroscience, experimental 
biology and “good ol’fashioned AI” approach it from a different angle, and each has its own unique tools and 
insights.  But because the details of how biological systems work are still rather sketchy, our research has a dual 
purpose: during our attempts to advance artificial intelligence, we are simultaneously applying and exploring 
theories borrowed from these disciplines. 

Why look at Dogs? 
A problem with cartoon-like creatures is that they can behave however they want – there are no rules, and no way 
to ask, “how close did we get?”   At the other extreme, attempting to honestly model all aspects of human 
intelligence would be setting the bar too high (at this stage in the game).  Working on a dog provides a reasonable 
and interesting focus.  And, from a behaviorist’s point of view, it provides us with a means for gauging our 
success.  The gap between the intelligence exhibited by today's AI and a real dog is much greater than the gap 
between dog- and human-level intelligence.   

There are at least two additional reasons why we choose to build dogs.  The first is that everyone has an intuitive 
sense of how dogs should behave and react.  And second, lest we anthropomorphize our canine friends, there is 
a vast amount of literature available on how dogs work.  There are books that detail how to use operant 
conditioning techniques, like the "Clicker Training" paradigm that we model, to teach a dog to do tricks (see 
[Wilkes 1995]).  There are books about how to train dogs to herd sheep and sniff for drugs at airports.  In fact, 
there are almost as many books about dogs at amazon.com as there are books about sex.  Enough said. 

Paper (and lecture) Roadmap 
We’ll begin with a discussion of our group’s history, which will bring us to sheep|dog and Clicker, the two 
installations built under c4, our most recent behavior architecture.  We’ll then take Duncan, the highland terrier 
and star of those installations, as the primary case study for a detailed discussion of c4’s architecture.  We will 
demonstrate how c4’s ethologically inspired design principles have led to intuitive behavior specification, a flexible 
and extensible system, and in the end a compelling cast of interactive creatures. 

A Brief History of Characters 
Over the past four years, the group has experimented with different approaches to creature design.  We design, 
build, and then iterate.   

The Alive project featured Silas T. Dog, our first ethologically inspired autonomous creature created by Bruce 
Blumberg.  The participant could interact with Silas through the "magic mirror," a wall-sized display that presented 
a live video image of the participant, as well as the graphical creatures that co-exist with the participant in the 
world of the mirror.  (See [Blumberg 1996].) 

The next project, Swamped, featured an autonomous cartoon raccoon that was intent on stealing the eggs of a 
user-controlled cartoon chicken.  The group coined the term “sympathetic interface” for the plush toy chicken the 
participant used to manipulate the corresponding virtual chicken.  (See [Johnson 1999].) 

(void*) featured three humanoids sitting at the bar in an all-night diner.  Using the physical buns-and-forks 
interface invented by Charlie Chaplin in "The Gold Rush," the participant could "possess" a character and make it 
dance.  The characters differed from puppets in that they had an emotional response to the interaction they were 
undergoing, and would change the style of their animation to reflect their emotional state. 

Shortly before last year's Game Developers Conference, we re-designed our architecture.  The new design is 
informed by lessons learned from our past efforts, and provides a new focus on learning.  We presented the 
results of the system’s first iteration ("c1") at GDC 2000 in a demo called The Isle of Man's Best Friend.  Three 
iterations later, we have arrived at c4, the system we discuss in detail here.   



Enter c4 
Some of the constraints on c4’s design were completely practical: it needed to support graphics with at least a 
20Hz frame rate, input devices (mice and microphones as well as more exotic interfaces), and distributed 
rendering (the ability to use multiple PCs to render multiple views of the world). It also needed to be scalable 
enough to support a reasonable number of autonomous creatures all sensing and reacting to each other and the 
world. 

But more importantly, it needed to let us make smart creatures that learn the same kind of things that animals 
seem to learn.  Intelligence is often seen as the combined effect of many individually unintelligent components 
(see [Minsky 1985]).1  The architecture needed not only to support those components individually, but also to 
allow them to coexist and communicate coherently within one brain.  

Finally, the system needed to make it easy to build creatures with ever-increasing behavioral complexity.  No one 
would build creatures with this system if it were impossible to work with.   

c4 is implemented in Java, and sits on top of the OpenGL-based Magic scenegraph, an open-source library 
implemented in C++ (see [Eberly 2001]).  sheep|dog’s creatures and worlds were modeled and animated using 
3DStudio MAX.  We use seamless mesh rendering techniques for the creatures.   

Case study: sheep|dog and Clicker 
We have implemented two significant projects to date under c4. The first is sheep|dog, an interactive installation 
in which a user plays the role of a shepherd who can interact through a series of vocal commands with Duncan, a 
virtual sheep dog, to herd a flock of sheep. This system demonstrated some of the basic reactive, perceptual and 
spatial abilities of the creatures built using c4.  

The other project is Clicker, in which the user trains Duncan to perform a variety of tricks using the same "clicker 
training" technique used with real dogs.  This system demonstrated the learning abilities of the creatures built 
using c4. 

 
Figure 1: Duncan the highland terrier, his shepherd, and their sheep, in sheep|dog: Trial By Eire. 

                                                 
1 See especially Minsky’s The Society of Mind, in which he describes how a mind might be composed of many 
“agents,” each simple and understandable, but through their interaction able to exhibit complex behavior.  c4’s 
Systems are analogous to Minsky’s Agents. 



System Architecture 
c4’s single World object contains the World Model, or the virtual world as it exists on a given timestep.  The World 
maintains the list of creatures and objects, and acts as an event blackboard for the posting and distribution of 
world events. As well as network synchronization and render management. 

World events take the form of DataRecords, perceptual nuggets that can represent anything from an acoustic 
pattern to a visual or symbolic event.  The flow of DataRecords through the system is shown in Figure 2.  As we’ll 
discuss below, whether and how each creature interprets each DataRecord depends entirely on the sensory and 
perceptual abilities of that creature. 
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Figure 2: Flow of information within the system.  Unmarked arrows indicate the flow of DataRecords, or perceptual nuggets, within the 
architecture.  Formal abstractions exist between the world model and the creatures’ mental representations.  No links exist between the 
mental representations of different creatures; instead, creatures communicate by posting DataRecords to the world’s event blackboard. 

In a single execution of the update loop, DataRecord events are fed to each of the creatures and objects and, in 
turn, each is prompted to update.  Most creatures and objects will themselves produce events that the World will 
harvest and make available in the next timestep.  Pre- and post-update tasks, including UI updating, network 
coordination and rendering, are also performed by the World. 
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Figure 3: The c4 brain architecture, arranged into a “perception and memory” section, an “action selection” section, and a “motor and 

navigation” section.  The systems are processed serially, in roughly top-to-bottom (or dark-to-light) order relative to this figure. 



The “brain” of each creature implemented with c4 is organized into a collection of discrete systems that 
communicate through an internal blackboard.  Any part of the brain can write to or read from specific “slots” in this 
blackboard that are differentiated by string labels.  The canonical brain, depicted in Figure 3, is highly modular, 
with few essential subsystems and many opportunities for expansion.  Duncan, the shepherd and each sheep use 
this brain structure.       

The systems are processed serially, in roughly top-to-bottom order relative to the figure.  We have arranged the 
systems by function into three subgroups: those that deal with how a creature represents the world, those that 
handle aspects of the creature’s action selection, and those that manage navigation and motor control. 

How Creatures Represent the World 
In order for a creature to have intentions, and thus perform actions on the basis of its beliefs and desires, the 
creature requires a representation of those beliefs and desires.  A creature’s beliefs are necessarily distinct from 
the actual state of the world.  The World knows that the sheep is at coordinates (32, 32, 0), but Duncan only 
knows where the sheep is relative to his own head.  Therefore, creatures can’t simply be allowed direct access to 
the world model, or aspects of other creatures’ internal state.  Instead, as indicated in Figure 2, a formal division 
must exist between the world model and creatures’ mental representations. 

Why go to such great lengths to enforce this division?  A creature should only be able to act on information that its 
“sensory apparatus” is able to observe.  If there is an aspect of the world’s state that is important to a creature, 
the creature should create and maintain its own internal representation of that state.  Though this may seem 
inefficient, in the following sections we’ll describe how this allows us to model a wide variety of mental 
phenomena that otherwise would be impossible to produce, and contribute greatly to a creature’s realism. 

Sensory honesty (Sensory System) 
The Sensory System marks the single entry point into a creature’s brain.  All sensory input from the world must 
pass through the Sensory System before it can be processed by the rest of the brain.  The primary job of the 
Sensory System is to act as the enforcer of sensory honesty.  As such, it processes each DataRecord so that it 
appears as it would from the creature’s point of view.  Sometimes that means removing it completely – for 
example, culling VisualDataRecords outside of the visual field – or otherwise transforming it into the appropriate 
reference frame.   

Because the Sensory System offers a single entry point, it allows us to provide more or less uniform treatment to 
the many types of DataRecords that a creature may be called upon to process.  But most importantly, it ensures 
that the input to a creature’s mental representation is biologically inspired.  The alternative – allowing a creature to 
potentially see through walls, or through the back of its head – has a devastating effect on the illusion of life! 

Classification hierarchy (Perception System) 
Once the stimulus from the world has been “sensed,” it can then be “perceived.” The distinction between sensing 
and perceiving is important. A creature, for example, may “sense” an acoustic event, but it is up to the perception 
system to recognize it as an instance of a specific type of acoustic event that has some meaning to the creature.  
A sheep would interpret an UtteranceDataRecord as just another noise, but Duncan should classify the utterance 
as the word “sit,” and then sit down expecting to get a cookie.  Thus, it is within the Perception System that each 
creature assigns a unique “meaning” to events in the world. 

The Perception System takes the form of a Percept Tree (Figure 4).  A Percept is an atomic classification and 
data-extraction unit that models some aspect of each DataRecord passed in by the Sensory System.  It does this 
by returning a match probability or confidence.  The SheepShapePercept, for example, will return the probability 
that a DataRecord represents the experience of seeing a sheep.  If the match is above a threshold, a Percept also 
returns a piece of extracted data.  The HeadLocationPercept, for example, returns the location of the perceived 
DataRecord relative to the coordinate frame of the creature’s head.   

Percepts are organized hierarchically in terms of their specificity.  For example, a child of a ShapePercept will 
activate on the presence of any kind of shape, whereas one of its children may activate only on a specific type of 
shape (e.g. a SheepShape.)  This allows DataRecords to perform efficient partial traversals of the Percept Tree: if 
the ShapePercept returns a match probability of 0.0, we have no need to ask if its children, like the 
SheepShapePercept, will match the DataRecord. 



Many Percepts are adaptive, using statistical models to characterize and refine their response properties. These 
Percepts can not only modulate their “receptive fields” (the space of inputs to which they will respond positively) 
but also, in concert with the Action System, modify the topology of the tree itself, dynamically growing a hierarchy 
of children in a process called innovation. As will be described below (see Action Selection), the process of 
innovation is behavior-driven.  Only Percepts that allow the creature to make better decisions are prompted to 
innovate. 
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Figure 4: The Percept Tree. The EverythingPercept at the root of the tree returns a match probability of 1.0 for every DataRecord.  The Head 
Location Percept is derived from the root of the tree because, at present, all events have locality. (A separate proprioceptive percept tree, also 

derived from the Everything node, is in the works.)  Retinal location and shape apply only to visual events, just as the SoundPercept and its 
children only apply to auditory events. 

The Percept provides a useful level of abstraction for reducing the dimensionality of incoming sensory 
information.  An arbitrarily complex mechanism tucked into a Percept can determine whether or not it matches a 
particular DataRecord.  Under the hood of the UtterancePercept, for example, is an utterance classifier that helps 
its child Percepts to classify different utterances.  The rest of the creature’s brain need not have any knowledge of 
how that classifier works.  The classifier can easily be replaced with a different mechanism (as it was during 
debugging, when we elected to click a button rather than mumble “sit” into a microphone for hours on end). 

Proprioception 
Real animals use sensors that detect muscle extension and tendon strain to determine the position of their limbs.  
This type of self-awareness, or “self-perception,” is called proprioception by biologists.  We have found it useful to 
emulate proprioception and extend it to include many forms of self-awareness, including awareness of emotional 
state and of self-action. 

The Proprioception System is the module responsible for this function.  It provides a blackboard mechanism, 
analogous to the World event blackboard, where the creature can post events to itself that will not be visible to 
other creatures in the world.  Other internal mechanisms can post aspects of their state in the form of 
ProprioceptiveDataRecords to the blackboard, and the Sensory System receives the contents of the 
Proprioceptive System’s blackboard on the next timestep.  This mechanism provides a common pathway for all 
sensory data, internal and external, that will be processed by the creature on a timestep.   

Memory 
Psychologists distinguish between different kinds of memory.  Procedural Memory is the label given to skill 
learning – for example, learning to play piano, or throw a baseball.  Another type of memory is Declarative 
Memory, which allows us to remember facts, such as, “my name is Warren,” or, “Lake Titicaca is 4200 meters 
above sea level,” or, “the pen is on the table.”  Declarative Memory is further broken down into Long-term 
Memory, which stores important events and facts, and Working Memory, which tracks the state of the 
environment that is relevant to the immediate task. (See [Reisberg 1997] for a summary of the different memory 
classifications.) 

c4’s Working Memory structure is meant to mirror this psychological conception of Working Memory.  c4’s 
Working Memory maintains a list of persistent PerceptMemory objects that together constitute the creature’s 
“view” of the current context. That “view,” however, is informed by more than just direct perception. Instead, it is a 
patchwork of perceptions, predictions and hypotheses.  Any component of c4 that has something to say about 



how the world is (or might be) can modify PerceptMemory objects or post new ones. It is on the basis of these 
objects, whether directly perceived or not, that action-decisions will be made, internal credit for reward will be 
assigned, motor-movements will be modulated, and so on. 

PerceptMemory Objects 
Although Percepts are useful for reducing the dimensionality of incoming sensory information, and transforming 
that information into a form that is meaningful to a creature, alone they are still not quite enough to capture all that 
we wish to know about the state of the world.  Consider a Percept that detects “redness.”  Though that Percept 
would register activation on any timestep in which red was detected somewhere out in the world, this perception 
is of limited utility without knowing what about the world was red.  In other words, the redness of a sensory event 
should not be separated from the other perceptual qualities of that event. This is especially necessary if, for 
example, the redness percept extracts a number representing the “degree of redness.”  If there are multiple red 
objects in the world, then there are various pieces of data that are relevant to different objects in the world. 
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Figure 5: An illustration of PerceptMemory formation. Here an utterance is being recognized as the word “sit”. A DataRecord representing the 

utterance comes in from the world, causing certain Percepts in the Percept Tree (left) to activate. The Perception System caches the 
confidences and data corresponding to these Percepts in a PerceptMemory object. This object then matches itself with the most similar 

existing PerceptMemory in Working Memory (right), and adds its data onto the history of data that it maintains. 

When a DataRecord comes in from the world, all the percept activity that it causes is stored together in a 
PerceptMemory.  PerceptMemory objects are a convenient way of bundling perceptual information as histories of 
percept activations and data, each of which corresponds to an object in the world.  Significantly, this is the only 
form of object-representation in c4.  To a c4 creature, a sheep is not a “sheep,” but rather a “thing” that is “sheep-
shaped” (it activates the creature’s “sheep-shape detector percept”), white, and frequently issues an acoustic 
pattern that a human would characterize as a “baaah.” To a creature, an object is the set of perceptions it imparts. 

When a new DataRecord is pushed through the Percept Tree, each Percept that registers a positive match 
caches its confidence and data in a table in the PerceptMemory. This PerceptMemory is then passed off to 
Working Memory (See Figure 5).  It is then “matched” against existing PerceptMemory objects stored there to 
determine if it is truly novel, or rather a continuation of an existing PerceptMemory (for example, is it the same red 
ball as the red ball that we saw an instant ago in the same place).  In the case of visual events, matching is done 
on the basis of shape, or on the basis of location when shape is not enough to disambiguate incoming visual 
events (as is often the case with two nearby sheep). This matching mechanism also allows events of differing 
modalities to be combined. If there is good indication that an acoustic event and a visual one belong together (for 
example, they originate in more or less the same region of space) then they may be matched together in Working 
Memory, presenting both sight and sound information through a single PerceptMemory and thus giving the 
impression that, for example, it was the shepherd who said, “sit.”  In either case, if a match is found, the data from 
the new PerceptMemory is added to the history being kept in the old one. The new confidence is also added to a 
history of confidences. On timesteps in which new information for a given Percept is not observed, its confidence 
level is decayed. The rate of decay is determined in part by the Percept itself (confidence in another creature’s 
location might decay rapidly without observation, but confidence in its shape probably would not.) 

PerceptMemory objects are especially convenient because they allow us to query our memory in useful ways. 
Behaviors can be triggered by asking questions like, “is there food near me?”  Action-targets can be picked by 
finding the “red object that is making the most noise.”  Much of the reasoning that a creature will typically perform 
is object-based reasoning.  “Find an object that is humanoid-shaped and go to it” implies that you can extract both 



shape and location information out of a structured object-based memory. This is what PerceptMemory objects 
allow. 

Prediction and Surprise 
The stream of sensory data coming from an object will often be interrupted because the object is out of the 
creature’s visual field, or because it is occluded by another object. Our brains are uniquely adept at filling in these 
sensory gaps, often without our even realizing it. The existence of a “blind spot” in our visual fields is an oft-cited 
example: the area of our retina that has no light receptors is ascribed likely information.  Another classic example, 
considered by the psychologist Piaget, is the ball-rolling-behind-the-wall example.  When we see a ball disappear 
behind an occluder, the ball does not disappear for us conceptually.  In fact, we maintain a fairly accurate 
estimate of the ball’s likely location given its last observed velocity, and our other “common sense” knowledge of 
physics.  When the ball fails to come out from behind the other side of the wall at the correct time, it’s a surprise.  
This ability to maintain a model of an object even when the object is not directly observable is known as object 
persistence. 
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Figure 6: An example of object persistence.  As the ball (top) rolls to the right behind the wall, the gap in the perception of its location is filled 
in by the creature’s prediction mechanisms (dark gray area).  Note that the range of possible locations in the LocationPercept’s data history 

widens the longer the ball has remained unobserved, but narrows again when the ball becomes visible.  A perception that behaves this way is 
called a fluent. See [Funge et al. 1999]. 

Part of the task of the Memory System is to provide some form of object persistence as an important component 
of basic physical common sense.  When a Percept’s data is not observed, its value is instead predicted and made 
available to the rest of the system as if it had been observed.  That way, the creature can act on the position of 
the ball whether it is behind the wall or not. 

How are these predictions made?  It depends on the kind of Percept we are dealing with.  Since PerceptMemory 
objects contain histories of percept data, it is possible, if the data is a vector or scalar, to use function 
approximation techniques to extrapolate its value.  In other cases, proprioception can inform location predictions – 
a creature can predict an object’s egocentric location based on its own movement and the object’s last known 
world position (or extrapolated position, as described above).  This technique is critical if the object has gone out 
of the creature’s line of sight.  Though it cannot see the object, it can still maintain an accurate idea of where the 
object is. It should also be emphasized that location is not the only form of percept data that can be predicted. 
Well-designed prediction mechanisms can detect and model all sorts of regularities over all sorts of percepts. If a 
certain stimulus is active for a brief period every n seconds, that regularity can be gauged by a good predictor. If 
the stimulus is important for determining appropriate behavior (sitting down whenever a light is on gets the 
creature food, say) then the creature can react to the stimulus before it occurs. 

Predictions – their occasional deviation from the actual state of the world and the magnitude of that deviation – 
also provide a basis for surprise. Surprise is an excellent method for focusing perception, and a PerceptMemory 
that has just provided a surprising stimulus is an excellent candidate for the creature’s object of attention. More 
importantly, however, prediction is a huge contributor to common sense and hence to the believability of a 



creature. Predictions imply expectations about the world, and a creature that acts in anticipation of a future event 
can more truly be said to have intentions.  There are a host of emotions associated with expectation that purely 
reactive creatures cannot possibly display, many of the arising from situation in which, for one reason or another, 
expectation failed to match reality. Creatures with expectations can be surprised, relieved, disappointed, 
confused, frightened, tricked, teased, misled, taunted, and so on.  
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Figure 7: Each creature takes the world model, wrangles it through their Sensory and Perception Systems, and then re-constructs a mental 

representation of the world as PerceptMemory objects in Working Memory.  

Why bother with all this stuff? 
We conclude this section on Perception and Memory with a grand, “why bother?”  We have gone to great lengths 
to enforce sensory honesty and emulate a psychological conception of memory.  The situation is essentially that 
of Figure 7, which shows how incoming data from another creature in the world is split up, processed by a 
multitude of individual Percepts and then reassembled through a computationally intensive PerceptMemory 
matching mechanism. The question is, if we (as designers of the simulation) know that all that data is coming from 
a certain object in the world, then why bother splitting it up only to put it back together? What does “sensory 
honesty” buy us after all? 

It actually buys us a lot: 

• Honest mistakes. There are good mistakes and bad mistakes.  Good mistakes are the kind of mistakes 
that we ourselves would make in confusing situations.  They are the mistakes that make a creature 
believable.  If a creature reacts to the monster before it has jumped out of the closet we sigh and roll our 
eyes.  If the creature is surprised and shows it, then we empathize and say, “The poor thing didn’t see it 
coming.”  In other words, we begin to ascribe to it human-like attributes!  What we don’t know is as 
important as what we do know. 

• Learning generalizable concepts. Individual perceptual traits need to be pulled out of data through the 
Percept Tree because it allows general lessons to be drawn from the world.  “Redness” is a trait shared 
by many things.  If treating one red thing a certain way works, then maybe treating all red things the same 
way also works.  Furthermore, the Percepts and the Percept Tree can themselves learn, gradually 
refining the creature’s perceptual experience in both data-driven and reward-driven manners.  This 
increased sensitivity towards certain aspects of perception (perhaps a creature becomes very good at 
distinguishing between shades of red if many things it sees are red) can then be applied to all objects it 
encounters, not just the particular object that taught it that sensitivity.  As concepts are pulled apart and 
reconstructed, the creature can find rules of behavior that generalize across many objects, including ones 
it has never seen.  

• The same thing means different things to different creatures. The arrows to the left of the Percept Tree in 
Figure 7 are the same for every creature, but the ones on the right will almost definitely be very different. 
This is because the particular Percepts that exist in a creature’s brain will depend on the type of creature 
it is, as well as the creature’s experience.  Some Percepts, it will have learned, are important to carefully 
track and predict (and incidentally spend a lot of computation on).  Other Percepts it will lack entirely (an 
acoustic event will pass unnoticed by a creature with no ears).  Perhaps a more intelligent creature will 
perceive more, or be able to predict things better.  Whatever the case, the arrows to the right of the 
Percept Tree in Figure 7 represent subjective experience, and thus by nature are different for each 
creature. 



Action Selection 
Given a set of PerceptMemory objects that detail the perceived state of the world, the creature must decide which 
action(s) it is appropriate to perform. This process is known as Action Selection.  There are three essential issues 
to be addressed when designing an Action Selection mechanism.  First, what is the fundamental representation of 
action used by the system?  Second, how does the system choose which actions to perform at a given instant?  
Many types of decision-making processes are possible here.  Third, how can the choice of action be modified to 
allow the creature to learn from experience? 

Representing Action: ActionTuples 
Any representation of action should address what we call the ‘4 Big Questions”: 

• When to do it?  

• What to do and how to do it? 

• What to do it to? 

• For how long? 

As an example, consider a rule for responding to the “away” command in the sheep-herding installation.  In prose, 
the rule would look like: When you perceive the utterance “away,” gallop around the closest group of sheep, 
circling so as to keep the sheep on your left side until you are on the opposite side of the flock from the 
shepherd.“  It is easy to pick out the four answers to the questions above.  A frequent mistake is to assume that 
you can get away without answering all four. Our experience has proven otherwise. 

The fundamental representation of action used by c4 is called an ActionTuple. As you can see from Figure 8, the 
structure of an ActionTuple closely mirrors the “4 Big Questions.”  This is done not only for computational reasons 
but also to make it easier for behavior designers to see how to use them.  

TriggerContext
"Away" Sound Percept

Action
Circle Counterclockwise

DoUntilContext
~15s, or circled flock

intrinsic value
50

Actiontuple
Circle the sheep when I hear the word "away!"

ObjectContext
Sheep Shape Percept

 
Figure 8: Example of an ActionTuple, the fundamental representation of action used by c4. 

With the exception of learning, most of the functions of an ActionTuple are in fact handled by sub-components. 
For example, the TriggerContext of an ActionTuple is responsible for evaluating the relevance of the ActionTuple 
when it is inactive. TriggerContexts typically rely on specific Percepts in conjunction with the contents of Working 
Memory to arrive at their value.  Figure 8 shows an ActionTuple that triggers upon the creature perceiving the 
specific utterance, “Away!”  In practice, the trigger is usually a direct reference to a Percept.  Thus, the 
ActionTuple in Figure 8 triggers in the presence of a PerceptMemory in Working Memory for which the 
AwaySoundPercept is active.  The DoUntilContext associated with an ActionTuple is responsible for evaluating 
the continued relevance of the ActionTuple once it is active. The actual conditions may either be temporal 
(“continue for some period of time”), or state-based (“continue until some state is achieved”).  An optional 
ObjectContext is utilized by ActionTuples whose actions are performed on or relative to some object, and 
specifies the conditions that object must meet.  (For example, the ObjectContext of the ActionTuple that captures 
the notion of “stalk sheep” requires that the object being stalked exhibit the “SheepShapePercept”) 

When active, an ActionTuple’s set of primitive actions typically modifies the contents of the creature’s internal 
blackboard. These blackboard postings act as messages to other parts of the system. For example, the 
MOTOR_DESIRED posting holds the name of a physical behavior requested of the Motor or Navigation Systems.   
The ActionTuple also outputs a PerceptMemory representing the creature’s current or desired focus of attention 
to the OBJECT_OF_ATTENTION posting. The PerceptMemory chosen for the posting is the one that best 
satisfies the conditions imposed by the ActionTuple’s ObjectContext. This PerceptMemory will be used to direct 
the creature’s gaze, as well as serving as the target for approaches, orientations and other targeted behaviors. 



As will be discussed later in the paper, by virtue of the inclusion of an underlying navigation system, an 
ActionTuple can essentially specify “approach this object and, when within this distance and orientation, do X,” 
and rely on the navigation system to handle the mechanics of the actual approach. Since so much of behavior 
falls in the category of “approach and do” or “avoid and do,” this is a big win.  

Selecting Actions: ActionGroups 
Given a representation of action, the next issue is to decide which action(s) to perform at any given instant.  It is 
important to note that typically a creature will be performing more than one action at a time. For example, while 
the dog may be engaged primarily in one action (such as charging around the sheep in response to the “Away” 
command), it is still performing a host of actions: visually tracking its target, choosing a gait to use, choosing how 
fast to wag its tail, and whether or not to bark.  On the other hand, there are certain classes of actions that are 
mutually exclusive: running around the sheep and sitting down, for example. Thus, a good action selection 
mechanism must make it easy to organize mutually exclusive actions in such a way that only one is active at a 
time, but also make it easy to have multiple actions active simultaneously. 

The approach taken in c4, as in many other systems, is to rely on the representation of action (in our case, the 
ActionTuple) to calculate its relevance – that is, how important it is that it be active, based on the state of the 
world.  Actions are then typically organized into groups that are responsible for arbitrating among competing 
actions.  In the simplest case where actions may run simultaneously, the group simply goes through each action, 
and if it has a non-zero relevance (i.e. value), it is allowed to run. The more complicated case is when the actions 
are mutually exclusive.  In c4, ActionGroups are responsible for arbitrating among competing ActionTuples. 
Essentially, an ActionGroup relies on each of its ActionTuples’ evaluation of its instantaneous value given the 
relevant context.  If inactive, the relevant context is its TriggerContext; if active, the relevant context is its 
DoUntilContext. The evaluated value, or e-value, of an ActionTuple is the product of the value of the relevant 
context and the ActionTuple’s intrinsic value.  

ActionGroup
...

n1

ActionTuple 1
n2

Actiontuple 2

n3

Actiontuple 3

Startle ActionTuples:

Default  ActionTuples:

n4

Actiontuple 4

 
Figure 9: Anatomy of an ActionGroup.  Startle ActionTuples become active immediately when their trigger value is non-zero.  As suggested 

by the name, this mechanism is used for reactions like a startle to a sudden, loud noise.  ActionTuples on the Default list compete 
probabilistically on the basis of their e-values.  

When ActionTuples are added to an ActionGroup, they may be placed on either the Startle or Default list. The 
Startle list contains high priority ActionTuples.  The ActionTuples on the Startle list compete deterministically: the 
one with the highest non-zero evaluated value wins.  If no ActionTuples on the Startle list are relevant, then the 
ActionTuples on the Default list are given a chance.  ActionTuples on the Default list compete probabilistically on 
the basis of their e-values.  The use of both a probabilistic and deterministic action-selection mechanism reflects 
pragmatism as much as anything else.  The problem with a purely probabilistic approach is that it is probabilistic.  
There are times when you really want the character to perform a particular action.  Rather than fight probabilities, 
it is easier to create a separate mechanism for choosing actions that “should just happen.” 

However, if an ActionTuple is currently active, then we use the heuristic that it should stay active until its DoUntil 
condition is met, unless the world has changed significantly from when the decision to activate the ActionTuple 
was made.  This reflects the notion that the DoUntilContext is intended to specify the end condition, assuming 
nothing unexpected has happened in the meantime.  In practice, this means that if an ActionTuple is currently 



active, then only if an inactive ActionTuple’s e-value has changed significantly from the last time “the dice were 
rolled” is it eligible to compete. If none pass this test, then the currently active ActionTuple remains active. 

In c4’s canonical Action System, there are two main ActionGroups. These are (in order of execution): 

• AttentionGroup: Chooses the creature’s focus of attention (things that are large, things that are moving fast, and 
so on). This decision will often be overridden by later-executed actions. 

• Primary ActionGroup: The ActionGroup whose actions determine large-scale body motion. 

In many creatures, additional ActionGroups are populated with ActionTuples that perform specialized functions.  
Duncan’s Gait Selection ActionGroup uses specialized ActionTuples to perform gait selection using triggers 
based on internal variables and the results of his canonical ActionGroups. 

There are several important advantages to the approach taken for Action Selection in c4.  First, it works well in 
non-deterministic environments, because it is fundamentally probabilistic.  The consequences of making a wrong 
decision are minimal since it is constantly re-evaluating what to do.  At the same time, it reduces the amount of re-
evaluation that takes place because the ActionGroup “trusts” the ActionTuples.  Only if there is a significant 
change in the world will it force a re-evaluation.  Second, the mixed use of a deterministic and probabilistic action-
selection mechanism reduces the amount of “float fiddling” that one sometime encounters in purely probabilistic 
approaches.  Third, since navigation is handled by another system, the complexity of the actions in the Action 
System is greatly reduced.  Fourth, the system is general enough to support a hierarchical organization of action, 
although the need for deep hierarchies is mitigated by the presence of the Navigation System (see below) and 
indeed by the very structure of ActionTuples.  Perhaps the most important advantage is that it supports learning of 
the sort that animals do, namely (1) learning the consequences of actions, and (2) learning the states of the world 
in which certain actions are particularly reliable in producing desirable consequences. 

Learning in c4’s Action System 
The approach to learning that is taken in c4 borrows heavily from our understanding of learning in animals as well 
as from work in machine learning, most notably “reinforcement learning.”  The fundamental idea behind 
reinforcement learning is in fact rather simple: Applying a reward after the occurrence of a response increases its 
probability of reoccurring, while providing punishment after the response will decrease the probability [Thorndike 
1911].  (See [Sutton 1998] for a more detailed review.) 

Certain events in the world are perceived to have an intrinsic value on some nominal scale – for example, eating 
a cookie has a value of 100, and being attacked by a lion has rather large negative value.  When the event occurs 
– say the dog eats a cookie – the action that immediately preceded the act of eating the cookie should receive 
credit for getting the dog into a state in which a cookie appeared and could be eaten.  That is, the value of the 
action, “sitting,” should be adjusted to reflect its likely consequences.  Thus, if sitting reliably produces a cookie, 
the value of sitting should eventually approach 100, subject to a discount factor reflecting the fact that sitting is 
almost as good as getting a cookie but not quite. This process of assigning credit is called credit assignment. The 
process can be viewed recursively since actions that lead reliably to good things or bad things should also be 
given their due.  In practice it is a bit more complicated than this, because the reliability of a given action in 
producing a given consequence typically depends on the state of the world, and this is something that must be 
learned as well.  In other words, the system is trying to learn reliable state-action pairs.  

It is important to note that it is essentially impossible to learn without variation of action and state. It is only 
through the process of varying action that the system can learn the relative value of the respective actions. 
Similarly, it is only through the process of performing actions in different contexts that it is possible to discover 
those aspects of the world that seem causal to the increased reliability of a given action in producing a desirable 
consequence.  It is very difficult for a purely deterministic system to learn because there is no variation.  However, 
the process of exploration must be balanced by exploitation.  Sometimes the system should decide to go with a 
known, if possibly sub-optimal solution, instead of experimenting with a novel alternative that might possibly turn 
out to be a better solution in the long run.  Thus, the variability of action needs to be guided by the system. 
Indeed, in anything but the most trivial of worlds, the state space is huge, and exploring it fully becomes 
impractical. Thus, careful attention is required to identify those portions of the state space that are most likely to 
be important. This is a very hard problem in general. 

In our system, credit assignment occurs when one ActionTuple becomes active and another becomes inactive. 
During this process the value of an ActionTuple is adjusted to reflect the likely consequences of performing the 



actions of the ActionTuple in the context of the state of the world indicated by its TriggerContext. This is done via 
a mechanism similar to temporal difference learning (as discussed in [Sutton 1998]).  
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Figure 10: The process of ActionTuple innovation.  On the left is the creature’s Percept Tree.  The AnyUtterancePercept (which serves as a 
classifier) has spawned a child, “down,” that models an acoustic pattern that seems to occur reliably when the Down ActionTuple (top right) is 
active and subsequently rewarded.  The Down ActionTuple is suboptimal in that it causes the creature to lie down in any context.  Bottom right 
is the ActionTuple that is spawned by the ActionSystem to take advantage of the new Percept.  Because its trigger is a more reliable predictor, 

the intrinsic value of that ActionTuple should continue to rise. 

As part of the credit assignment process, statistics are kept that correlate the reliability of the ActionTuple with the 
state of its TriggerContext’s Percept children, if they exist.  If the ActionTuple’s value goes above a threshold and 
there is a reliable correlation between the ActionTuple’s activation and the state of one of its Percept’s children, it 
creates a copy of itself.  Then, it sets the TriggerContext to refer to the most reliable child percept, and adds this 
modified copy of itself to the list of children.  Therefore we grow a tree of ActionTuples in which top-level nodes 
have very general triggers and low-level nodes have very specific ones. This process, illustrated in Figure 10, is 
referred to as innovation and is similar to the process proposed by Drescher (in [Drescher 91]). When an 
ActionTuple with children is asked to evaluate its value, it returns the maximum of its own evaluation and that of 
its children. If the maximum evaluation is associated with one of its children, then that child is the one that 
becomes eligible for expression. Thus, Duncan can learn that “sitting” in general is a good thing, but “sitting in 
response to hearing the utterance ‘SIT’” is an even better thing. 

Credit assignment also guides innovation within the Percept Tree. In this case, children percepts take the form of 
statistical models built from observations that capture those aspects of the state space that seem correlated with 
the reliability of a given action. An important observation is that the consequences of the action can be used to 
discriminate between good and bad examples for the purpose of updating a percept’s model. For example, in the 
case of an UtterancePercept that is building a model of “SIT,” if the sit action is rewarded in the presence of an 
utterance, then it is safe to assume that the utterance must be a good example of “SIT” and so the model can be 
updated using this new example. If the sit isn’t rewarded, then it may be that the utterance wasn’t a good example 
of “SIT.”  Perhaps it was one of the acoustic patterns that rhyme with “sit,” and thus the example should not be 
used to update the model.  

This process of innovation illustrates the intimate coupling between perception and action selection. The creature 
only bothers to refine senses that ultimately allow it to make better decisions about what to do. 

Navigation and Motor System 
The final section of a creature’s brain is responsible for producing motion. We have divided the various motion-
tasks that a creature can perform into two general categories, Navigational and Motor tasks.  As we will see, both 
categories, and the systems that manage them, make important contributions to a creature’s general spatial 
competence. 



Intelligence and motion are also closely coupled in our interpretation of movement. In The Illusion of Life, Thomas 
and Johnson explain there is no such thing as just a “walk cycle.”  [Thomas 1981] There is a happy walk, a sad 
walk, an excited walk, and so on.2  This notion – that an animation consists of both a Verb and an Adverb – is 
captured in the work of Rose et al [Rose 1999] that inspired our Motor System design. 

Navigation System 
The deceptively simple act of “eating the food” involves a host of problems: the creature must be near the food, 
be oriented toward it and, if approaching it is necessary, avoid physical obstacles along the way. The Navigation 
System provides such large-scale spatial competencies, usually involving locomotion around the environment. 

The Navigation System typically functions by overriding the motor commands passed down by the Action System. 
In some cases this command is for an explicit Navigation task, such as “APPROACH.” In other cases, the 
command is directed to the Motor System but with extra approach and orientation conditions specified which the 
Navigation System must work to satisfy. In either case, the original decision of the Action System is overridden 
with a more immediately appropriate motor command. If the Action System requests an “APPROACH,” the 
Navigation System might decide that the best way to implement that request is through a “GALLOP.” If the Action 
System requests a “BEG” but the Navigation System is instructed to orient the creature first, that command might 
be replaced with a “TURN.” The “BEG” will continue to be overridden until the orientation condition is satisfied. 

The Navigation System allows a convenient level of representation in the Action System, because it relieves the 
Action System of the burden of implementing the decisions it makes. “Approaching” as an essentially physical 
behavior may indeed precede each “eating,” but behaviorally, both should be part of a single “eating” act – 
especially from the point of view of any learning that takes place. Ultimately, the majority of animal behaviors 
follow the “approach, orient and do” model, and the Navigation System allows these behaviors to be represented 
with high-level atoms. 

Motor System 
Motor systems and action selection mechanisms are closely coupled in nature.  Real creatures display a 
remarkable “common sense” intelligence concerning their bodies and their movement – a sense that synthetic 
characters do not, at present, achieve.  Without commensurate advances in this area, our virtual creatures risk 
appearing unintelligent, regardless of the structure and sophistication of their behavior.  Before we discuss how to 
build motor systems for these characters, let’s consider the kinds of motor problems we wish our characters to be 
able to solve. 

Walking, Shaking and Moving your Head  
The basic competencies of an example-based motor system clearly include such “simplicities” as: 

• Simple gestures.  Characters should be able to perform actions based on animations provided to them by 
human animators, without unrealistic or highly noticeable discontinuities. 

• Locomotion.  Gross body movement – getting around the world – should be supported. 

• Eye / head / body orientation.  The character should appear to attend to things in the world.  Attention is 
essential to expressivity and the appearance of awareness. 

The first of these basic competencies is achieved by the careful replaying of “canned” animations.  The remaining 
two call for something more complex. 

The task of moving around at the very least requires coordination of animations (for example, turn-left, move 
forward, move forward, stop) to achieve a particular goal.  As described above, c4 passes much of this burden off 
to a separate Navigation System.  But the problem of orienting the head towards something demands the creation 
of a continuous output animation space from necessarily discrete source animations. 

Each of these competencies has a behavioral component that we can make arbitrarily complex.  For example, 
moving around the virtual world might involve learning spatial maps of the environment, performing collision 

                                                 
2 If Illusion of Life makes clear what one must do to bring a character to life, it is Dennett’s intentional stance that 
explains how Disney’s techniques work.  The technique described by Thomas and Johnson is essentially a recipe 
for allowing the viewer to take a rewarding and consistent intentional stance towards a character. 



detection and obstacle avoidance.  But without a motor system that can move the creature around, this 
“intelligence” cannot come to pass. 
Doing it in Style 
But the problem is harder than this: throughout this motion, the character has to keep in character.  By creating a 
motor system that keeps close to the source example animations, one will for short periods of time be guaranteed 
success.  But on timescales longer than the length of an animation, this “illusion of life” will break down as the 
character fails to interact correctly with the environment, fails to attend to things properly and eventually repeats 
the same animation over and over.  

Further, we’ve already mentioned that the “correct” style of motion may change over time, creating perhaps a 
slow, or sad, or even a hungry walk in response to the character’s internal state.  If we cannot achieve these 
things then we cannot have expressive characters.  Therefore we add the following to our wish list: 

• Parameterized motor actions. The Motor System allows us to produce parameterized motor actions, such as 
“shake paw high” and “shake paw low.”  This will work best if we can produce a continuous space of shake-
paw animations that cover a variety of heights. 

• Support new motor actions.  One of the goals of the behavior system described above is to allow our 
characters to increase in complexity over time. Although this can often be achieved by reusing already 
present motor actions, this obviously does not exhaust all the learning possibilities.  

• Create new animations “live.”  Provide support for the perceptual models and the output mechanisms of a 
character to learn new animations during their lives. Let the Action System understand the body. 

Solve problems 
This last point suggests opening up the “contents” of the body to the introspection of the Action System so that we 
can construct new models of movement.  But in many cases we’d like the communication between the Action 
System and Motor System to occupy less “bandwidth,” not more.  In addition, there is a practical need to shield 
the authorship process of the Action System from the details of the Motor System content to allow the 
development of both to take place in parallel. 

One goal in this work is to make communication between the Action System and the Motor System take place in 
terms of desired pose descriptions.  This could be the Action System saying, “I’d like to walk over there now.”  It 
could be in terms of end-effectors: “Put my nose near the food. Is it there yet?”  Finally, it could be in terms of 
time: “How long, roughly, before I could get my nose there?”  At the very least, this has the very desirable effect of 
shielding the behavior of a character from changes in the competence and content of the Motor System.  So:  

• Communicate in terms of end-effectors.  Can the Action System communicate with the Motor System in terms 
like “get my mouth to the bone?” 

• Maintain the illusion of (cartoon) physics.  Since this is a virtual world, we are free to do anything we want to 
alter the position and angles of a character’s body.  There is a price to this freedom.  We typically want 
characters to fall back to earth when they jump, their joints to resist turning complete rotations, and their feet 
to stay on the floor rather than under it.  These things don’t come for free. 

Verb Graphs 
Motor systems today typically possess a number of these basic competencies: They can play out animations like 
a walk cycle onto a creature’s body on command.  They can layer animations, such as a hand wave atop that 
walk cycle.  They can blend animations, for example “turn left” and “walk forward,” to produce an intermediately 
turning walk cycle. One canonical solution to these problems is the Verb / Adverb model of Rose (see [Rose 
1999]) and the motor systems of Perlin (see [Perlin 1996]).  Rose introduces the Verb Graph – a structure in 
which nodes represent hand-made animations (Verbs) and the edges represent allowed transitions between 
Verbs.  The Verb Graph in this way represents some of the basic physical and continuity constraints of having a 
body. 

C4’s default motor system is a Verb/Adverb Motor System.  Such motor systems do a good job of playing simple 
gestures, moving the character around in the world, and providing a continuous variety of motor actions. 
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Figure 11: Part of Duncan's motor system verb graph.  Nodes represent verbs, and edges represent allowed transitions between verbs.  Thus 
if Duncan was crouching and wanted to gallop, he would transition from crouch to stand, then transition from stand to gallop.  Each node may 

represent any number of hand-made animations arranged in an Adverb space. 

However, such a motor system is insufficient to solve all the motor problems posed above. In particular, nothing in 
such a motor system suggests how to blend animations in order to achieve a particular goal; the complete 
animation seems too large an atom to base either movement or learning on; and it is hard to see where and what 
kind of “new material” could be placed in a verb-graph structure. 

Pose Graphs 
To address these problems, we have extended the idea of a verb-graph, increasing its resolution from the level of 
“animation” to the level of pose.  The contents of these pose-graphs are still based on source animation material.  
However, this source material is broken down into poses that can be annotated and associated with pre-
computed information.  The current implementation supports the formation of multi-resolution graphs with nodes 
built, perhaps dynamically, from blends of other nodes.  Paths through such structures that take the body from 
pose to pose can be efficiently found, and animations reformed in real-time. 

An experimental pose graph motor system (described in detail in [Downie 2001]) has been integrated into c4 to 
achieve a number of our motor problem goals, such as the ability to generate paths through the graph on 
demand.  It provides a channel of communication to the Action System that can be as abstract or as detailed as 
the creature designer desires – the kind of information stored in the internal blackboard’s MOTOR_DESIRED 
entry is flexibly interpreted. Actions can communicate in terms of “end effector” positions (“get my nose close to 
the food”) and the motor system can quickly work out how to get to the pose that best solves the problem.  The 
Action System may also be more explicit, calling for specific poses (like “sitting”) to be reached, or animations to 
be played.  Finally, the behavior system may inspect the pose transitions from the pose-graph and begin to build 
models of those sequences in response to reward from the environment.  In short, creatures can learn new ways 
of putting together old animation material.  All of this is done using an algorithm that runs at an interactive rate. 

Pose-graph motor systems can offer the variability and the plasticity required for compelling, adaptive creatures, 
while remaining an example-based technique - extending the usefulness of the handcrafted animation into an 
interactive domain. 

Conclusions: Beyond “AI From Day One” 
Given the amount of coverage the topic has received recently in Game Developer Magazine, the notion that “AI 
shouldn’t be an afterthought” has become a platitude.  We take a step further.  Almost every decision affecting the 
design of an architecture that will support autonomous creatures should be made with the AI in mind.   

In Disney’s terms, it is the life that gives meaning to the expression.  In Dennett’s, it is the ability to infer a 
creature’s beliefs and desires that makes the creature appear to have intentions.  It is the interactions between 
the participant, the virtual characters, and their shared environment that make an experience compelling.  This 
leaves us with an intriguing (if daunting) challenge that we have only begun to address with c4’s architecture.   

The first part of the challenge is recognizing which architectural features provide the creatures with the ability to 
have and express beliefs and desires.  The second part of the challenge is determining how to implement those 
features in a flexible, extensible way.   



Expressivity is key 
Note that the creature must both have and express beliefs and desires.  Adding a feature to a synthetic character 
(such as an emotional axis) is pointless if the character lacks the means to express that feature.  Similarly, adding 
a feature to a virtual world is pointless if creatures in that world can’t interact with the feature.  The things that an 
autonomous creature can’t interact with seem broken, or cause the artificial intelligence to seem stupid.  We have 
discussed some of these decisions – perceptual honesty, animations that use verbs and adverbs, and so on – 
that have helped c4 further a creature’s illusion of life.   

Simulation and Mental Models 
The strict split that c4 enforces between simulation and mental representations demands that each creature make 
decisions not on the basis of an external object’s state, but on the basis of the creature’s view of that state.  We 
have found the benefits of this representational division to greatly outweigh the costs of additional system memory 
and bookkeeping.   

Without this division, we would not be able to implement the “sensory honesty” layer provided by the Sensory 
System.  In a sense, the representational division is the sensory honesty.  Because creatures cannot “cheat” by 
accessing the brains of other creatures, they are required to base their decisions on their own world view.  As an 
added bonus, we can add and remove creatures from worlds without fear of leaving dangling pointers to other 
creatures. 

Most importantly, by divorcing these two representations, many “second-level” cognitive effects become possible, 
most of which arise from situations in which the creature’s mental model fails to match the world model.  In other 
words, creatures make “honest” mistakes. These effects include mistaken identity, surprise, confusion and the 
ability to be teased. Paradoxically, these “mistakes” can add greatly to a creature’s realism. 

Variety is the Spice of A-Life 
The many kinds of problems that animals (and interactive characters) can solve entail many kinds of solutions. In 
order to be a viable platform for intelligence in all its forms, an architecture like c4 needs to support and 
encourage this heterogeneity. Each system in a brain built with c4 uses representations appropriate for the 
problems it solves. When needed, new systems can be added.  Variety, far from leading to a hodge-podge 
design, contributes to a system’s robustness and generality. 

Intuitive Behavior Design 
Believable behavior involves many details: the creature’s gaze and physical positioning must be controlled as 
appropriate for the active behavior, the creature’s physical emotion-layers must reflect an attitude toward the 
behavior or the behavior’s target, and so on.  It is important that creature designers have access to mechanisms 
that make it easy to specify behavior.   

One strength of c4’s architecture is its ability to handle many of these details automatically. Most behaviors follow 
the same general model of “pick a target, approach it, and do something,” and much infrastructure is provided to 
support this common case. For example, the OBJECT_OF_ATTENTION posting directs the creature’s gaze, the 
Navigation System provides approach and orientation capabilities, and the various layers of the Motor System 
control expressive movement. It remains for the designer to fill in a few critical components of the behavior, such 
as specifying triggers (when should the behavior be active?) and ObjectContexts (what should a behavior act 
on?).  

When a behavior fails to adhere to the common-case model, the appropriate system can be modified as needed – 
perhaps the Perception System needs a percept to detect a new type of world event, or perhaps the Motor 
System needs to perform a new kind of physical action.  Whatever the case, the system conspires to make simple 
things simple and complex things possible. 

Supersumption 
Two architectural themes are seen throughout c4.  The first, reminiscent of Rodney Brooks’ subsumption, occurs 
when high-level systems send control signals to low-level systems in order to change their behavior.  
(Subsumption, and the core of Brooks’ philosophy circa 1991, is explained in detail in [Brooks 1991].)  The Action 
System, for example, outputs tokens that instruct the Motor System to perform specific physical actions.  (In this 
case “high-level” and “low-level” are not intended to reflect “degree of sophistication”). 



Another technique for control is when the decisions of high-level systems, which have a good general idea of 
what to do, are overridden by specialized low-level systems that have specific knowledge of how to do it.  This is 
a technique we call supersumption. 

The Navigation System provides an example. Though the Action System sends tokens to the Motor System, other 
signals are sent to the Navigation System, such as requests to approach and orient toward a target. Based on 
these signals, the Navigation System may decide to override the output of the Action System.  For example, 
suppose the Action System requests a “BEG,” but the dog is facing away from the shepherd.  The Navigation 
System will replace the “BEG” with a “TURN” for as long as it takes for the dog to orient itself toward the 
shepherd.  During the time Motor System receives its “TURN” command, it does not know whether its instructions 
came from the Navigation or Action System, and the Action System is decoupled from the details of the contents 
of the Motor System. 

Supersumption is also seen within the Action System, where an AttentionGroup may pick an object of attention, 
only to have its decision overridden by the later-executed Primary ActionGroup. Since the Primary ActionGroup 
controls overall physical behaviors, the ActionTuple it activates might be better equipped to decide what the focus 
of attention should be. 

Learning the right things at the right levels 
The levels of abstraction provided by the Perception System, Action System, Navigation System and Motor 
System provide the potential for learning different things at different levels in the brain.  Fundamentally, dividing 
learning problems between systems makes learning easier. 

The scheme used to back-propagate value in the Action System would be far less efficient if that system had to 
precede every “eat” with an “approach.”  The creature would end up with the idea that since “approach” often 
leads to “eat,” the act of “approaching” must inherently be a good thing.  By allowing some basic spatial ability to 
be included implicitly in the “eat” behavior, the creature recognizes the process of navigation and orientation 
toward food as part of the overall experience of eating. 

Likewise, if a more sophisticated Navigation System were designed to learn basic spatial abilities, that navigation 
learning could take place in parallel with the Action System’s high-level behavioral learning, internally assigning its 
own reward or punishment for its navigational successes.  If the creature very accurately navigates toward a lion, 
its adaptive Navigation System should register a positive result, even though the creature may realize very quickly 
that, as a general survival strategy, approaching lions is a bad idea. 

Lessons from sheep|dog and Clicker: Doing it right makes it easier! 
sheep|dog was created to demonstrate some of the basic abilities of creatures implemented with c4, and also 
serve as a stress test for the system’s engineering.  It features two creatures with full brains (Duncan and the 
shepherd), six sheep, and obstacles that react to the presence of the creatures.  The project also features 
distributed rendering, with two clones running subsets of c4 rendering the same world from different views.   

The learning algorithms being developed by our group were put to use in Clicker, in which a user can train 
Duncan using “clicker training,” an actual dog-training technique in which behaviors are “marked” (by a salient 
click sound) and then reinforced with food reward (See [Yoon 2000] for more on training synthetic characters). In 
this simulation, Duncan can be trained to associate vocal commands with behaviors, and demonstrates a number 
of the phenomena that one sees in real dog training, such as Thorndike’s Law of Effect, shaping, resistance to 
extinction, and so on.  ([Shettleworth 1998] provides an excellent summary of these phenomena.) 

Duncan features the most complex Perception, Action and Navigation systems of any of the creatures.  In 
contrast to the autonomous raccoon of the Swamped project, which consisted of over 80 pages of a VRML-like 
data structure, Duncan is constructed in about 10 pages of easily understood Java code.  The use of the right 
representations at the right levels made it relatively easy for a creature designer to implement complex behaviors 
like Figure 8’s “circle clockwise around a sheep when the shepherd says, ‘bye!’”  Duncan’s Sensory System filters 
external input and represents it in his coordinate frame, providing the rest of his brain with a notion of “clockwise.”  
The results of Duncan’s Perception System, structured as PerceptMemory objects in his Working Memory, allow 
him to track a specific sheep.  Duncan’s Action System recognizes that in the current context (he heard “bye”), he 
should select a circling action and a target sheep.  His Navigation System takes care of how he should get there.  
Finally, his Motor System blends layers of verbs and adverbs to produce expressive animations. 



The shepherd is a “semi-autonomous” character who responds to the voice input of the participant.  An example 
of heterogeneity in the architecture is found in the shepherd’s Perception System, where a special percept that 
contains the group’s acoustic pattern recognition research allows the shepherd to classify utterances as one of six 
possible commands.  The classifier can be trained through a “one-shot learning” interface so that new users can 
achieve a high recognition rate after a very short (about 15 seconds) training routine.  One of the tasks performed 
by the shepherd’s Action System is posting the utterances he hears to the world as DataRecords so that other 
creatures perceive those utterances as coming from the shepherd.  Using a layer in his motor system, the 
shepherd uses hand gestures to indicate his interpretation of the participant’s utterance.  Because Duncan does 
not always respond to a command immediately, this provides the user with immediate feedback that the system 
heard and interpreted their utterance correctly.  A final example of flexibility provided by the architecture was our 
ability to experiment with three control mechanisms for the shepherd’s navigation, each of which would allow the 
user some control over his position on the field, automatically helping the shepherd avoid obstacles and taking 
back control when the shepherd is in danger of being rammed by a sheep. 

Finally, the sheep use a series of specialized ActionTuples that cause them to avoid Duncan while exhibiting 
flocking behavior using Reynolds’ BOIDS algorithm [Reynolds 1987].  BOIDS, which uses local area effects to 
align the sheep with their neighbors, was easily implemented under c4.  Again, the abstractions provided by the 
Sensory, Perception, Action and Motor Systems made it easy to implement this unique behavior.  

Future work 
c4 continues to be a work in progress.  Work over the next year will continue to emphasize behavioral adaptation 
and motor learning.  We are also exploring how to model development (physical and mental) and social behavior.  
The authors are integrating models of hippocampal spatial learning, as well as time/rate learning inspired by 
[Gallistel 2000].  All of this research will be integrated into our next project, AlphaWolf, in which c4 will serve as 
the behavioral engine for a simulated wolf pack.   

Related Work 
Our work borrows heavily from the impressive work that has come before. Our ideas about super- and 
subsumption follow from Brooks’ work (e.g., [Brooks 1991]) as does our emphasis on building the whole creature. 
Our emphasis on the value of taking an ethologically inspired approach follows from [Reynolds 1987, Tu 1994, 
Blumberg 1995, Yoon 2000] whose behavior systems were inspired by the behavioral models of ethologists such 
as Tinbergen and Lorenz. Our representation of action sits between that typically used in reactive systems and 
that used in planning systems. As such it borrows from the work of Maes and Firby [Maes 1990, Firby 1992] and 
in its emphasis on choosing a few good representations, Minsky [Minsky 1985]. Our approach to learning borrows 
ideas from traditional reinforcement learning [Ballard 1997 for a review], animal psychology [Gallistel 2000], and 
dog training [Gary Wilkes, personal communication]. While our system does not do “cognitive modeling” as 
proposed by Funge [Funge 1999], the system described could easily be integrated into Funge’s architecture. Our 
motor system design borrows heavily from the ideas of Rose [Rose 1999] and Perlin [Perlin 1996]. 
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