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abstract

This thesis begins with the idea that reactive, behavior-based ‘synthetic
characters’ can become an appropriate platform for musical
experimentation.

This idea motivates the creation of a new behavior system for these
characters. This system, in addition to providing the basis of the work
described therein, appears to solve some outstanding problems in
character creation. Next, work on the creation of characters’ motor
systems is described, culminating in a new framework for characters to
learn and understand their motor actions while remaining within an
example-based animation domain. Finally, several musical applications of
these systems and this character-based approach are discussed. These
applications take the form of visual and audio interactive installations that
consist of, in part, musical creatures built from this framework.
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introduction

Reactive behavior systems are powerful decision mak-
ing architectures. Here we concentrate on the crea-
tion of synthetic characters with such architectures.
The resulting authorship process can focus on high
level concepts like 'intentions', 'expectations', 'emo-
tions' and 'memories'. However, as reactive systems,
they traditionally know nothing about time.

Both music and movement, on the other hand, are
structures in time. Can a unified approach to the gen-
eration and management of temporal patterns within
these architectures, informed by musical goals, help
solve some of the big problems in synthetic character
design? Can the resulting approach be used for both
the animation of characters and the music that they
produce? Can this architecture be used as a basis for
new 'motor learning' style techniques in both motor
control and music?

By drawing such parallels between musical problems
and the problems of behavior and motor control we
create here a system in which characters movements
can be shaped by training in real-time. Conversely, by
creating music with the resulting systems the goal is
to be able to perform similar training and shaping
within a musical domain.

This thesis is the introduction and an exploration of
an idea: character-based music.
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why a synthetic character?

the synthetic characters group

This thesis work built on and integrated with the work of the Synthetic
Characters Group at the MIT Media Laboratory. As a group we are funda-
mentally interested in the problem of how to build intelligent systems.
Our methodology is to create complete, but simple, autonomous charac-
ters. These characters are situated inside virtual worlds that are in turn
situated inside complete interactive installations.

Participants are typically presented with a graphical and aural window
onto a virtual world. In such an environment the actions, interactions
and emotions of the characters must always 'make sense', be believable
and compelling to those participating in the interaction. It is equally im-
portant that the creators of these characters understand and can con-
ceptualize their creations.

why characters?

The idea — create interactive installations with compelling synthetic
characters — is a good one. Expressive autonomous characters can offer
participants modes of interaction and relationship not shared with other
artifices. In this reasoning we are surrounded by a galaxy of influences
and ideas: the success of Disney and the animated cartoon [89]; our will-
ingness to ascribe intentions, beliefs and desires — to take the “intention-
al stance” [27] — towards creatures; our fundamental need to construct
“theories of mind” [5,70]; our familiarity with creating and maintaining
narrative forms involving characters; and the fun that we derive from
playing with things that play back with us. I propose that these ideas and

their power survive beyond different surface aesthetics and different me-
dia.

Looked at from the other side — that of the author of the installation —
the reasons for the character based design are equally compelling. Cre-



ating an interactive artifact starts with what might be the ultimate
“blank sheet of paper” — lacking in conventions to use and exploit, lack-
ing in constraints to direct or focus. Breaking down the design into
terms of characters gives us a place to start. Begin with their stories,
tflesh out their interactions with each other and their world; take their
motivations for and their reactions to these interactions. With this come
constraints and direction — complexity through interacting simplicity,
the visibility of actions; and references to well known conventions (of
character, cinema, computer game and literature). Such ‘old media’
bearings are essential to new media works [73].

two plateaus

expressive characters

Not surprisingly, creating compelling autonomous characters turns out
to be rather hard. What they need to survive in their virtual worlds, made
unpredictable by our participation and other characters is some kind of
intelligence — an autonomy through an intelligence, that is, to replace
scripts and direction that they can no longer have in this medium.

Prior to the commencement of this work the Synthetic Characters group
had built two large public installations based off essentially the same
mass of engineering and the same mass of conceptual technique — this
system is well described in [49] and is a clear direct descendant of the
ideas in [10].

A longer critique of previous group work is found within, but the three
main problems that [the authors of] synthetic characters faced were:
m our synthetic characters needed awareness of their own bodies.

m our synthetic characters' were naive about time and the temporal
extent and location of actions. They were unable to represent or pre-
dict future states — fundamental to representing the passage of time.

21



22

m modelling, learning or adaptation were not well integrated into our
characters — neither conceptually or in the engineering.

As the characters we sought to create become more complex, character
authors were spending more and more time treating the symptoms of
these problems. The lack of a general solution to any of them impinges
on all character design. Both animals and music are telling us that we
are deficient — that our characters need to know more about their bodies
and the flow of time and that neither of these concepts are modelled well
statically.

This thesis is an attack on these problems.

intelligent interactive music

We are thus interested in creating adaptive music creatures. But with few
exceptions, music composition tools which seek to incorporate machine
learning techniques are not interactive. Were we to try to make them in-
teractive we would fail. Brooks’ [16] searing critique of “classical” arti-
ficial intelligence’s inability to survive in a real world while grounded in
a symbolic world applies in full force to these (hypothetical) interactive
composition tools. After reading Brooks, the state-of-the-art intelligent
musical instrument parallels classical Al robots of the 1980’s. The field
is replete with expert rule systems, knowledge bases and applications of
a variety of formal logics [58] — all deeply deliberative, formal and brittle
techniques unsuitable for live interaction in unpredictable musical
worlds.

On an opposite side of the Al spectrum are the connectionist approach-
es. These too are present in the computer music composition field (often
in the guise of “dynamical systems”). Some of these approaches have the
benefit of being data-driven, others at least purport to listen to music in
some way [91]. Either way, their problems (again, should they be made
to survive in an interactive installations) too are well known — they might
make excellent modellers of musical structure within a limited domain,



but representation alone without “action” is insufficient to take us close
to an interesting interaction. Here, and in the now common place data-
flow language music paradigm, the apparent complexity of the ‘action’ is
far greater than the mechanisms behind choosing which action to take.

This work can find its roots in the reactive, behavior-based Al approach,
and the creation of strong music with a reactive approach would in itself
be a contribution to the field. But creating reactive music is itself insuf-
ficient. Compelling characters, and I argue, compelling interactions, are
more than musical robots that ‘do the right thing’ or react in the right
way. They are creatures whose reasons, intentions and feelings for react-
ing can be read in interesting ways.The proposed approach here is to
make music with synthetic characters; to make interactive installations,
performances and pieces with musical creatures.

This work then informs a general point about the interactive installation
across media. It is clear that as such installations increase in complexity,
and hence decrease in transparency, mechanisms must be found to main-
tain participants interest. Further, in a field increasingly constructed
with complex tangles of data-flow language, we as authors must find our
bearings somewhere. By aiming to build complex installations with inten-
tional characters we hope to achieve two things:

m allow people to take an engaging intentional! stance towards the ele-
ments of the installation, forging relationships like playing, explora-
tion, recognition.

m setup and maintain the expectations of participant through refer-
encing the conventions found in cinema, computer games, and liter-
ature.

1. When forced to interact with complex systems over a long term, people will take
an intentional stance towards them — “oh, my computer/car/video is mad at
me” (indeed Dennett gives uses a central heating system as an example). But
this is intentional stance taken not out of engagement but out of desperation —
in general people are not forced to use our installations.

23
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These two goals are well addressed in theory by the character metaphor.

For this to occur we have to do a lot of work. The problem cannot be ap-
proached piecemeal. It cannot be solved by creating a new “music sys-
tem” for use by current character systems. First, we create a new kind of
behavior system; then we develop new approaches to motor control; fi-
nally, we explore what music might come out of these elements. This the-
sis follows that order.

The result (and this work ends after only the beginning of the exploration
of such characters) is a radically bottom-up approach to interactive mu-
sic. It draws inspiration from synthetic characters, obviously, but also
from animals; it takes a certain amount of hope from the recent interest
in the biological origins of music [99]; and it seeks to mimic and steal
parts of both traditional approaches to computer music composition.
But it seeks to build interactions rather than knowledge bases, musical
competencies rather than musical rules and music creatures rather than
music machines.



behavior

In this section we give an account of the de-
sign and implementation of a new behavior
system for synthetic characters.

Here we address two of the inadequacies
mentioned above — the characters’ aware-
ness and representation of time, and the
integration of learning and adaptation into
the heart of the behavior system.

Further, this redesign of the creature ker-
nel enabled the rest of the work of this the-
sis to take a particularly clean conceptual
form. Indeed this work began with the real-
ization that many of the motor problems
that we’d like our characters to solve have
significant and interesting behavioral com-
ponents.

The structures and techniques described

below are, therefore, the context and ter-
minology for the remainder of this work.
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a new behavior system

context

The design in the new behavior system took place within the context of
the Synthetic Characters Group. Inside this group this new system, and
the engineering behind its implementation, is to be the foundation of a
large number of future interactive installations. It is therefore, first and
foremost, a set of general tools for authoring the characters in such in-
stallations. No one installation could motivate or inform all this work.

A small galaxy of ideas and goals have in some way influenced its design,
not least of all, the previous installations of the group [48,95,7], based
upon previous behavior systems (most typically the Scoot system [49],
extended by [49,103] and customized for [95]). And, as a technology
base shared by the group its development is permanently work-in-
progress, worked on by all present members of that group.

goals — learning

One principle difference between this new system (called innards) and
its predecessor Scoot is the decision to have adaptation and learning
built into the core — and not just the numerical adaptation of, say, con-
nection strengths, filter constants or statistical models, but support for
true, ‘live’ changes of complexity and topology in response to new expe-
riences.

We want characters to appear to posses long term changes, learning and
adaptation firstly because these things are strong indicators of intelli-
gent behavior. The lack of them threatens “the illusion of life” in the
long term and strongly limits the kinds of relationships that people can
have with characters. Long term changes are required for characters to
recognise people and for people to recognise their past interactions in
present ones. We integrate learning into other aspects of character de-
sign including consistent internal states (motivational and emotions)



guiding learning —
“extending the per-
cept tree” on

page 48;
motivation and
emotion — “soft
state” on page 78;
design learning —
“learning to replace
inverse-kinemat-
ics”, page 116;
long term persist-
ence — “persistent
‘mergeable’
graphs”, page 148.

and appropriate behavior towards appropriate goals. These things lend
long term believability and readability to characters.

Secondly, when implemented well, these mechanisms are useful for the
creation of characters themselves. Complex characters are complex sys-
tems to author; learning can provide a substitute for cumbersome, brit-
tle and over-fitted engineering. We will see several examples of the
adaptive abilities of this system being used to bootstrap characters dur-
ing their authorship and the increasing use of this style of design is one
of the long term design goals of this system.

The inclusion of learning presents a number of interesting aesthetic
challenges to authors — it, indeed, challenges the authority of authors.
Given a system that can and will grow in complexity at run-time and per-
haps over even longer periods, how does one guide what will be learnt
ahead of time? From an artistic point of view it is in no way clear what it
means for a system to ‘come up with something new’, or clear a priori
how to maintain an artistic vision in such an environment. The complex-
ity of this ambition makes reasons why we go down a character based
path towards artistic ends even clearer.

Finally, there are engineering problems associated with creating and us-
ing systems that can grow ‘by themselves’. In particular they demand the
ability to put characters into persistent storage for later analysis and the
development of tools with which to conduct that analysis.

goals — the year of the dog project

But what kinds of learning? and where to look for guidance? Central to
the work of the group is the idea that the best way of creating synthetic
characters is to build strong synthetic creatures and work out how to
stage them. This motivates a focus on nature’s (i.e. non-synthetic) crea-
tures as good models for our work. “The year of the dog” project — a
group wide focus on installations exploring the creation of virtual dogs
took place during this thesis work. Two installations came from this. The
first, a training scenario where a (participant controlled) shepherd
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trained an autonomous terrier (Duncan). This very simple platform in-
stallation was created to test and facilitate our work on learning and ad-
aptation inside behavior system, as well as to similarly demonstrate the
new engineering behind these ideas. The second installation “sheep|dog:
trial by Eire” places the dog and shepherd into a sheep-herding game.
Dogs and doggish problems will appear throughout this thesis as motiva-
tion and example.

But what are dogs doing in a thesis about music? The purpose of the (on-
going) project is to force us to look again at all the issues involved in cre-
ating virtual creatures. For the participant, the dog represents a rich,
fantastic and dangerously high set of expectations and conventions. For
us it presents a challenge that is at the bounds of plausibility (unlike, say,
a virtual human) — and a challenge that is ideally suited for working on
training (behavioral and motor learning). The dog forces us to focus on
hard problems that we know have been solved (by nature), that we know
are worth solving — where we know how well we are doing. The music can
only benefit from this.

shaping - learning by successive approximation

One of the great things about dogs is that they combine their strong
characters with a high level of personalizability. This ability to train dogs
is particularly interesting to us here. The training scenario itself comes
with a set of conventions about what you can train about a dog and how
you should go about it.

An increasingly popular training paradigm is clicker training [101,71].
Here we begin by associating the sound of a hand held “clicker” with the
delivery of a treat to the dog. This clicker, soon becoming a good predic-
tor of a food, has the advantages of speed, clarity and uniqueness over the
hand held treat. This clicker (backed up with food) is then used to differ-
entially reward behavior that the dog owner is interested in.



aural models — “ce-
pstral models” on
page 65;

simple shaping —
“simple shaping”
on page 114;
complex shaping —
“learning to chase
your tail — part 1”7
on page 140;

This owner can teach dogs remarkable things. Consider the kinds of mo-
tor learning that can be shaped in a dog: one can teach a dog to not only
shake its paw, but shake its paw in a variety of different ways. Such prob-
lems will be called here simple shaping problems. Here a continuous va-
riety of qualitatively similar animations must be offered and understood
by the motor system and selections in this space learnt by the behavior

system. Ideally, in our characters they should be learnt by a process that
mimics that used with real dogs — a process of successive exploration and
approximation by the trainer and by the dog.

A training situation with a well behaved dog might proceed as follows: in-
itially the trainer rewards the dog for sitting down (that is putting itself
in a position where it might shake its paw). This results in a dog that
spends much of its time sitting. Then any kind of a ‘shake’ is rewarded
by the trainer. Soon, the dog is shaking his paw often enough for the
trainer to begin to raise his reward criterion to higher hand higher
“shakes”. Thus over time, the height of the dog’s ‘shake’ increases, the
(motor consequences of) the dogs behaviors has been shaped. Once (and
only once) the behavior has been made to appear frequently, then cues
(typically vocal or gestural) can be associated with “shaking” by reward-
ing this behavior in the presence of the cue.

A more complex example concerns the creation of new animation mate-
rial. The problem is as follows: if you can direct a dog’s nose (typically
with real dogs you can use a “training stick”), you can teach a dog to
chase its tail. You achieve this by a similar procedure as above — the train-
er shapes the dog through a new “animation”.

One intermediate goal of the work here is to build a character that can
be trained in all of these fashions. If we were to achieve a solution to the
complex shaping problem then we really would be taking interactive
character animation into a different world. The quanta of virtual crea-
tures has remained the “atomic” animation, at least in the “example-
based” interactive animation school of which this work is part. The
“sround truth” of action section selection has been found in the limited
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number of animations that can be used to indicate that an action is oc-
curring.

Our attempts at a solution to both these problems will be fully described
by a discussion of the motor system — still, while designing a behavior sys-
tem we need to keep our eye on both these key problems.

'shaping' and music

What problems present themselves when trying to learn these new ani-
mations? Firstly, a reward regime requires a modelling representation of
body movement which the behavior system can use for both the analysis
and synthesis of movement. Secondly, from this representation we must
be able to produce variations, if the dog is to explore the space of possi-
ble movements. During all this the dog's body must manage external con-
straints - remaining on the ground - and conflicting goals - say, tracking
the object of interest with its head. Lastly, this training must be done
within the context of the motivational and emotional state of the char-
acter.

Unexpectedly, the dog’s complex shaping problem relates to problems in
interactive music. From a musical angle we are concerned with the cre-
ation of new musical material. Firstly, computer music too requires a
tflexible notion of the start and end of an 'action' or phrase. Secondly, the
production of variations and explorations of a musical action is central
to music itself, and certainly central to any representation we might wish
to use. Managing the external constraints during this improvisation be-
comes managing the influence of other musical elements in the world,
and the resolution of conflicting musical goals are important musical
problems for any interactive music.



figure 1.introducing
the action-tuple
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phase one — building blocks

Now we shall introduce and describe the fundamental building blocks of
this new behavior system. We’ll begin with the structures that represent
actions (the action-tuple), the values of actions and categories (the per-
cept). After, we’ll look at the dynamics of these structures and how cate-
gories are created and learnt. Finally we’ll look at extensions and more
sophisticated implementations of these structures.

the action-tuple

A behavior system, as the name suggests, is built of behaviors — actions
that a character can perform. How these actions are represented and how
they are selected between are the defining features of a behavior system.

Inside the core of this behavior system the primitive action type we’ll call
an action-tuple. These explicitly represent hypotheses about the world.
Each action-tuple is a statement concerning the likely outcome of a given
action in a given context, together with the likely value of doing this.

when there is food cat until the food has gone

\ l / (around 5 seconds)

Tr Ac Du / =100

v

an action tuple
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A concrete example: an action-tuple inside our dog might be written in
english as:

when there is food | eat food | until it is gone, in around 5s; V=100

This statement says that the value of ‘eat food’ when there is food is 100;
that we should continue to ‘eat food’ until it gone (usually this would be
a command to the motor system); and that this usually takes around 5
seconds (say, for a hungry labrador). Note that it is typically the case that
we include some timing information.

Each action-tuple, then, consists of four parts. These parts appear so of-
ten in this text we’ll refer to them by abbreviations. They are: the Trigger
context in which an action ought to be performed (7r); the Action itself
(Ac); that we will ‘Do’ this action ‘until’ a particular context is achieved
(Du); and the Value of this statement (V).

These statements are designed to be simple but powerful. While their
theoretical expressivity is a fraction of full blown logic programming lan-
guages (like prolog, or custom logic/imperative hybrids like Funge’s
“congitive modelling language’ [34]) they can, for example, capture all
of temporal logics primitive relationships [2]. And we need the simplicity
— not just for aesthetics. The simplicity and the constraints of this repre-
sentation are what will enable the automatic creation of new action-tuple
statements at run-time. It enables it by not only making the problem of
which hypothesis to generate next tractable, but also accessible, guidea-
ble and understandable by the authors of the characters themselves.

computing expected values

Perhaps the biggest difference between an action-tuple hypothesis and
logical statement is that action-tuples have value. At any time an action-
tuple can be asked to compute modulation of this, an expected-value.
This is an estimate of the value of carrying out this action at this time —
this is not necessarily constant or equal to V.



For the food example, we have a situation where initially, the expected
value of eating is related to the presence and type of food — in the ab-
sence of food, we cannot eat. If we are eating, however, the expected val-
ue is related to the amount of food that remains, or at least to whether
or not we've finished eating. This situation, where the expected value of
an action-tuple is a function of Tr while inactive and Du while active, is
common throughout the system:

Tr.evaluatemyxV if inactive

action-tuple.expectedValue() = {
(1-Du.evaluate) xV ifactive

This above is a codification of the usual definition of expected value. At
first, before you attempt an action, its expected value is related to the
intrinsic value and how closely the world matches its trigger condition
Tr. While you are performing an action, the expected value is related to
how distant the world is from the ending condition (including the expect-
ed duration of the action) Du.

Action-tuples are typically stored in action-groups where they typically
undergo competitive action selection (“the action-group”, page 41)
based on these expected values. Thus values must serve as a common cur-
rency between disparate action-tuples.

percepts

One of the features of this representation is an equivalence between the
constituent parts of the action-tuple — Both of Tr, and Du have identical
functional interfaces and acquire their semantics through their role and
use in action-tuples. And these interfaces include the evaluate function
described above. But what does that usually mean? And how do we imple-
ment something like Tr: ‘when there is food™?
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The answer is to encapsulate the ability to determine ‘there is food’ in-
side an object, usually creature wide, that I will term a percept.

This object servers to encapsulate the flow of information from whatever
it is that can supply the necessary data for the food decision, to a model
of that data that represents ‘yes, food is there’ for this data — typically,
this is a statistical model that is capable of generating some probability
estimate. But this arrangement might fall anywhere between the unim-
aginative ‘world variable food _is there is true’ or a full blown computer
vision inspired model looking at a virtual camera onto the world, initially
trained to find dog-biscuit colored objects. Either way, Percept can rep-
resent a barrier separating this specific implementation engineering
from the core of the behavior system.

percept trees

A final important feature of Percept’s semantics is that it can be a crea-
ture wide container of a concept — say, many Tr’s can look to the same
percept. If its model changes, all action-tuples that are associated with
it are effected. We will return to the procedure for updating percepts be-
low

Percepts can be arranged in trees. Such trees (by being set up before
hand) can guide the generation of new action-tuple hypotheses about the
world. For example a typical dog tree might consist of the default ‘what-
ever’ percept, one that says ‘yes’ regardless of the state of the world — act-
ing like some blank prior (see figure below). Children of this percept
might act as ‘something was said’ and ‘something moved’, children of
these would contain speech or motion models capable of matching spe-
cific utterances. Hypothesis generation can be guided by producing new

Whatever

Sound Movement

updating percepts —
“percept updating —
model building”,
page 46

figure 2.initial per-
cept configuration
might include
“sound” and
“movement”



child hypotheses with Tr pointing to child percepts. Rhythmic structures
are well described by such trees of action durations in Du percepts.

It is worth noting that we can use percepts as part of our description of
an action Ac itself — i.e. statistically model some parameters about the
action. Such Ac percepts can themselves be located in trees, enabling be-
havior systems to try out whole classes of actions and slowly refine them.
This will form the basis of our solution to the simple-shaping problem, is
fundamental to the expressive power of the system, and can provide an
abstraction barrier between the behavior system (deciding upon the ac-
tion) and the lower level details of the motor system (dependent on the
description of the action).

Finally, it is important to realise that these trees can grow (and shrink)
during the life of a creature, in response to both behavior and percep-
tion. It is to these dynamical properties that we now turn.
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figure 3.action
trees can group
similar classes of
actions together to
guide experimenta-
tion
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figure 4.percept
trees guide new ac-
tion-tuple hypothe-
sis generation
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phase two — dynamics

state objects and decaying memory traces

Now we’ve introduces the action-tuple and the percept we need some-
thing that connects the categorization abilities of percept to actual data
to categorize. This last basic ingredient is the state-object. Such objects
wrap up data flows that percepts require. Here we also augment these
transient flows of information with both a history and a computed salien-
cy. This history is just the ability to recall the data flow from an carlier
time. This ability will be particularly useful during the adaptation of ac-
tion-tuple values.

The saliency is more interesting — it is taken to be a low-level measure of
how stimulating this data flow is. Simplest examples might include vol-
ume for a speech flow, or brightness for a flow of visual information — the
difference between a loud bang and a soft whisper. Here we expect to find
a layer of signal processing — it is here also, where we put simple sensory
habituation and sensitization models. The memory can also facilitate the
regeneration of other sensory phenomena such as masking and blocking.
In fact the architecture explicitly encourages the construction of simple
data-flow networks to process and produce this saliency information —
the history contained at this level allows non-causal filtering to take
place.
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figure 6.graph of
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time for a simple
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StateObject’s saliency is also where a characters’ motivational and emo-
tions have the chance to modulate perceptions at the lowest level —
where, for example, hunger may modulate the saliency of a pre-wired
food smell flow. While many of these examples might be modelled with
more sophistication closer to the core of the behavior system, it is an im-
portant to have a place in the behavior system architecture for the sim-
plest of approaches — and this data flow paradigm is especially useful for
the ‘quick sketch’ of an idea.

StateObject, therefore, can be thought of representing the ‘decaying
memory traces’ of transient, unclassified events; or a lower level back-
ground tracking of continuous processes. Either way, it keeps a refer-
ence to some object that represents this source of this event or content.

the action-group

Now all the principle components of the system have been introduced.
Given a group of action-tuple hypotheses how do we chose between
them, i.e. how does the character decide what to do now?

A good action selection strategy uses this state balances a several goals.
The problem of action selection in the abstract and concrete is discussed
much more fully elsewhere (e.g. [15] and for creatures [10]). Our main
concerns here include:

m don’t dither vs appearing aware. The dog should not change rapidly
between actions, there should be a hysteresis introduced, reflecting
a cost associated with starting a task. It is more important to get
something done (i.e. some action completed) that to get exactly the
thing with the highest expected value.

However, the dog cannot carry every action that it performs out
through to the bitter-end without seeming absent. It must still, for
example, react to sudden loud noises. Tied up in this is what Brooks
terms as coherence — showing just the appropriate level of persist-
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ence towards a task or goal selected from a large variety of (possibly
conflicting) goals — and relevance.

m explore vs exploit. Always choosing the action with the highest
expected value is a pathological behavior — without exploration we
will learn nothing. But so is neglecting to do the “obvious thing” or
exploit the situation is equally uncompelling — there is no point in
learning something only to fail to take advantage. This especially
becomes important in systems where the innate values of things are
being learnt.

m overlapping action vs temporal constraints. This concerns what it
means to “have done something” (as opposed to getting half way
through something). A good action selection mechanism must be
able to support doing more than one thing at a time. Part of the
coherence is offered by the structure of the action-tuple. But in the
abstract, this opens up all of the issues concerning time discussed
previously.

a baseline action selection mechanism

Our base solution to the action selection problem goes as follows: initial-
ly probabilistically select an action with probabilities proportional to it
expected values. Having selected one, start executing it, and record all
action-tuples base expected values. Interrupt it if some action-tuple
grows to some multiple of its base value and it is higher than the current
expected value. In this case select again.



In pseudocode:

A = {action-tuples }, S = A. expectedValue(t)
start

{
choose active from A with probability distribution S / XS,
last_active = active
active_values = S
¥
otherwise
{
Vi, if (8,2 active_values,) and (S, 8, weiee)
{
choose active from A with probability distribution S / XS,
last_active = active
active_values = S
}
¥

There are some extensions to this basic recipe. For example, we can pa-
rameterize the exploration / exploitation tendency for fine control of the
stochastic selection process by pushing the expected-values through a
Boltzmann function p' < exp(V/T). High ‘temperatures’ T, and the ac-
tion selection mechanism explores more, for low temperatures it sticks
to choosing action-tuples with higher values.

Other extensions improve computational efficiency of action-groups. We
do not have to ask for an expected value from every action-tuple at every
action selection. Several heuristics can guide a partial evaluation of the
action-tuples — we might evaluate low value action-tuples less often, or
action-tuples which have not won recently less often. Later we will see ac-
tion-tuples capable of capturing activity patterns between action-tuples,
and we can use these models too, to evaluate action-tuples based on how
likely they are to become active in the near future.
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In fact throughout the remainder of this chapter, we’ll see more complex
additions. This action selection mechanism has, as written above, more-
over shown to be robust in practice.

credit assignment

value updating

Credit assignment is another of the duties of the action-group mecha-
nism. For action-tuple values V are typically not static, but instead
change over time. Here we have our first taste of learning.

The simplest credit assignment strategy is the back-propagation of value,
with discount. In this strategy some value of a newly active action-tuple
gets propagated back to the last active action-tuple. Some notation:

V,« V,.blendTo(V_, o)
[ l n

here v, represents the value of the last active and v the newly active
action-tuple. o is the blend parameter. The intuition behind this is that
values of appetitive behaviors should be related to consummatory actions
that they lead up to. Large positive consummatory actions (e.g. eating
food) provide sources of value for the system grounded in tangible quan-
tities (e.g. food or drive reduction). The inner structure of V can be quite
complex, and we will see some examples of this later. Credit assignment
could extend backwards along whole chains of appetitive actions at a
time, and hidden information could be kept inside the V implementa-
tions. But for now, we can still consider V to represent a real value. So,
the above equation turns into:

Vl — (l-oc)Vl + ocVn
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which can be viewed as the simplest, infinite-impulse response low-pass
filter, filtering an ‘input’ of V_ . This aspect of the behavior system is
closely allied to traditional temporal difference learning [88].

The default, base o is left as a free parameter, a global control over the
plasticities of values (which, again, can be locally modulated). But there
are some important complications which effect both V,, and o in this
credit assignment process:

m the discount parameter. Things which lead up to eating food, while
beneficial cannot be as valuable as eating food. So we propagate
back only a fraction of the value backwards from actions. Thus we
replace v, with v, = BVn in the above expression, with B as the
discount parameter.

m all equivalent action-tuples take place in credit assignment. We
back propagate value to all action-tuples in the group (including last
active one) with blend parameters modulated by their proximity to
the last active action-tuple and define:

action-tuple . proximityTo(action-tuple,) € R

Many times these proximities are zero — they have nothing in com-
mon with the last active action-tuple — which results in blend param-
eters of zero (i.e. no change).

However, consider the situation where there are three hypotheses in
our dog:

whatever | sit | for around 10s; V = 40

any sound | sit | for around 5s; V = 20

“sit” heard

sit | for around 5s; V = 10
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In this example situation, say “sit” is heard, but, the first action-
tuple happens to win — this is possible (indeed likely) because of the
stochastic action selection mechanism and the first tuple’s higher
value. When passing the reward back (caused by the dog biscuit) we
must reward all action-tuples that result in a “sit”, the external
world does not know, and should not need to know, which tuple
became active. In this example all these Ac are identical giving them
proximities of 1 which respect to each other. And it is the usual case
that the computation of the proximity is delegated to Ac — we will
see cases where proximities are somewhere between 0 and 1.

m Tr modulation. To make the above strategy work, one final ingredi-
ent. We further modulate the blend parameter by the value of Tr at
the time that this action-tuple became active. The intuition at work
here is that,

any sound | sit | for around 5s; V = 10

should only be effected by a credit assignment procedure at all if
there was in fact a sound.

percept updating — model building

As said before, the percepts referenced by Tr, are responsible for contain-
ing a model of (a part of) the world context. A character could start off
with pre-fabricated classifications that never change. But in the same
way that characters ought to be able to learn the value of action-tuples,
part of the adaptation that takes place in our characters should be the
discovery of new categories from perceptual data. An important goal of
this state discovery project is that it be value-driven — that the effort (and
computation expense) gets spent and accuracy obtained in the regions
of state space that are relevant to the performance of high-value actions.

The easiest way of achieving this is simply to not update the models of
percepts that no ‘high value’ action-tuples are associated with. This ‘high
value’ threshold that action-tuples must go beyond is left as a free param-

complex proximi-
ties — “learning to
chase your tail —
part 2” on

page 145



eter, and is perhaps best specified in terms of the average value of all ac-
tion-tuples.

Once we have decided which percepts will be updated and which will not,
we need to decide what goes into their models. Here the history that
StateObject keeps around helps us to the right thing — for Tr percepts
we need to keep track of what leads up to an action being activated. This
is in the past, since the model updating and credit assignment take place
after the action is completed. Here the acausal filtering that StateObject
can perform can be used — particularly salient events should mask less
salient events forwards and backwards in time. Other options include up-
dating the model with most salient event inside a window around the
start of an action.

The full model that a percept can contain is one which models how a par-
tition of state space relates to incoming value. This forms a linkage be-
tween the value propagated back onto action-tuples that relate to this
percept and the data that is being modelled.

Modelling all this is a complex task however; not only does one have to
deal with one extra dimension of data (value) but one must deal (process
or store) with all incoming data coming into the model.

A quicker, less complete, approach is to maintain a model of the portion
of the state space that leads to the execution of actions more ‘valuable’
than the current action-tuple. This hard categorisation of data into ‘val-
uable’ and ‘not valuable’ lets us present the data to more traditional
modelling techniques. Now we can press into service textbook models of
data — one dimensional second order distributions, ‘standard’ speech
processing modelling techniques. We are also now in a position to train
neural networks or other classifiers on this data.

We have to realize, though, that we use most of these techniques without
hope of any proof that they are correct or powerful. We are tracking not
just non-stationary distributions, but distributions with non-stationary

qualities affected by the actual modelling process itself. This is a problem
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widespread throughout embodied intelligence (and certainly multiagent
systems), and not confined to this behavior system. My personal bias is
towards accepting this as a necessary feature of this field and keeping the
models as simple and human readable as possible.

extending the percept tree

At its lower levels the percept tree structure naturally corresponds to a
cluster structure in statistical modelling techniques — and this is no ac-
cident.

The percept tree can be extended as models that represent ‘clusters’ fis-
sion, it can also shrink as child clusters fuse again. Statistical models dif-
fer on whether the can they maintain cluster structure locally, or they
require a global view — in which case the highest level percept in this por-
tion of the tree is an ideal place to locate this functionality.

Either way, we can again focus attention on the parts of the tree that are
linked to ‘high value’ action-tuples, and only review the clustering topol-
ogy in these areas. This ‘high value’, this innovation threshold, higher
than the threshold over which statistics are maintain, is another free pa-
rameter of the system.

When percepts split, new action-tuple hypotheses are generated. When,
for example, a percept that a Tr is connected to splits then new action-
tuples will be created with Tr’s that reference the children of that per-
cept. These children percepts might not necessarily be new; the trigger
for this behavior might be the action-tuple itself becoming active with a
value above the innovation threshold.

Some of the ‘zoo’ of models, including their fission and fusion properties,
currently built will be detailed in the next section.
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phase three — models

introduction

Having set up this framework above, we now go on to explore some of the
results that fall out of it. Here we investigate what models we need and
what we can do with them; here we also work through what it means for
a Du percept to split, or to have trees of Ac percepts.

Some of the models have concrete applications — we have aural models,
we have models of spatial relationships. Others are more abstract — we
have models of durations, sequences and simultaneities. In this section
we get glimpses of musical structures, for these models are the concrete
and abstract building blocks of both organised behavior and organised
sound.

Tr percepts

simple generic one-dimensional models

A simple model to consider is a model of a single real variable. As dis-
cussed earlier (see “percept updating — model building”, page 46) the
easiest path to take is to choose to model based on ‘higher-value’ transi-
tions rather than model a two dimensional distribution that includes the
value of the transition.



figure 8.a Gaussian
model forming a
model of the world

prior
model
target

model mean = 5.00

|
E 5.04 | | 498 |4.99

498 | | 5.01

1. To track a non-stationary one
dimensional ‘distribution’ we
use a rolling buffer. Initially

we fill it by sampling our prior
distribution

2. Over time, this distribution
approaches a target
distribution - the distribution of
the ‘rewarded’ class. We
generate samples for use by the
creature from the current
distribution of the model
modulated by our prior. The
prior ensures stability.
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combinational models

It is worth mentioning in passing that we can create percepts that look
to other percepts — models which say “this and that” or “this or that”.
Programmatically we are in the territory of fuzzy logic, and we can take
such metaphors over completely into this system. Such logics consistent-
ly define the Boolean operations “and”, “or”, “not” etc. in such a way to
extend them to handle “fuzzy” membership. Here Percept’s are seen as
objects that produce fuzzy membership measures from StateObject data
tflows. The problem of how to learn (fuzzy) Boolean relationships from
scratch is still an open one, although guiding the gencration of these
models by a pre-made percept tree will suffice for simple cases.

activation models

Later, we will see situations where more than one action-tuple may be ac-
tive at any one time. This will open up the need to coordinate the simul-
taneous or overlapping activation of action-tuples.

We can turn percepts towards the action selection mechanism itself and
build models of the patterns of activation that arise inside action-groups.
Some things need to be done together in order to work — we can use
these models to capture these contingencies. I suspect that these models
will be important in handling overlapping and blended motor actions for
complex bodies as well as handling (generating, analysing, and recognis-
ing) basic temporal structures like ‘the chord’ in music.

The simplest start on such a model is simply a Boolean model in a per-

cept set to look at whether a single action-tuple is active or not, itself a
Boolean value, denoted by 4; . Such a model maintains statistics about
the value propagated back in credit in the two scenarios, 4, = true and
A4; = false.

This approach is suitable for only the simplest of cases. Not only is it hard
to construct or induct useful percept trees based on these models, these
models do not capture particularly profound activation relationships.
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Instead we can keep statistics about all of the overlapping activations.
We define a ‘distance’ D,; between two action-tuples i and j with D,; not
necessarily equal to D), , initialized to some large distance M. For each
discrete time-step we update:

if both i and j are active or both i and j are inactive, and:

D, = aDy;+(1-0)M
if one is active and the other isn’t. This distance then decays during cor-
related activity, and increases during uncorrelated activity (this is, in
fact, nothing more than a Hebbian update rule). An extension turns this
into a useable model — we must replace o in the above equations with
either a B, given by:

B = atime inactive /time active

in an update where i is active, or by a vy, given by:

Y = atime active/time inactive

in an update when i is inactive. The intuition: compensate for the fact
that action-tuples might spend much time inactive anyway, without
there being anything profound to draw from this fact.

Finally, we can note that we don’t need a full O(N?) update each cycle.
Firstly, we only need to update every time an activation or inactivation
occurs (compensating, again, for different time update intervals, by rais-
ing the filter constants to some power of elapsed time). Secondly, we
might only keep track of action-tuples after they first share an activation
together!.
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The result of the model is a dense tangled graph of connected nodes rep-
resenting action-tuples. These nodes cluster into cliques of correlated
activity patters. After a while, we will want to create new percepts and as-
sign them to these cliques — percepts which represent this inducted cor-
relation. We can do this if we can automatically isolate a number of
cliques from the graph. A procedure for achieving this segmentation will
be given in the chapter on animation, where we will see many, many more
of these weighted graph structures.

1. Note the bias here towards common activation as important, rather than com-
mon inactivation. If this is what we want, they we might update Dz‘j differently
(with a different Q1) in the case of common inactivation.



1. As discussed in the
text, these
simultaneous
[in]activation models
can be drawn as a
network. Here the
distances represent
connection weights -
governed by the
duration of overlapping
[in]activity

igure 9.clique formation

o

2. Here two action-tuples “17”
and “2” have been
simultaneously active; so we
add them to the model, with a

default distance between them.

3. after a short sequence of
random activations the model
looks like the above. Note that
some action-tuples have not
been simultancosly active (e.g.
5 and 6) while some have
shared more a more correllated
activity pattern (e.g. 6 and 7)

4. We repeat a similar exercise
here, but very soon into the
sequence we make sure that
action-tuple ‘8’ is never active
at the same time as anything
clse, and when nothing clse is
active it is.
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NS

5. Here we see the progressive
formulation of three “cliques”
of activation, over quite a short
time. (approximately 10
activations, over 100 updates)

6. These cliques can be
segmented out to form higher
resolution, child percepts. The
graph segmentation algorithm
is disscused later.

5. Here we see the progressive
formulation of three “cliques”
of activation, over quite a short
time. (approximately 10
activations, over 100 updates)




other models

Clearly there are a host of other models that we can borrow from the
textbooks. Some textbook classifiers would make a welcome addition to
our collection of models. These algorithms, which take in data and target
‘labels’ are ideal — for discrete labels we can use ‘valuable’ (i.e. the as-
signed credit was more valuable) or ‘not valuable’ (i.e. we transitioned to
a lower value action-tuple); for continuous labels we can use the actual
assigned value itself. Later, we will see how to keep confidence statistics
inside action-tuples. Such statistics can ground the learning rate param-
eters of these models. However, to dynamically build percept trees with
fission and fusion with these models will need another ingredient. This
can often be provided by a percept higher in the tree that manages its
children. Further on we’ll see an example of the maintenance of a popu-
lation of models that themselves have no idea how to split — see “listen
(installation)”, page 190.

temporal models

simple durations

Throughout the development of this behavior system, we have see action-
tuples described like:

whatever | sit | for around 5s; V = 40

The ‘around 5 seconds’ is a temporal model, stored in a percept, refer-
enced by an instance of Du. The action-tuple, upon starting, can decide
how long it ought to be active for by sampling this model. When an ac-
tion-tuple stops being active it can update this model with the length of
time that it actually was active for. The simplest of such models (other
than the static, fixed period) is the Gaussian model described above com-
bined, again, with a suitable prior.
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But we can take this much further. The explicit duration modelling
found in the most primitive atom gives us the ability to create sophisti-
cated temporal constraints and interactions at the heart of the system.

forward transition models

Du is another suitable place for activation modelling, so we can just re-
use the activation models from above to, say, give coherence to when
groups of simultaneously active actions end. Another model, unique to
Du, models action-tuple transitions — in short, what usually happens
next. Initially, we might do this by simply keeping track of the number of
transitions that occur between action-tuples. Some notation:

i

2Ny

J

p(i—>j)=

where N;; represents the number of recorded transitions between action-
tuple i and action-tuple ;.

However, there are two things we need to add to this model. First, there
needs to be a way of evaluating the probability for an action-tuple transi-
tion that we’ve never seen — that is we need a prior probability of any giv-
en transition. Secondly, we need a model which tracks potentially non-
stationary transition probabilities — what usually happens next might
change over time.

What we have, for N action-tuples, instead:

1+oaN

pli—>j)=

with N,;' representing the number of transitions recorded recently (say,
within the last 10 transitions) from action-tuple i and action-tuple ;.



Once we have these models there are a number of things that we can do
with them — in particular they represent a simple set of expectations over
what will happen next. But one thing that they will do, by virtue of their
position inside the action-tuple — they will perturb the action selection
process with the contents of this model. Here we might reinforce the
chances of high probability transitions from recurring — lowering the bar
for likely transitions and raising it for less probable transitions.

Finally, if we keep, in addition to the statistics above, information about
the values of particular transitions, we will have grounds for these per-
cepts to fission apart — creating sub-hypotheses which can be refined (in
value, in content and in trigger percept) independently.
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Tr Ac Du

G

1. Consider 3 action-tuples, here, labelled
A, B and C.

figure 10.forward
transition model-

ling

B:40%

C:60%

2. Inside a Percept referenced by each Du
we keep statistics concerning the number
of times that we transition to every other
action-tuple. These Percepts may be kept
privately (local only to a particular action-
tuple) or they may be shared between a
group of action-tuples.

B:45%

,\
@
[0)]
[9]1
X

3. These models look at information
generated by the action-selection process -
in particular the transitions between active
action tuples. This is typically done in
addition to keeping track of the likely time
duration of events.



4. While we are building these models up,
we can use them to bias the action
selection mechanism. Here we can use
these statistics to bias which action is
selected next, or bias other actions’ ability
to interrupt this action.

A

A,
%l

A,

.

5. Because these models are embedded in
percepts we can reuse the Percept fission
and fusion mechanism to allow new action-
tuples to be created by these forward
transition models. This allows the behavior
system to explore and refine versions of
action-tuple A that lead to B separately
from those which tend to lead to C.
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exotic duration models

It might come as no surprise to learn that duration models have musical
applications — such models will act as the building blocks for larger tem-
poral structures.

The simplest duration model — the simple length model - is going to be
useful here. But we can go push the central idea — duration modelling —
much further into musical territories.

Firstly we might build models that are aware of temporal structures. For
example, consider building a duration model, responsible for working
out how long an action ought to last, that embodies the preferences for
low-integer timing ratios. Before new action durations get added to the
duration model an attempt is made to reinterpret them in terms of the
existing model, specifically in terms of low-integer ratios of the existing
model’s mean duration. For a diagrammatic illustration of how this
works see figure 11 below. This reinterpretation process is governed by
prior or learnt preferences for certain time intervals.



mean duration = 1.04seconds
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[
E 1.13 1.11 | 1.05

098 | | 1.02

1. here we are modelling a time
duration by computing second
order statistics on a rolling
buffer, or a first-in-first-out
queue. This is just the “simple
duration model”.

figure 11.low integer
ratio blind duration
models

mean duration = 1.04seconds

|
E 1.13| | 1.11 | | 1.05

0.98| | 1.02 | o~ v

2.1

2. Now a new duration is added
to the model. It is clear to see
that this duration “2.1” really
ought to be interpreted as
twice the duration of the
model. Adding this to the buffer
directly is a mistake if we want
a model that knows about the
simplest element of rhythmic
structure. So, recognizing, that
it can be better explained by
the model as a low-integer ratio
(here 2:1) of the mean
duration, we add 1.05 to the
model.

mean duration = 1.04seconds

[ |
E 1.11 | [1.05] | 098] | 1.02 | | 1.0S

xS [V x x2

3. For generative purposes we
keep track of the reinterpreting
ratios — for when we come to
sample this model, we first
sample from a distribution of
these ratios, then sample the
model and then finally multiply
them together.
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Secondly, we note the ability to share percept models between action-tu-
ples, by placing them in percept tree structures — we can use this to pro-
vide first order temporal coherence between actions — a coherent pulse
across action-tuples.

A duration percept tree structure has two uses. Firstly it can directly rep-
resent (through it’s hierarchy) the hierarchical structures that are unde-
niably useful for music [46]. Secondly, it can be used to guide the
creation of and maintain competing hypotheses about the timing struc-
tures that should be present inside a collection of action-tuples. The
maintenance of a population of (possibly competing) views and interpre-
tations is a common theme throughout the computer music understand-
ing literature (take two extremes: the grammar based work of [46]and
the connectionist work of [91]). Later we’ll see examples of percept
trees used this way — soundcreatures, page 175 and listen, page 190.

temporal logics

The field of formal temporal logic has a lot to contribute to the descrip-
tion and recognition of complex contingent arrangements of sequential
and overlapping actions. But its hard to know where to include the tem-
poral versions of predicate modal logics. Most useful for our purposes is
the “interval algebra” [2,69]. While an introduction to this area would
take us too far away from the purpose of this thesis, it is sufficient to re-
alise that the action-tuple structure can capture the primitive temporal
relations of the interval algebra (all thirteen of them, roughly: equal, be-
fore, touching, overlapping, during, simultaneous-starting, simultaneous-
ending and 6 inverses). We can, by engineering constraints on the trigger
conditions (Tr) and ending conditions (Du), enforce such relationships
between action-tuple activations. These structures too, have been shown
to be important in modelling music [58], and although no piece here has
as yet used these structures, we note that we have the opportunity to play
with then in a generative model within our framework.

L

figure 12.temporal
relationships



aural models

cepstral models

We can produce behavior in response to spoken utterances and other dis-
crete sounds by reusing some models common in the speech recognition
community. The model chosen in our group are based on a, so called, ce-
pstral analysis of sound segments (bounded according to amplitude
threshold). This analysis produces the short time, Fourier transform of
the logarithmic (short time) power spectrum of the sound. Incidentally,
this technique is common to both speech recognition and pitch detec-
tion — making this engineering the basis for more musical applications
(see, soundcreature, page 175).

We can define a Euclidean distance metric between vectors in this space.
Better, we can define the distance between these utterances as the small-
est of all possible distances between one vector and time warped versions
of the other. (for details, [105], for theory, [72]).

Categorizations of these utterances naturally fall into clusters. By fixing
cluster sizes before hand we can create dynamically growing trees of ut-
terances and hence dynamically growing trees of UtterancePercept’s.
Other options include fixing the membership of high level percepts dur-
ing authorship (or a special training phase) and preventing the altera-
tion of this data.

With either arrangement this branch of the percept tree begins with a
percept, ‘any sound’ that simply responds to the presence of sound. Its
model collects utterances associated with rewarded action-tuples. And,
upon an action-tuple attached to it becoming important, it can perform
a segmention of all the utterances it has collected in its model. While
musical applications of these models have been the focus here, making
robust distance metrics has been the work of others in the group [105].
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phase four — extensions

This section shows how we can create more complex characters using the
ideas described above. This behavior system is implemented as a collec-
tion of interfaces, then base implementations. (An interface is strictly a
contract to implement certain methods). While the last section looked
at some of the implementations that can be used for percept models, this
section looks at some extensions. This programming style is based upon
an idea that heterogeneity can lead to simplicity — that given a multi-
tude of tools for creating parts of characters that the simple things re-
main simple, and the complex stay possible,

So the options really do ‘fan out here’ and this is by no means the last
plea for heterogeneity in this thesis. A similar call for hybrid, bricolage
style systems will be heard in our discussion of motor systems, where no
one paradigm seems to solve all problems. For example, one of the
themes of this section is the use and the creation of motivational and
emotional state inside our creatures. Currently we have no principled
way of approaching these topics — we are still very much learning by
building. Out of this, and only out of this, might come some formal ideas.

other values

what is value?

Value gets its meaning only through the action selection mechanism. Re-
gardless of the intricacies and extensions, action-tuples with high ex-
pected values are more likely to become active. Such action-tuples are
the actions that are most valuable for the character to do at that instant.

This definition hides a significant problem, well illustrated by two exam-
ples:

m the lion problem. Here there seems to be a conflation between valu-
able and “good”. Consider a zebra character. It is clearly very valua-
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ble for such a character to run away from lions. Indeed if the zebra
didn’t run away in the presence of a lion, then something would look
wrong.

The issue now is that actions which typically precede seeing a lion
and running away from it accumulate, via the credit assignment pro-
cedure, value themselves. In short, the zebra learns to run up to the
lion just so that it can run away again.

m the contrast problem. Similar problem arises with startle behavior.
Recall that this behavior is important in the clicker training para-
digm — “startle”, as a result of hearing the highly salient click emit-
ted by the clicker, precedes the reward of food. Therefore one would
expect “click | startle” to accumulate value from “eat food” and
then the actions that the trainer is training, say, “beg” to accumu-
late value by preceding “click | startle”.

Here the issue is that throughout this training regime the dog
always startles. So the initial Value of “startle” should be high (to
ensure that, in the presence of its Tr, namely a click, startle always
occurs). But if the initial value of “startle” is so high then we’re
effectively back to the lion problem, unless we increase the value of
everything else to compensate. This is an unacceptable “catch-22”
scenario.

Recall that the expected value of an inactive action-tuple is given by the
formula:

action-tuple.expectedValue(¢) = Tr.evaluate(t) xV



Allowing both values and saliencies to become negative offers the sim-
plest solution to the lion problem. The chain discussed for the lion prob-
lem looks like:

approach lion run away (from lion) figure 13.the
- i o = lion problem
(accumulates value) (value)
If we adapt this chain to become:
approach lion see lion run away (from lion)
— - ... . I
(accumulates negative value) (large, slowly adapting (value)

negative value)

The high negative value of “seeing a lion”, coupled with the negative sa-
liency returned from the percept “lion”, conspire to ensure that not only
will this “action” become active in the presence of a lion, but that pre-
ceding actions will be strongly suppressed. This “perception action” has
a value of far lower plasticity than is typically found in an action-group —
reflecting the fact that the negative value associated with lions has been
acquired through mechanisms that are no longer plastic (e.g. evolution
or early nurture).

This is not the hard-coded “hack” solution to the lion problem that it
might appear (at least, no more so than evolution or nurture is) — the
negative value of seeing a lion, and the negative potential encoded in the
saliency of the lion percept both make sense — this is where the implicit
ideas of “good” and “valuable” get disentangled. But we need to make
sure that we do have a mechanism by which these negative values and sa-
liencies can be created through adaptive processes.

The startle mechanism is created in a similar way. Extending the range

of saliencies outward by allowing them to be greater than 1 enables the

(highly) salient “click” to ensure that the initially low value startle action
does not start off as a primary reinforcer for behavior in itself. As the val-
ue of being startled increases perhaps lower StateObject mechanisms



habituate slightly to the click. For the sake of simplicity we might choose
to implement action selection for actions that trigger off of highly sali-
ent stimuli differently for the mass of other actions — separating them
into a separate “startling” sub-group that have priority (hierarchical ac-
tion-groups formalize this idea, page 74). Either way is acceptable, for
these two approaches are identical in the limit.

It is interesting to note that the solutions to both these problems ulti-
mately involve time. There is a conflation of the time-scales on which
learning occurs here — the zebra doesn’t learn that the act of approach-
ing lions is good or bad, the zebra arrives complete with that knowledge
courtesy of evolution, or early nurturing. Neither does the dog learn to
whether or not to “startle” — it is reflexive, unavoidable.

There is a conflation too, of perception, action, and emotional response
that happened in the resolution of the lion problem — this will be dis-
cussed later.

We can solve these problems while retaining a scalar Value. But it is ques-
tionable whether these approaches scale to more complex characters, or
solve all problems associated with this one dimensional Value. Further,
soon we will see action-groups used for different purposes, which in turn
require more exotic Value implementations. While it is true that all we
need to select actions is a consistent idea of value, it is not true that char-
acters don’t need to encode and expect the difference between good and
bad explicitly.

complex value implementations

Value V has been discussed so far as if it were a single, tfloating-point
number wrapped in the semantics of a low-pass filter, smoothing out
changes in its value brought about by the credit assignment process. But
neither its scalar nature or this piece of signal processing is required by
its interface, and the above section suggests that more dimensions may
be required.
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A closer analysis of the role that V serves in the behavior system reveals
that the only constraints on it are that there must exist operations:

m V;.toDouble(t) € R — V can be converted to a real number for the
purposes of providing a proportional probability for action selection.

m V;.compareTo(V,) € {same, bigger, smaller, unknown} — V;
can be compared with all other V5 inside an action-group.

m V;.distanceTo(V,) € R and V;.blendTo(V>, o) — finally it supports
a metric and a blending method consistent with a metric:

V;.distanceTo(V,) = 0 = V;.compareTo(V>) = same, and
V;.distanceTo(V,) < V;.distanceTo(V>.blendTo(V;, o)) for all o

No transitivity demands are made on the underlying V. Further, different
action-tuples can have different implementations of interface V (al-
though engineering abstract algebras is troublesome).

value chaining - the precedes relationship

The first class of more complex V implementations includes those that
augment a scalar floating-point value with other information. This infor-
mation, irrelevant for toDouble, distanceTo and compareTo opera-
tions, is blended by blendTo in the same way as the scalar value.

These rather loose requirements open up the possibility of using V imple-
mentations to store information about transitions between action-tu-
ples. Consider introducing sources of tracer dye into the behavior
system. During a V;.blendTo(V,,0) operation we propagate some
amount of this hypothetical “dye” back from V> to V;. After a while at
each V the concentration of these “dyes” gives an idea of the distance to
the sources.



A

Tr Ac Du

B

C

1. Consider again, 3 action-tuples,
here, labelled A, B and C. In this micro
world, there are in addition, two
consumatory actions “cat” and
“drink”.

'

“eat”:9
“drink”:10

eat

“cat”:10
“drink”:10

4. So, as well as back propogating
some value from the consumator “cat”
action, we also back-propogate the
distances. In this scheme we blend a
small amount of the bundle of tags

2. Inside a “complex tagged Value” we
keep information about the “distance”
to consumatory (or “goal”) actions.
Here we initialize this distance to the
consumatory actions to be 10, some
large default value (we could do this

“eat”

“eat”:zero

3. Trivially, “cat” is distance zero away
from “cat”
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@0 oY drink”

5. Over time, we get a better and
better idea of the distances between
action-tuples and consummatory
actions. Here A gravitates towards
“eat”, B towards “drink” and C
remains close to both. A might be
“chase animals”, B “follow sound of
river”, and finally C “explore the
environment”.

...l “eat” ...l “drink”

Thunger Ithirst

7. Now we can have motivational state
influence the expected value of action-
tuples.

B C

/

A
(1 1]

0..| “eat”

Ihunger

...l “drink”

8. Through these distances we can
modulate all the expected values in the
system. Here, the creature is “hungry”
rather than “thirsty”; therefore focus
is placed throughout the action
selection of the creature on only
actions that are likely to result in
“eating”.



With V,.D repre-
senting the “dis-
tance” vector of

V. This is initial-
ized, on demand, to
some default maxi-

mum value.
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More concretely, v;.blendTo(v,,a) translates to:
V,.blendTo(V,, ) = V,;.D « (1-o))V;.D +o(V,.D+1)

Now we can begin to modulate these action-tuples values (specifically,
whatever V.toDouble() is to return) based on these distances, and based
on the instantaneous expected values of the sources.

Why might we do this? Consider a consummatory action-tuple
see food | eat food | until its gone, around 20s; V=100

A creature might learn all kinds of strategies that are good (and valua-
ble) for getting food (hunting strategies, climbing trees, etc.). These ac-
tion-tuples will, by this mechanism, become associated with the
consummatory action “eat food” because they often precede food.

But all these things however are (at the moment) irrelevant, and not par-
ticularly valuable, if the creature is not hungry and we shouldn’t select
actions which accumulated their value by preceding food, if we have no
drive for food.

This propagation is enabling us to modulate the whole behavior land-
scape very quickly, by changing the importance of a small number of goal
consummatory actions. This is an important synthesis of what is typically
considered one of the uses of motivational state in real creatures — allow-
ing creatures to make relevant decisions quicker. Finally, we note that it
gives us an alternative to creating hierarchical action-group trees, and
can become an important component in more complex characters.
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value signal processing

We can look at the V;.blendTo(V>,o) as an opportunity to perform arbi-
trary signal processing on V; with the contents of V>. Looked at this way,
the vanilla Vimplementation acts as a low pass filter. But there are other
signal processing networks that we could have to capture other effects.

An example: “leaky” networks where value slowly leaks out of a V| per-
haps reflecting a reduction in confidence (although there are better ways
of representing this, see page 80). Other networks might provide mo-
mentum to the credit assignment process. Finally a combination of these
ideas may be appropriate, where values are processed in such a way that
they develop momentum towards previously well established values —
which act as basins of attraction for the value of V.toDouble(). This style
of processing should be linked to the contents of relevant percept mod-
els, perhaps taking us towards the learning and identification of different
“situations” in the environment. Structures that tie these things togeth-
er in this way have not yet been developed, but remain an interesting ex-
tension to the framework towards the understanding of long term effects
of time.

other action-groups

hierarchical action-groups

It is important to note the fact that we can dress an action-group and its
action-tuple selecting capabilities up as an action-tuple itself. These
groups might have a traditional Tr but, while active, perform action se-
lection on the action-tuples that they contain.
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1. Hierarchical action
selections can be made by
unifying action-tuples and
action-groups

figure 14.schemes for hier-
archical action-selection

2. Credit assignment can take
place as shown above, to
protect modularity

3. Values of parents are
modulated by child values, Du
conditions of parents and
modulated by the active child
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Hierarchical action selection mechanisms are certainly not a new idea,
(for rationale see [64,26,10]). But there are a few wrinkles, specific to
this style of behavior system, that we need to sort out:

m What should the value of these higher level action-tuples be? I'm
not sure there exists a single answer to this question, but suffice to
note that there exists an option of modulating an action-tuple’s
value by the value of the action-tuples it contains.

m How should credit assignment occur across groups? Now that
action-tuples can be in other groups, we face the possibility that
action-tuple transitions can occur across groups. One note: we
should assign only the credit to the leaf nodes, because this shields
one group from the insides of another, but enable the proximity
mechanism to have special effects.

Can action-tuples be members of more than one action-group? Mul-
tiple membership seems a particularly attractive option — especially
for the ‘leaf’ action-tuples in the tree. These diagrams are suggestive
of the power of hierarchical action selection. But it’s only a useful
idea in practice if action-tuples can tell which group that made them
active at any time.

Indeed the action-group that becomes part of the activation context
of the action-tuple — context which also includes information about
Tr. This is related to the idea of a pronome — a place holder for a ref-
erence to an object, or a reason of interest [64]. In the diagrams
above, the containing action-group references a particular object as
the object on which the member action-tuples will operate. When
behaviors can be parameterized in such a way, action-tuples can be
reused and repurposed elsewhere.

m How should action spawning take place? In a static behavior sys-
tem (where the topology of the action selection mechanism is not
changing at run-time) this action reuse is useful. But in a dynami-
cally expanding system, this reusability is all the more powerful.



Whole action-groups can now be spawned in response to the crea-
tion of new percepts.

m What form should Du take for such action-groups? Du for action-
groups should take into account the temporal extent of the cur-
rently selected action. This does not rule out keeping timing infor-
mation about the length that the whole group is active for, but the
Du of the individual actions selected within should be allowed to per-
colated upwards in the tree.

perception as action

The complexity that Percept and State-Object offer is a fraction of what
is required to model all perceptual phenomena. While the category dis-
covery abilities of Percept seem solid, and the arbitrary signal processing
of StateObject useful for simple interactions between stimuli, they can-
not support multiple, persistent objects, nor can they mimic higher level
perceptual artifacts such as priming, masking or a focus of attention.
The simulation of priming requires that model, and preferably learn,
complex relationships between the activation of percepts.

But we have already structures capable of learning such relationships —
the action-tuple mechanism. The trick here is to build up simple, non
mutually exclusive action-groups containing action-tuples whose activa-
tion signals a perceptual event, the act of perceiving something. Con-
tained within these groups are action-tuples whose Tr looks to percepts
as before, and then create a sub-tree of percepts that model those action-
tuples’ activities. The punch-line here: it’s no accident that action-tuples
and percept’s interfaces and structures are very similar.

One thing that action-tuples have that percepts lack is their value. The
values that these perception actions posses can be ascribed meaning —
they are the values of perceiving these things. This notion can be ground-
ed both by other perception actions and by the values of actions which
result from perceiving them. These values can ground the “saliency” of
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this perceptual event — in this way a zebra could learn that perceptions
of lion are large negatively-salient perceptions?.

In fact, in our discussion of the lion problem above, there were action-
groups that became active in the presence of a certain class of object.
But a specialised layer of intermediate action-tuples ought to provide fo-
cused modelling capabilities for simulating perceptual phenomena. As
an example, for temporal perceptual effects Du percepts equipped with
forward transition models discussed above (see page 58) can simulate
and learn priming effects. Another is the correlated activity modelling —
which might mimic gestalt phenomena.

Regardless, the bigger picture here is that the power that action-tuples
have to represent action can also be used to model the world. Action as
representation has appeared in a number of places in the literature (e.g.
[59]) and here it falls out of the framework naturally. This helps ensure
that as we build up more and more sophisticated perception abilities we
are also building more sophisticated expectations about those percep-
tions. These expectations are vital to creating the illusion of intelligence
in characters. It is towards this and related themes that we now turn.

other state — emotion and motivation

soft state

So far we have been building up more sophisticated ways of orchestrating
long term patterns of activation. But we’ve said very little about emotion
and motivation. These ideas are a very important part in modelling char-
acters, not least of all because they form an important part of the inten-

2. This learning is perhaps best done (if we want to do it at all) in a separate micro-
world. This required a lot of (worthwhile) engineering. For parts of a character
to be taught separately and then reloaded into a more complete character,
needed not only a persistent storage mechanism, but a way of automatically
reconnecting parts into a greater whole.



tions that we ascribe to characters. Motivational state crosses, and
hopefully unifies, many of the time-spans that we, as character authors,
are interested in. The explanatory power of motivational state over be-
havior can work on long time-scales— say, characters take significant
time to become hungry — only to acted upon by behavior over short time-
scales — characters quickly get sated by eating food. Characters lacking
either side of this interplay are not engaging or readable in the long
term. Such motivational state is also, I believe, crucial to the production
of long passages of music.

Of course, what is necessary for those that interact with our characters
is also necessary for the creators of these characters. The brave, foolhar-
dy or dogmatic might try to have motivation state emerge from a syn-
thetic physiology to act upon behavior, or have the illusion of motivation
emerge from the behavior itself with nothing underneath.

But motivational states are just too valuable to character authors. Here
we choose to model motivational variables explicitly, typically with scalar
values, and do that in almost an entirely ad hoc fashion. We use them di-
rectly to moderate and coordinate the long range behavioral change that
we hope participants can read, and we modulate them directly by behav-
ior closing their loop. The glue is a rapidly assembled layer of signal
processing primitives — the same primitives used for StateObject inter-
actions (page 39).

The two places where the results of these processing can act on the se-
lection of actions — either by modulating the values of actions, or
through directly contributing to the triggering of actions.

In the first, and more likely, category we can modulate the value of, say,
“eat” consummatory actions based on the scalar value of “hunger”.
Through the complex value mechanisms discussed above we can propa-
gate this back to associated appetitive action-tuples. This connection
need not be preset and fixed. It might be possible to learn the fact that
eating reduces hunger — that when hungry, eating is a good strategy for
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bringing the internal milieu back closer to an equilibrium point [85].
Whether we do this is largely dictated by where we choose to put the
“sround truth” into our characters; whether we wish to encode the fact
that food reduces hunger inside our behavior system or encode it some-
where else (eliminating this explicit statement is obviously impossible in-
side virtual domains).

In the second case Tr percepts can model the scalar motivational values
directly. This technique can be used to create scale-free effects of moti-
vational state — actions, although configured to react to high or low state
variables, learn what high or low means in their particular context. This
dramatically reduces the number of “magic numbers” present in the de-
sign and description of characters, or at the very least converts some of
them into a more abstract form.

Both techniques — value modulation and percepts identitying and repre-
senting “hungry” — have been deployed in the installations discussed in
this work, albeit it extremely simple ways. The response to motivational
state of this new behavior system is still fluid. Now we need to look at
how, when activated, action-tuples can perturb this state.

expectations about value

Although the action selection mechanisms described above require Vim-
plementations to provide a representation of expected value as a single

number we’ve already seen that it can be augmented with extra informa-
tion. But we can do more by adding statistical modelling of value into V.

The goal is to create characters who can get surprised when something

unexpected happens®. First we need a criterion to judge whether an ac-

tion transition is out of the ordinary.

Recall that the credit assignment process performs the operation
V.blendTo(V,,,) which results in V being moved towards V,, (the value
of the succeeding action-tuple) by an amount o. We can view this opera-
tion as a non-stationary model of V,,. This view fits with our previous im-
plementations of V — the simplest non-stationary model of a single real

note hunger — “ex-
change (installa-
tion)” on page 185.



variable is exactly the low-pass, infinite-impulse response filter described
earlier. In this view the filter constant o embodies our expectations con-
cerning the time-scale over which the distribution of V,, will change.

The next simplest model that we might have of V,, is similar to the rolling
buffer-model described above. Here we get not only the (moving) ‘mean’
of the distribution V), but some measure of the variance of this distribu-
tion. This variance is what we need to be able to judge whether any spe-
cific V,, is exceptionally high or low. Given a Gaussian model we can
obtain a likelihood of V,,;

p(V, )< exp(-(V,-V))?/26?)

That is a quantity proportional to the probability of seeing such a V,,. If
this probability is below a certain threshold then this value transition is
“surprising” to the character.

But how surprising? To answer this question we need to keep informa-
tion concerning our confidence that this model is in fact correct. The in-
tuition here is two fold: firstly, if a model has been wrong recently, it
should be less surprising if it is wrong again; secondly, if a model has not
been tested for a long time, then it should be less surprising if it just hap-
pens to be wrong. We look back over a long history to help interpret the
present.

Once we have built up a confidence concerning a particular action-tuple
we can begin to use it for other purposes. The first candidate includes the
modulation of the credit assignment process itself. For example, action-

3. Former colleague Chris Kline talks about expectation generation and violation
in synthetic characters in his master’s thesis [49]. The following two sections
are very much a recasting of some of the mechanisms that he proposes. There
are two differences to note. Firstly, his mechanisms can be incorporated right
into the very fabric of the behavior system — including his object persistence
modelling. Secondly here, there is an attempt at modelling some things about
the expected results of a characters actions through the action-tuple.
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tuples with high confidence V models should change slower than models
that we have no confidence in. This is especially useful in handling re-
cently created action-tuple’s whose initial value we might be unsure of.

A second candidate includes changing the criteria for attempting a per-
cept reorganisation. Recall that percepts associated with high-value ac-
tion-tuples are given the opportunity to fission off smaller, more refined
categories. It might make more sense to promote this percept tree
growth in the cases where a high-confidence action-tuple suffers an ex-
pectation violation. This could be interpreted as a signal that something
in the world has changed, and we need to refine our assumptions and de-
scriptions. While this is not always the correct interpretation, it is often
accurate in behavior shaping scenarios — where once a behavior is estab-
lished through reward, the reward criteria is changed to provoke special-
ization of this behavior.

expectations about the consequences of actions

But only part of a character’s expectations concern the values of subse-
quent action-tuples. We have another way of generating expectations and
consequently expectation violations — the Du part of any action-tuple.
This description of the state of the world when the action should finish
is consequently an expectation that the world will be that way when the
action finishes.

Just as we could define a likelihood of a particular V,, above, we can in-
terpret Du as an (unnormalized) likelihood rather simply:

p o< 1-Du.evaluate(end time)

that is, the value of Du at the time that this action-tuple finishes.

Remember that Du invariably includes information about when the ac-
tion-tuple ought to finish — so at the very least characters can get sur-
prised when they are interrupted. With more complex models referenced
by Du, more complex situations can be recognised by this mechanism —

<

short timescales

long timescales

state objects
L]

action execution

credit assignment

confidence changes

model splitting

/

AN

figure 15.timescales
in the behavior sys-

tem



for example, if we are modelling forward transition probabilities then
surprise can be the result of a character being able to perform an unex-
pected action.

Taken together these expectation mechanisms are immensely important
in the creation of music. It is a matter for future work to show that intel-
ligent interactors must in themselves have representation of constraints
and expectations. But who can deny that music arises out of a dynamic
context containing constraints, expectations and conventions? When we
move from a static to an interactive medium should not some of the
these relationships be encoded into the fibre of the interaction itself?

emotional tags

We can also use the complex value techniques for emotional modelling.
Here we associate emotion tags to action-tuples, providing extra dimen-
sions of emotional information. Following on from the work of former
colleague Soon-Yee Yoon [103] a full featured emotional space, with an
appropriate number of dimensions, is the ‘stance, valence and arousal’
space — although subspaces of this space also make sense [33,78].

We can put stance tags into values in the dog training scenario. Stance-
Value is an implementation of V that propagates as above with the addi-
tion of a stance tag. StanceValue perturbs a character wide emotional

state towards a particular stance state when such action-tuples become

active.

For example, initially we can make the response to ‘startle’ one of high

value and negative stance (“run away”). However, in clicker training, the
click is a good predictor of the arrival of food, so the startle response ac-
cumulates ‘positive stance’. We could couple this and the ‘perception as
action’ (page 77) ideas together, and start associating emotional tags to
objects that we perceive.

&3



84

concluding remarks

What has been described above started with a few, very simple computa-
tional structures — the action-tuple, the percept, the state-object and the
action-group. Inside the implementations of these structures we might
find complexity but importantly these structures come together in the
same way regardless. From the outside, we are building characters with
a small number of parts which in turn have simple, well defined surfaces.

The behavior architecture described here has been tested in a number of
interactive installations. A full training scenario, demonstrating clicker
training, speech recognition and simple shaping on a dog was shown in-
side the Media Lab and at the Game Developers’ Conference [35]. This
installation served as both proof-of-technology and proof-of-concepts for
many of the ideas already presented above.

The two frontiers for our behavior system research are now the ‘very big’
and the ‘very small’. It is important that many of these ideas are put to-
gether into a large installation; and no doubt we will learn much by doing
this. However our understanding of several of the elements could be aug-
mented by closer study in well controlled experiments.

The remaining ideas (in particular, the ‘soft state’ work and many of the
percept models) have been used to create the (small) installations de-
tailed in the last chapter of this thesis, page 168.



figure 16.duncan,
and the shepherd
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animation

This section concerns itself with the con-
nection between the characters and the
screen — in particular the design of the
characters’ motor systems.

To begin I present a brief overview of char-
acter animation — what it is, and typically
how it can be made. The mode of manufac-
ture is important in the discussions which
follow, and this thesis focuses on one par-
ticular source, that of the ‘hand crafted’
animation.

Next I will consider the very simple motor
system — one which can only play out such
animations — and build up complexity over
the course of this chapter. By the end I will
be in a position to present the last motor
system built for this work. This new kind of
motor system seeks to solve, or to provide
a platform for solving, many of the prob-
lems discovered and discussed along the
way.
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motor systems for synthetic characters

challenges for a character motor system

aesthetic choices

The motor system is responsible for connecting the behavior system to
the body of a character and through that to ‘outside world’ — in our case
that world is a virtual world which can then be rendered by a graphics sys-
tem.

Typically synthetic characters have taken the form of animals or easily
anthropomorphized figures. They have limbs and heads, they inhabit 3
dimensional spaces and they appear to be affected by physics similar to
ours. This is an aesthetic choice, a choice explored further in this work,
but for now we will take it as an assumption.

In short we are drawing on the conventions of cartoon, film, theatre and
perhaps even dance — and not without good reasons. Such traditions are
rich and well established for both the creators of interactive installations
and the participants.

walking, shaking and moving your head

Let us now look at the simplest kinds of motor problems we wish our
characters to be able to solve. The basic competencies of a motor system
clearly include such ‘simplicities’ as:

m simple gestures. Characters should be able to perform actions given
to them though animations from animators. If an animator makes
an animation, a motor system ought to be able to play it faithfully.

= smooth body movement. Unrealistic and highly noticeable disconti-
nuities are easily achieved in character animation - they should
never happen.



m gross body movement. How do we get the character to move around
the world? This might be as simple as deciding upon which anima-
tion to play in order to move in a particular direction; this might be
as complex as a whole navigational sub-system. Preferably, higher
level behaviors will never need intimate knowledge of navigation.

m eye/head/body orientation. Can the character appear to attend to
things in the world?

Each of these competencies has a behavioral component that we can
make arbitrarily complex. For example, moving around the virtual world
might require involve learn spacial maps of the environment, collision
detection / avoidance and other approaches to path planning. But with-
out a motor system supporting such behavior it will never make it to the
screen.

The first two of these basic competencies are achieved by the careful re-
playing of ‘canned’ animations; the remaining two call for something
more complex. The task of moving around at the very least requires co-
ordination of animations (e.g. turn-left, move forward, move for-
ward, stop) to achieve a particular goal but ideally any solution requires
finer control. But the last competence — orienting the head towards
something — demands such fine control. Here we need the creation of a
continuous output animation space from a finite amount of animation
material.

...in the correct style...

But the problem is harder than this — any solution to the above problems
has to keep the character in character. By creating a motor system that
keeps especially close to the source example animations, one will for
short periods of time be insured of success in this particular venture. But
on timescales longer than the animations this illusion of life will break
down as the character fails to interact correctly with the environment,

&9
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fails to attend to things properly and eventually begins to repeat the
same animation over and over.

Further, the correct style may change over time, in particular with the
characters internal state. A complex character may walk ‘slowly’, or per-
haps ‘sadly’ or even ‘hungrily’. If we cannot achieve these things, then
our whole venture is doomed from the beginning. Therefore we add to
the list, as a priority:

m be expressive. Whatever the character does it must be in character.

supporting parameterized behavior

From the behavior level discussion of ‘shaping’ (page 28) we know we
have to produce parameterized motor actions. Clearly a scenario where
the dog learns to shake its paw higher and higher will work the best if we
can produce a continuous space of shake-paw animations covering a va-
riety of heights. Again, if the motor system cannot show it, then there is
little point in a behavior system modelling it. Simply stated:

m parameterized motor actions. Parameterized behaviors demand
parameterized motor actions.
support new motor actions

One of the goals of the behavior system described above is to allow our
characters to increase in complexity over time. This can often be
achieved by reusing already present motor actions — for example a newly
learned hypotheses:

verbal command ‘beg’| beg |...
reuses the same motor action as:
whenever | beg |...

Learning quantitatively different beg parameters does not exhaust
all the learning possibilities.
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The leading example here is our complex shaping problem from the in-
troduction: can we teach a dog to chase its tail by directing its attention
with a training stick. After a teaching period the dog will chase its tail in
the absence of the stick, presumably for a reward. Although machine-
learning techniques have been applied to animation creation this prob-
lem demands live motor learning of effectively new animations — a task
that has not, to my knowledge, been attempted in the literature before.
Therefore:

m create new animations ‘live’. Provide support for the perceptual
models and the output mechanisms to enable characters to learn
new animations during their lives.

motor level problem solving

This last point suggests opening up the ‘contents’ of the body to the
in[tro]spection of the behavior system so that we can learn and form
models of movement. But in many cases we’d like the communication be-
tween the two to occupy less bandwidth, not more. Experience in the cre-
ation of characters brings with it many insights into how the
communication between the behavior and motor system should work.

The goal in this work is to make behavior->motor communication take
place in terms of desired pose descriptions. This could be the behavior
system saying “I'd like to walk over there now”; it could be in terms of
end-effectors — “put my nose near the food. Is it there yet?”; finally it
could be in terms of time — “how long, roughly, before I could get my
nose there?”. At the very least this has the very desirable effect of shield-
ing the behavior of a character from changes in the competence and con-
tent of the motor system. So,

m communicate in terms of end-effectors. Can the behavior system
communicate with the motor system in terms like “get my mouth to
the bone”?
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maintaining the illusion of (cartoon) physics

Since this is a virtual world, we are free to do anything we want to the
position and angles of a characters body. However, this freedom is sel-
dom what we desire. Instead, typically, we want characters to fall back to
earth when they jump, characters’ joints to resist turning complete rota-
tions and characters feet should stay on the floor rather than under it.
These things we don’t get for free.

Further there are more subtle dynamical symptoms of physics which we
would like to mimic — for example, once the dog gets its nose to the food,
it might not be able to keep it there if, say, that pose involves standing
up on its hind legs. Another example would appear if we could get a dog’s
nose to follow a stick — as the stick moves higher and further behind him
the dog will have to sit down and eventually beg to get his nose near the
end of the stick. All of this is due to [a transparent awareness of] the
physical constraints of joint and muscle.

World physics might be made even more interdependent in a cartoon
scenario (Wile E. Coyote looks to the camera before falling off a clift).
So, finally:

m be able to simulate some kind of physics. Can we do this without a
tull virtual physics simulation? Could we do this in an example based
domain if we did?

finding your food

Another way of looking at these issues, together with many behavioral is-
sues, is to consider a scenario: how does a dog find its bone. Just some

of the interactions between motivational state, behavior and motor sys-
tems are outlined in figure 17. Its worth noting that while ‘finding your
food’ seems like an easy scenario, none of the problems outlined in this
picture are either particularly easy, or satisfactorily solved. This scenario,
however, is useful as a measure of our success. Work continues inside the
Synthetic Characters Group on various aspects of this problem not ad-



dressed in this thesis (in particular the navigational control). In this sec-
tion we build characters that can walk around, in the next we’ll attack
some of the fine-grain motor issues necessary for the synthetic dog’s
mouth to ever accurately get hold of his bone.
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I_ deciding to find food _I

motivational changes
getting more hungry
hunger
behavior / goal selection

facial expression / quality of animation

I_ foraging behaviors _I

action selection value /
expectations /
disappointment
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navigation

facial expression / quality of animation

r remembering that you left a bone under the tree -1
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> long expectation
long navigation /
quality of animation
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avoiding the tree

A4
orienting w.r.t. bone

figure 17.finding sitting
your food (if you getting mouth onto the bone



example based character animation — an overview

Throughout the development above there has been the assumption that
we can dynamically create animations, on demand. Before going on to
look at the motor systems that we will use, let us stop and discuss how
we are going to ground these animations.

The character is represented internally as an articulated figure. By a
combination of a number of animated joint rotations and a single trans-
lation of the figure as a whole, we can conspire to make this figure come
alive.

Many software packages exist to aid in the creation of suitable coherent
animations. By far the most common technology at work in this field is
the key-frame animation — animation is created by smoothly interpolat-
ing between a number of poses, placed at particular times.

The skeleton of a character, now animated in this way, goes on to affect
positions of vertices connected to its bones. These vertices are connect-
ed to form triangles which are eventually rendered on screen. Typically a
lot can be achieved by only animating joint rotations (rather than joint

translations or scales) because typically, character’s bones don’t change
length. In addition there is one translational degree-of-freedom govern-
ing the gross position of the creature.

In a fully general system however, other things could be given keys —
most notably vertex positions or the details of the connection between
bones and vertices. Regardless, this chapter will not concern itself with
these things. Similarly, how the graphics system renders the skeleton or
the flesh from a hierarchy of joint angles will not be discussed.

The target domain for these software packages is typically the ‘finished
film’ — in precisely the same way as the target domain for a music se-
quencer is the ‘finished score’. (Although recently the expanding market
for 3D computer games has made this area of interest for such software
developers, and other software has concentrated on computer assisted
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choreography [23]). Regardless, the output of these packages is invaria-
bly a single, final animation — in short, a description of how joint angles
and positions vary over time.

S
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|

translational degree
of freedom on root
node of skeleton.
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figure 18.key frame ani-
mation applied to a dog
skeleton



sources of animation data

The hand crafted animation is by no means the only place from where we
can obtain animation data. There are a vast range of procedural anima-
tion techniques. Strictly procedural approaches differ from the above in
their lack of reliance on human animator guidance - although in reality
there is a continuum between the procedural and the example-based.
This continuum, of interest to us here, includes:

m mathematics — inverse kinematic solutions. Particularly useful for
finding poses for use as key frames, ‘inverse kinematics’ (IK) seeks
to solve the inverse problem! of finding a set of joint angles that
result in a particular end-effector (e.g. finger or head) being in a
specified position, or a specified position and orientation. Like many
other inverse problems this is typically an under-specified problem
(many solutions, or no solutions often exist) in a very ill-conditioned
space. Still, robust solvers exist for this problem — robust in the
sense that they generate a stable solution if such a solution exists
locally — and they are now part of the standard animator’s software
packages. We will return to the solution of IK problems inside the
character motor system shortly.

m more mathematics — modulation. Perlin [68] is another among
those who also seek to build complete motor systems for interactive
characters. As well as expressing a concern for the composition of
example animations he also inbuilt the ability to modulate these ani-
mations by the application of band-limited random noise functions
to joint angles. Sometimes the goal is to leverage the example-based
domain, sometimes it is to use these noise functions to create ani-
mation material afresh. Either way, Perlin sees these functions as a

1. in contrast to the forward kinematics problem: given a complete set of coordi-
nate system transformations along the joint chain, calculate where the end-
effector ends up. This is a rather trivial problem to solve in all joint representa-
tions useful for computer graphics.
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way to move beyond repetitive animation cycles that can become the
downfall of example based animations (see, for example, the repeti-
tive animations common in computer games).

physics. There is a whole field of treating the body as a physics-based
dynamical system — that of connected articulated masses, with joint
properties. Such models seek to find an advantage in “automati-
cally” obtaining realistic physics. Such simulations either require
computer learning techniques to control the complex dynamics of
such a system (say, through the application of forces and the modu-
lation of impedances) or ideas from control theory to re-incorporate
animation examples into their systems. Once we are in the physical
controller realm we can retarget animation controllers from one
body to another [40,36].

Physics, however, is expensive to simulate and hard to control. Fur-
ther, once you have a physics simulation, Newtonian physics isn’t
necessarily what you want. Designing a new physics or even a new
creature’s body in a physical simulation can be a daunting task.
Once one has designed or learnt a controller that acts on a physics-
simulation body you have problems with controller brittleness. Hav-
ing fallen over can the controller get the model to stand up again
[54]? Since one of the reasons to simulate physics to achieve high
degrees of realism in collisions and unpredictable events its unfortu-
nate to have to avoid such collisions.

computer learning. The task of learning controllers for physics bod-
ies opens up to many traditional computer learning ideas. Sims [84]
seminal work uses genetic programming ideas to learn controllers
(and morphology) for interacting creatures. Genetic algorithms also
find purpose in the motor systems of another character creator —
Terzopoulos learns controllers for simulated fish, in simulated water
[96]. Mataric et al. have connectionist representations of controllers
capable of learning to perform examples that seem well behaved
between and away from stable attractors [6]. Brand learns pose and



transition models from examples in statistical work that will be par-
ticularly relevant to us later [12].

All these (successtul) techniques share one feature — they require
extensive off-line pre-training or genetic selection in well configured
domains. While this is a perfectly useful way of solving the very real
problems of realistic animation creation and modulation, such off-
line techniques cannot be used for on-line learning of animation
material.

a diversion - why example-based?

The amount of work related to creating, using, reusing, repurposing and
moditying character animation is vast. The variety of literature is created
by the variety of goals in the field. Many papers in the field open with a
discussion of the exact same issues, weighing them differently they con-
clude that different approaches are more appropriate. Some take the
cost of generating an original source animation to be very high, and seek
to avoid it all together (e.g. the physics based approaches); others accept
the need for expensive source material to bootstrap the process which is
otherwise not data-driven (e.g. motion capture followed by animation
manipulation). All these approaches, however, tend to see the work of
the human animator (or motion capture system) as ending after they
supply some data.

Our concerns often seem closer to that of the world of finished film — the
animator, here, is king. The animator is not a necessary evil, nor should
their role be confined to producing a few animations early on in the cre-
ation of a character. We seek to create and use techniques for creating

new animations in real time not because creating animations is a drudge,
but because we need to, given the interactive medium that we are work-
ing with.

Some of the interactive techniques discussed above seem to make prob-
lems that we will face later disappear. For example [6] makes it ‘easier’
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to specity joint constraints and physics, because it is a model that is built
with joint constraints and the physics of bodies.

The problem here becomes how to keep the animator as part of the proc-
ess. To a Disney animator the task of creating a physics-based, learnt-
controller walking character is a under-specified problem — what kind of
walk? and why?

There is a parallel here with synthesis algorithms in music — a far older
area than computer animation synthesis. Some synthesis algorithms are
more popular then others. It is interesting to note that many of the suc-
cesstul algorithms for artificially producing sound started off life as com-
pression techniques®. I speculate the reason for this is that such
techniques (e.g. LPC encoding [53]) come complete with an inverse
transform — with the ability to transform existing sounds into their inter-
nal representation (e.g. filter coefficients and residue). Other represen-
tations and synthesis techniques seek to do the same — for example
cluster-weighted-modelling’s data driven synthesis [81] — and we cannot
ignore the commercial supremacy of wave-table based models. All these
models can be described as example-based.

For other popular representations (e.g. FM synthesis [19]) the number
of parameters is extremely small and explorable (usually from the need
for computational simplicity). Even here there have been attempts to au-
tomatically express existing sounds in terms of these parameters [42] —
attempts directly analogous to the machine learning of controllers for
physics simulations. This is fuelled by a desire to let creators who create
within these representations work out “where they are” and enables a
method of working involving iteration between external and internal rep-
resentations.

2. the phase vocoder (for musical applications, see [32]) was born of research into
compression of voice signals for telephone communication. Linear Predicative
Coding (LPC) has a similar history. Wavelet resynthesis was born out of the pop-
ularity of wavelet compression techniques [52].
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The preference here for example-based motor systems arises from similar
concerns. But in the case of animation the arguments are compounded
by animators’ talent for creating new animations from scratch. Raw pro-
cedural approaches to animation can fail to have ‘inverse transforms’ to
allow this iteration. Procedural modification of example animations can
suffer from the same problems — the inability to adequately express what
it is you expect the output space to be. Subsequently, both fail to ade-
quately leverage or rise to the challenge of a century of tradition of hand-
crafted expressive animation. Therefore, we shall concern ourselves with
the creation of example-based motor systems from now on.
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blend based motor systems

building up a motor system

the animation player

A very simple ‘motor system’ is one which is given an animation from a
menu of alternatives which it then plays it out on the body of the crea-

ture. For the sake of simplicity, let us say that it does this under explicit
behavior system control — i.e. the behavior system is explicitly choosing
what to play next.

Problems with this simple system become quickly apparent. Motor and
behavior systems here are tightly coupled, and the behavior system is giv-
en plenty of scope to produce discontinuities in body pose — simply by
changing its mind over which animation it wants to play out.

A traditional solution to this problem involves the verb-graph’. We can
eliminate any chance of a discontinuity by doing two things: firstly run-
ning all animations that we play all the way through to the last frame and
secondly, secondly the next animation out of the subset of the menu that
happen to have a first frame that lines up with this last frame. All of this
computation (working out possible transitions) can be executed before
run-time. A directed graph can be formed with animation data as edges
and matching first/last frames as vertices.

3. much of the concepts behind these blend-based motor system is articulated in
[75].



figure 19.a simple
‘verb’ graph of ani-
mations
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For example, requests by the behavior system to ‘play sit’ while the mo-
tor system happens to be playing walk might result in a course being set
through the remainder of walk and through all of walk to stand and
all of stand _to_sit until we are in a position to execute sit. If the first
and last frame of sit are identical then we can continue to loop sit until
the behavior system gives the motor system another goal.

Paths through the verb graph from any vertex to any other vertex that are
optimally short can be easily pre-computed (e.g. by the Floyd-Warshall al-
gorithm [22]).

Several issues and peculiarities result from this style of motor system.
Firstly, note that, in the example above, upon receiving the request to
walk there is no initial change in the appearance of the character — in
fact no change can occur until the remainder of this walk ‘cycle’ is com-
plete. This puts an unnatural pressure on the animators (providing the
animation content) to make the animations and cycles as short as possi-
ble. At this point one quickly discovers that many repetitions of short an-
imation segments look like just that.

Secondly animators are also forced to spend time hand-crafting
walk to_stand and many, many others like it. As we extend the verb-

WalkToStand v StandToSit

Stand Sit
Walk “]

StandToWalk % SitToStand
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graph formalism below, the task of making and maintaining these tran-
sitions grows to occupy much of the animators’ time. Additionally, the
creation and maintenance of the graph structure itself becomes a bur-
den, and it is a burden that is hard to ease by automation given the inti-
mate connection between the motor and behavior systems.

adding animation blending

Animation blending offers the chance to lighten the load on animation
staff to produce transitions, to create far less repetition and far more
plasticity in the output of the motor system. Animation data can of
course be processed and combined in arbitrary ways before being put
onto the character’s body. In fact software products and motor system
paradigms exist that explicitly encourage such manipulation within data-
flow like languages [83].

Of course, only some operations make sense. A useful subset can be ob-
tained if we constrain the space of operations that we perform to combi-
nations of animations:

n-1
at) = blend{a}(tl),af(tz),...,af(r”);[31,[32,...,[3"-1,[1- > ij}

m=1

Three ways of blending seem particularly useful:

m mutually exclusive layering. For example, upper body motion from
one animation (say, a hand wave) gets layered onto an animation
that contains no upper body motion (say, just the legs walking).

This might be considered a generation of the blend weights {p7}
from spatial position of the joint.

m general layering — adverb parameters. Here animations that con-
trol the same joint angle degrees-of-freedom are blended, typically
with different blend-weights, to produce the resultant animation.
This style of blending has been termed the verb-adverb style of

‘witi.t ail(tl)' repre-
senting animation
data from source
animation 1 on
joint i at time

¢ with weight

B! The function
“blend” is a com-
bining function
suitable for the un-
derlying algebra of
the representation
of joint angles.
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motor system [77] especially when the weights are used to blend
between similar animations each in a different style, an animation of
walking sadly and an animation of walking happily.

Here we generate blend weights {pr} that are independent of the
spatial position of the joint. Instead we might generate these
weights from higher level adverb parameters. These might be dic-
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1. Consider the task of interpolating interpolant
between two (one dimensional) examples -
“8” and “1” located on a single axis (at
positions x=“2" and x=9").

Radial basis function interpolation seeks
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tated directly by the behavior system — for example emotional
parameters ‘happiness: -1 — 1°.

A number of subtleties must be present in any robust implementa-
tion. Firstly, care must be taken in this case to interpolate in a “neu-
tral time”. Consider the blending of those two animations

walk(happily), an animation lasting, say, 2 seconds and

walk(sadly), an slower animation lasting a full 4 seconds per cycle.

I I X

4. Sometimes our examples will not be
evenly distributed, or we might desire

basis functions without compact support.

5. In this case we need to work out what
scaling of the basis functions will make
the interpolant go through the examples.
This is equivalent to solving a linear
equation.

A%

interpolant




107

Clearly a 50%:50% blend of the two ought to last 3 seconds, and
while we are half the way through this generated animation we
should be blending data from 1 second into walk(happily) and 2
seconds into walk(sadly).

For higher accuracy we can define correspondence-points other than
the start and end frames of the source animations that ought to line
up (for example, the times that feet touch and leave the ground).
Using these points we can perform inverse piece-wise linear time-
warping on the source animations to take them into a normalized
time and then a blended forward timewarp back to real time for out-
put.

Also care must be taken not to move through this blend space too
fast. A naive implementation will have temporal aliasing problems
(animations will slow down, speed up or ‘hitch’ if we are blending
between animations of different speeds) — although this problem can
be avoided. Any implementation however will produce joint position
and joint velocity artifacts that will be very noticeable if the blend
weights change on or above the timescales of change inside the
source animation.

Regardless, this approach is very useful in producing animations on-
the-fly. Later we will see how the automatic generation of adverb
parameters can be used to solve a variety of motor system level prob-
lems (see page 114.)
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m temporal blending. Finally we can generate {p7} based on time —
akin to a crossfade in audio. Similar to such a crossfade we might
pick a single blending function f([t-r,,,1/[1,4-taq]) tO gOvern the
progress of the crossfade.

If this works (and it often does) then these crossfades can take the
place of the hand crafted transition. Indeed, if we are especially cou-
rageous, then whole verb graph structure can be dissolved. Instead
we rely on these crossfades to take us from whatever position (and
velocity) the joints happen to be at to wherever the behavior system
wants to go.

Blends like this have little to do with original source data, and there-
fore fail to maintain physical plausibility in many cases. A crossfade
generated between arbitrary poses, travelling at arbitrary velocities
by an arbitrary blend function, while guaranteed continuous, is not
guaranteed plausible.

Other implementation choices include: the length of the crossfade —
perhaps generated by an heuristic look at the initial and target
poses; weather or not to start playing the destination animation dur-
ing the blend or at the end of the blend; the choice of interpolation
technique — a linear interpolation (effectively reparameterized by
the blend function), or perhaps a cubic spline of some sort, etc.

Other, far more sophisticated approaches exist to the automatic cre-
ation of transitions between poses than a simple blend [76], however
they are all too computationally expensive to compute on demand.
One possible (and as yet unexplored) solution might be a hybrid
approach, where transitions are automatically generated, off-line,
and inserted into the graph. These transitions would contain data
for the joint angles involved in the animations they link, and tempo-
ral blending could care of the remaining supporting joint angles not
present in the animation.
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using adverb parameters to solve problems

a baseline motor system - so far so good...

Implementing a motor system that contains all of the above concepts is
a somewhat involved task. Not all of the styles of animation blending fit
well with each other. It is not, for example, clear how to maintain a verb
transition graph with heterogeneous adverb parameters. Eventually one
ends up relying on the temporal blending to smooth out the seams, or

the patience of animators to supply a large number of example materials.
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Creating a motor system that can layer animations on top of one anoth-
er, produces the ability to do more than one thing at once, allowing dif-
ferent active parts of a behavior system to tell the motor system different
things at the same time. Sometimes this is benign — walking and waving
—sometimes it isn’t —walking and sitting for example. Ideally, such clear-
ly conflicting ‘goals’ should never arise from a well written behavior sys-
tem. Demanding this from a behavior system confines it to
communicating one command over perhaps several orthogonal channels
— both an unreasonable limitation in the longer term, and an unreason-
able ‘leakage’ of motor system structure into the structure of the behav-
ior system.

The simplest, and harshest, way around this problem is to ignore the lat-
ter of two mutually incompatible commands — if the creature is actively
sitting then it cannot begin to actively stand up as well. Mutually incom-
patible animations can be detected from the simultaneous presence of
animation data for the same joints in animations, or particular joints can
be labelled as ‘necessary’ for an animation to run. But the bottom line is
that the behavior system has to have access to the current state of the
body of its character, and behaviors must be prepared to factor the cur-
rent body pose into description into their decision making process.

in joint representation blending & processing

As discussed above the simplest representation for the body that we
might use for the motor system is the same representation that is used
in a graphics system: that of the initial tree of coordinate systems affect-
ed by whatever joint rotations we have applied to them. As parts of the
motor system write joint angles into the tree, previous joint angles are
overwritten. After the motor system is complete, the graphics system is
left to turn this tree into geometry, and then pixels.

Much of the need for the mutual exclusion detailed above comes from
problems created when motor systems write into this tree more than
once before the graphics system renders a frame — obliterating the data



that was there. This might be seen as purely an engineering problem, but
things can be simplified if we give joints in the scene graph the ability to
preform blending on all the data incoming each tick.

Two things fall out of this. One is the ability to weight blended actions,
that is to accumulate a collection of joint angles and their weights each
frame and perform the averaging just prior to the rendering stage. The
normalization occurs automatically, thus simplifying the design of the
motor system considerably (no direct lateral communication between
concurrently active animations) and enables animations to ease in, ease
out, or mask out less relevant parts of their data, fine tuning their blend-
ing behavior.

Second is the ability to collect statistics inside the joints themselves and
act upon these statistics. For example, sit with weight 50 can ask all the
joints that it really needs for their recent average total blend weight.
Upon discovering the blend weights of 100 (put their by an ongoing walk
animation) it knows that it shouldn’t even try to enter the fray. If previ-
ously active, it can fade out its involvement in the joints and shut down
gracefully.

Finally, we might be tempted to introduce arbitrary signal processing
here. For example, by feeding back a low weighted amount of the previ-
ous joint angle back into the joint, we can obtain some of what temporal
blending did for us earlier. Using this mechanism, and making newly ac-
tive actions ‘fade in’ their blend weights we can always exchange a zero-
th order discontinuity for a first-order velocity artifact.

Other kinds of signal processing can be conducted at this level* (e.g.
[17] or for emotional manipulation of existing animations, see [97]) but

4. one further thing to note: joint angles are not quantities that are well expressed
in simple vector spaces, so traditional signal processing ideas carry over but the
engineering doesn’t. This work is conducted using quaternions (page 215) as
the representation for joint angles. Multi-target quaternion interpolation in
these spaces is the work of colleague Michael Patrick Johnson [47].
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there is a caveat: we run the risk of violating physical constraints. Since
low-pass filtered feet slide when they walk, we know that we cannot glo-
bally apply such signal processing at such a low level.

simple shaping

But even without these extensions we can, using only the forms of blend-
ing already discussed, begin to solve some of the problems stated in the
introduction. It is here that we begin to put together behavioral ele-
ments, in particular the action payload of action-tuples, and percepts and
percept models associated with them.

Take, by way of an example, a one dimensional adverb space. We can con-
struct a mapping from such a space to an arbitrary number of example
animations using a radial basis function style approach (see page 104).
If given, say, beg(low) and beg(high) example animations, this one axis
represents a quantity /' that is relatedto the height of the beg. Using
this axis we can create new animations on-the-fly, beg(h'").

Putting this access under behavioral control, we can reuse those same
statistical models that have been built for Tr percepts to model this pa-
rameter, and place these models into percepts for Ac.

The simplest approach continues along this strategy: when this action
becomes active we can sample this percept thus generating a target 4.
We can send this to the motor system along with the command beg. We
then feed this model with 7 itself, and of course the value of the next ac-
tive behavior. Then, just as when Tr percepts were being updated, we be-
gin to form a model of reward value versus /.

Choice of model is, of course, critical to the success of this venture. A

good choice in practice is a simple rolling second order statistical model,
coupled with a simple Gaussian prior. This model offers an opportunity

5. although this relationship is not necessarily a linear (or even a one-to-one) map-
ping. A way around this is discussed on page 116.
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to specify an initial tendency through the prior, and control the plasticity
/ rate of forgetting, through the rolling buffer length. While this prior is
specified in terms of & rather than /4, any non-linearities present in this
mapping do not affect the success of the technique.

replacing inverse-kinematics

We can extend this approach to mimic the functionality supplied by in-
verse kinematics based solutions. The example here is of a shepherd char-
acter with the ability to point with a stick. Given such a long linear chain
of rigid coordinate systems — end of the stick, start of the stick, hand,
wrist, elbow, shoulder, spine, pelvis — we would seem to be on classic in-
verse kinematics solving territory.

Such solvers are typically no more than constrained, non-linear optimis-
ers that exploit the locally smooth properties of chains of coordinate sys-
tem transforms. A solution from such a generic mathematical technique
will not be particularly lifelike in this case. For example, we will not see
a shift in lower body stance to compensate for an extension of the stick
from such a solver.

frames taken from a shaping process

fisure 23.increas- | :
g on dog (rewarding for higher “begs”)

ingly high “beg”
models (skeleton
only) for dog
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Instead we revisit the technique used for simple shaping, the generation
of adverb parameters. Here given a nine example space of almost static
poses arranged to span the typical range of stick movement, we can map
desired stick position x (a real space 3-vector) to % (a sum-one, 9-vec-

tor). We do this again using the RBF style mapping. This can, with good
example material, capture far better the subtleties of weight balance.

learning to replace inverse-kinematics

One might think that the above technology is all you need to have char-
acters walk smoothly around the world. By blending together examples
of walking in a variety of directions (say, walk turning left,

walk forward and walk turning right) along a similar one-dimen-
sional space characters can turn arbitrary amounts within this space in
order to get places. The blending for this problem works pretty well —
both in our blend-based motor system (and in [76]).

For walking, this must be augmented with a servo mechanism to insure
that we actually get there. This is because the mapping between internal
adverb parameter and external direction is not necessarily accurate. Just
as h' does not correspond to 4 in the shaping of beg, the desired turning
velocity and the actual velocity of walk turning(w) will not be the
same. To make this more accurate we would have to work through the
mathematics. Tying this and the engineering inextricably to the specific
source animations is not an easy or scalable approach.

A better approach is to learn the mapping ([76] discusses this outside
the context of behavior). And we can do this while maintaining a viable,
interactive creature. Here we perform a very similar trick to the beg
shaping. Here, however, we construct a lower level action-tuple that
monitors the skill in question and filters the incoming parameter from
higher up in the behavior system.

An example of this at work is the task of learning how to look at some-
thing; how, that is, to map a desired pair of polar body coordinates (6, ¢)

figure 24.arrange-
ment of basis func-
tions in 3 space



example pose

figure 25.a five-
spot basis function
pattern for head in-
terpolation

to a two dimensional adverb parameter space perhaps filled by a five-spot
pattern of examples. There, blend weights are provided by a similar radial
basis function approach, and the model assumes that no gross body
movement is needed to achieve the goal pose. The model we choose for
this 2-dimensional to 2-dimensional mapping problem is the self-organ-
ising map (SOM)[51]. This map has a number of properties that suit it
well to the task, not least of all the ability to provide the good initial
guess - that the mapping between (0, ¢) and adverb parameters are lin-
ear.

Another approach involves carrying out this learning in a micro-world
where the dog concentrates solely on the task of learning to look at
things. After we have converged sufficiently on a solution, this ability is
save out into persistent storage to be reused as part of more complex
creatures (with the same bodies). This is largely an engineering task, but
it pays engineering dividends. Both approaches have been implemented
and support convincing looking behavior.
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1. For learning the mapping
between desired head
orientation (0,0) and adverb
parameter (8°,0") we use a self-
organising map.

2. By modeling the (2d)
mapping surface by a collection
of (4d) nodes we can, through
interpolation, approximate the
function that maps between
these coordinate systems

WUz
NN\ pir=—=
W=
Wz

= IR
ZINNR

3. Above we show a vector field
between (8,0) and (6°,9"). Note
that the mapping is weakly non-
linear but highly dependent on
the details of the source

animations and the blending figure 26.SOM learn-
strategy. |
strategy ing to look at objects



119

IS 7 FER O ‘{;vj;:,‘

OSSN DDLSR R RAA X

%’%VF’ZA ‘g“'ﬁé é?é’?fi‘:’?»’; Rt K 1PN
¢ W / X \

Prriar==s N PPt PO XD T AT A e
A s o N D04 Sl R
4700504 NAZEXK] R AN ks
KA N %0 N 00 N DA

[ OZ 0z P =0gy0 P =0Sgrox [0 2= OO0 % X XX XX
XX RO OISR 0% IRSISEARL RIZSKAY LIS PRSI
oot s o= B 7 BESR B BESK RS
e I o N 7 07 o 07 o 0755 2075 0ol 075
N 4 a0 2% < Pl
e s BN ISR ety R e

IS OO RIXINX
200 IO 0Z00z0y

3. SOMs come with a
learning strategy that
can refine initial
approximations or
initially randomized
networks



120

For, given this structure, our test dog was able to refine this initial guess
down to a more accurate mapping that corrects for the superposition of
several non-linearities (the basis function interpolation and the multi-
target quaternion interpolation). Even better, it was also capable of
learning how to look at things despite a variety of incorrect pieces of lin-
ear algebra surrounding the algorithm. This code was responsible for
generating the (0, ¢) that the blend actually obtains, and is sensitive to
the graphical model of the character®. This might be an good example of
learning making the task of engineering a system easier.

But we can push this idea further and have creatures that not only learn
what parameters (adverbs) to send to the motor system but which ani-
mation to play (verb). What we have to build here is a model of what spa-
cial domain the motor system maps an adverb range onto given a
particular verb. In one angular dimension (the only case that has been
studied so far) we can learn to choose between ‘tight turns’, ‘turns’ and
‘walk forwards’ in order to turn a particular angle.

We achieve this by introducing behavior system structures into the mo-
tor system itself and building a family of action-tuples, each triggered in
part by the requirement to turn, but also triggered each by a percept
modelling and learning the range that the turn produces. Then a descrip-
tion ‘turn 60 degrees’ triggers the action-tuple that most likely can han-
dle such a request. While this idea has only been verified in the simplest
case, it is hoped that techniques like these can eliminate the complex
coupling between animation code and animation material that develops
while building a character and that can become a barrier to change and
development.

where does this leave us?

The three experiments above show that we can use adverb parameters to
solve motor problems. We can do this either in domains where the inex-

6. For example, the coordinate system of the head and of the root of the joint tree.
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act mapping from adverb space to solution space isn’t a problem, or we
can learn our way around that problem, and do this within the context of
a viable character. What none of the above experiments provide is any
guidance as to how one should move around that adverb space to gener-
ate movement.

Again, in some domains this is not a problem. In the shepherd stick con-
trol domain, movement was being generated by an actual human partic-
ipant moving a stick (primitive motion capture if you will) — the chances
of generating implausible motion for a humanoid character are therefore
diminished. In the shaping domain, we never move around the adverb

space during the course of an animation, so this never becomes an issue.

But in other domains, having no guidance as to how to change adverb pa-
rameters becomes a problem. Since we are creating animations by blend-
ing static poses, we automatically violate the condition that the adverb
parameter should change slower than the animation data it governs. The
pragmatic solution is to filter the desired head position adverb parame-
ter down into the actual head position adverb parameter. One can
choose a filter and edit filter time constants, or one might choose to ve-
locity limit, etc. One might go as far as to start changing these filter con-
stants based on high level emotional parameters (high valence emotional
states correspond to short time constants and fast movement and per-
haps even under-damped oscillatory movement). Then to this ad hoc ap-
proach we need to add eye / head coordination for there is no way that
this can be automatically regenerated in this approach.

These techniques might look acceptable (and they do), but they make
me nervous. They are taking us away from the example based nature of
this program, away from the data and thus away from the animators’
skill. Worse, they take us closer to the control theory used in robotics,
and a ‘robotic look’ is certainly not what we are trying to achieve. Per-
haps we might back project example animations onto our adverb space
and learning from these animation how to move around the space?
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A second prominent issue concerning this style of motor system comes
from the temporal blending techniques. While we use correspondence
points to help adverb blending, we need to be able to supply similar guid-
ance for blending transitions. Consider blending from a walk animation
into a run animation — specifically, a blend from half way through a walk
animation into the start of a run animation. These two animations are at
this point exactly out of phase, it is easy to see that a crossfade could pro-
duce arbitrarily unrealistic motion.

Thirdly, all of the forms of blending violate other physical constraints —

this is usually most noticeable on the feet. During temporal blending feet
slide and feet can go through the floor. Ad hoc approaches to solving this
do not seem particularly robust in practice. We'll see a closer analysis of,

and a limited solution to, this problem later (page 147) but the integra-
tion of general physical constraints into a blend based motor system re-
mains an open area of research.

Fourthly, although we have an approach to the problem of simple shap-
ing, no progress has been made towards the more complex problem of
learning new animations.

I feel the solution to all these issues lies beyond the scope of a blind, ex-
ample blending paradigm. Instead we must actually pay attention to the
example animation data.



graph-based motor systems

overview

So far we have manipulated the data (by blending, or layering) blindly.
To get any closer to solving our motor problems we need algorithms that
actually look at the animation material.

To this end a completely new motor system was built, based on a different
representation of animation data. The approach here is to take source
animation material, break it up into fragments, or nodes, annotate and
associate pre-analysis information with each node, and re-form anima-
tions in real-time by stitching nodes back together again just-in-time.

These nodes, termed here BodyPose, are connected together in tangled
structures called directed, weighted graphs. Forming a such a graph of
such simple nodes could be seen as an extension of the original verb-
graph idea into far higher resolution domains. Considered like this it is
a logical way of decreasing the size of the atoms of a motor system. The
resulting representations are also similar to structures found in gesture
modelling techniques. This is no accident. An approach to the complex
shaping problem will require a synthesis of animation production and
analysis techniques.

technical development

The contents of BodyPose will determine the kinds of manipulations
that we can do with them. We’ll want a representation that will let us re-
generate animations; a representation from which we can generate use-
ful weights (or here, distances) between nodes; and we’d like a
representation that lets us automatically work out what node should be
connected to which.

In this project we are mindful of the constraints imposed by the need for
real-time interaction with our characters. These constraints are very re-
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al, and they limit the kinds of analysis of the data that we can hope to
achieve at run-time. It is true that for us computer memory is far more
abundant than computer time. Time that we can save by pre-analysing
the data at the expense of the size of BodyPose can be time truly saved.
If, that is, the pre-analysis burden is distributed throughout the repre-
sentation. If it is not, and global computation is required that scales with
the size of the representation, then we run the risk of producing a struc-
ture that cannot be extended at run-time, and thus cannot support the
learning of new material at run-time.

building up the node representation

So, what should go into this BodyPose? The first ingredient is a snapshot f &Ce“terbridht

of joint angles. But will that be sufficient to enable good graph topolo- et T

gies to be generated automatically? ~Tontor

Consider that many animations that we encounter are biphasic. For ex-  1icfe conter, TighE
)

ample, think of a hand waving. The hand covers the same positions and
joint angles twice during the animation, first one way, then the other:  figure 27.the wrong

. . ‘ ish a-
... = left — center — right — center — left — ... ‘md.”g t segmenta

— tion of a biphasic
The two nodes labelled 'center' are not the same and should not be con- ‘wave’ gesture
fusable. Their difference is reflected in the velocity (of the joint), there-

fore we include velocity information in BodyPose.

The second complication concerns the timing of poses. One thing we
would like to do is to recover the timing of a source animation. Should
we happen to choose a path through the graph that goes along all the
nodes from an original animation, we would like to recover the timing
(i.e. the relative times of the key-frames) of that source animation.

The easiest way to do this is to include this information in BodyPose. To
do this we include both a time and something which identifies which an-
imation produced this node. When moving between nodes from other an-
imations we have to guess how long this should take. Here the velocity
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information helps - we can make an educated guess based on the joint
angles and velocities at the two nodes.

Together then, the primary representation in these motor systems is the
directed, weighted graph made up of BodyPose's for nodes each consist-
ing of:
m a complete set of joint angles (unit quaternions’). We use these at
run-time as essentially key-frames to interpolate between.

m a complete set of joint velocities (quaternions). We can also use
these to make the interpolation smoother by using a higher order
interpolant.

m a time and source-labelling. This notes where this BodyPose came
from and when. Storing this information will enable us to do a better
job of getting the timing right between key-frames.

m optionally labels, translational information (position) and precal-
culated world-space positions of joints. We will see a use for these
annotations later.

To form a directed, weighted graph from these nodes, given some source
animations, we must define a distance metric that produces the weights
for the graph edges and a scheme for creating the edges between nodes.

developing the distance metrics

On a directed, weighted graph we can define two distance metrics that
give meaning to this ‘length’. The first is the distance (or weight) be-
tween two nodes that share an edge. The second is the distance between
any two nodes, connected or otherwise. Desirable paths to follow mini-
mize accumulated distances along edges (first metric, the intrinsic met-
ric), and it makes sense while trying to find paths to go first along edges

7. quaternions are our representation for joint angles. For more information,
page 215.
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that take you 'closer' to the goal pose (second metric, the extrinsic met-
ric). Both metrics will come into play when we start to decide how to
move around the graph.

Some of the intuition that goes into the metric is the same as the intui-
tion that helped us pick what was to go into the representation:

m pose difference. It makes sense that the more different two joint
angle configurations are, the further apart their respective Body-
Pose's ought to be.

In a quaternion joint implementation we can break down the pose
into joints jand start with a term:

> acos(1-(¢f - 44))

J

m acceleration. We ought to include the velocity information into the
distance metric — transitions between poses that require little accel-
eration to complete should be favoured. That is, there should be no
penalty for continuing to head in the same direction.

We can capture this by taking the average of all (absolute) joint-joint
transition times. Consider a path that begins at ¢/ , and moves along
the velocity tangent (e.g. reaches a point v{ in unit length). How far
along this path (e.g. what multiple of this length) do we come to the
point that is closest to ¢4 ? When we get there, how far are we away
from ¢4 ?

The first of these questions can be answered by the formula below
(see page 215). We travel o way along this line, with:

1

Vv q
o = —atan( !

', .v)
g1 9, 1 1



with ¢ = acos(q, - v,). The second, from the distance metric given
above:

Zacos((vlq]l)a% “q,)

It is only slightly more work to show that this is related to the curva-
ture of the line interpolating these two quaternions. So, we add the
term above to our ‘distance metric’, multiplied by a scaling factor.

m recapture source material. If we can, we ought to go down paths
that were either present in the source material, or we have some
other evidence to suggest that they are 'good' (e.g. behavior system
experience that performing this path is a '$ood thing to do"). Further
we also want to penalize movement between nearby, but not subse-
quent frames — the main result of this local inhibition is fewer irrele-
vant paths being explored by path searching algorithms on this
graphS.

Some of this intuition is played out in figure 28. What we are left with is
a distance metric that contains at least two somewhat arbitrary scale fac-
tors — one each for the acceleration term and the time curve. It might be
possible, although it is as yet untried, to derive these factors by example.
Given, that is, the connectivity information of some example animations.

Finally, we might be able to improve the performance of the distance cal-
culations if we actually took note of the likely joint positions themselves
— to have an idea of what is and what is not a reasonable difference in
joint angle. Some joints (e.g. the elbow) have highly anisotropic angle
distributions. Differences along some axes are more significant than oth-
ers. Work on useful modelling (quaternion) angle distributions from

8. It is possible to envisage more exotic inhibition metrics — hand crafted metrics
and metrics with multiple zero crossings (see exchange, page 185) can be used
with close control over the source animation to help craft more abstract move-
ment patterns.
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source animation material is taking place in the Synthetic Characters
Group. When these models become available, they can be incorporated
into our distance metrics.
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5. Now, in 2 dimensions. Here we
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figure 30.a highly
connected motor
graph generated
from 3 animations —
sniff, play and beg

automatic topology generation

These distance metrics will affect which paths get taken through the
graph. But before the graph can be built we must decided which edges
we should create, i.e. which nodes we should connect together. Paths can
be built only by moving along these connections.

But we need ways of building up these graphs from source material — per-
haps many separate animations, perhaps a few longer animations. It is
unreasonable for this to be a manual process. The simplest thing to do is
to connect nodes to their closest n other nodes. Perhaps setting n local-
ly — we know that we ought to connect to a subsequent key-frame, so we
can set n to insure that.

By doing this we can read in whole animation files and automatically turn
them into graphs. This is good, because we’ve already built the engineer-
ing to write and read animation files (since they are the building blocks
of the blend-based motor system). Better, we know that the key-frame
animation is the base-currency for all forms of animation generation
techniques. But the animator is no longer tied to creating many small an-
imations (endless types of walk turning tight right,

walk turning left, walk into stand, etc.) Previously the source ani-
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mations were strictly tied up in the actions a character can perform.
Here instead they can be much more freely specified — a continuous ani-
mation of a character running, jumping, rolling over can feasibly be tak-
en in.

The above connection criterion is not optimal. Several things prevent
this from being a sin. Firstly, a missing connection might not be that bad
- at the very worst the motor system can always interpolate the joint an-
gles between two nodes to form an edge on the fly. The worst case sce-
nario is exactly the kind of blending that blend-based motor systems
perform all the time.

Secondly, we expect that the graph will change and grow during the
course of the character’s learning - so it is unlikely that we will have all
the data that we will ever see at the time when we initially prepare the
graph, and it unlikely that we will have the clock-cycles left for a com-
plete reorganisation of the graph at run-time.

re-editing animation data

Finally the graph itself can be, and ideally will be, edited by the animator

directly. Paths that look bad will be removed (and subsequently forbid-

den), or re-edited, or have their timing changed. In general we can iden-

tity for forms:

1. the topology of the graph can be changed, connections can be forged
or explicitly removed and forbidden (e.g. in the case of a self-pene-
trating interpolation);

2. connection weights can be altered making certain routes less or
more likely, or whole nodes themselves can be made more or less
tavoured (by applying a constant multiplier to the weights of their
outgoing edges, we avoid the need to cache all blend weights);

3. the contents of the BodyPose nodes can be altered or rather blended
towards the new material;



4. or new nodes can be added.

At present, any path that occurs through the graph during the course of
an installation can be saved out as (re)sampled animation data, reloaded
back into the animator's favourite software (presently 3D Studio Max)
and edited. This data, when loaded back in, can be either be merged into
the nodes that created it (3, above) or patched into the graph (4, above)
as new material.

Perhaps characters start off as a series of connected static poses — liter-
ally, the ‘character book’ — and are built up in this manner. This might
insure a structural coherence (poses lining up, timing relationships ete.)
throughout the wide variety of animations animators are called upon to

1. Elements of the motor 2. Once saved they can be re- 3. Once edited they can be
graph can be saved out to other dited (both in content and in reincorporated into the graph,
kinds of storage (typically an graph topology) as new material, or blended
augmented 3D studio MAX into what was there before

file). These chains come from
the actual movements of a
character, that take place
during (the development) of an
installation "
figure 31.graph opera-
tion for reincorporat-
ing animation data
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create — a project-wide coherence that is difficult to maintain with tools
today.

It is not yet clear how this ability will change the way that complex char-
acters are authored — this technology is yet to be deployed in a large mul-
ti-person effort. What is clear is that this is at least some compensation
for the increasing the risks that the motor system takes with their pre-
cious source material. The ability to “save out” material from an actual
running installation, edit it, and load it back in such that it will be used
in subsequent similar situations offers up a new relationship with the cre-
ative process. It is my feeling (and the feeling of the animators in our
group) that the result will be to bring animators closer to the authorship
process than they have been in the past.

towards a complete motor system

To explore what we can get out of this representation we need to build a
motor system. One interesting note: the interface between the behavior
system and this motor system is very similar to the interface to our pre-
vious, blend-based motor system. Just as before, the behavior tells the
motor system a ‘desired pose/animation’ and the motor system tries to
get there, keeping note of where it currently is as an ‘actual pose/anima-
tion’. The initial difference here is the range of ways that the ‘desired an-
imation’ can be specified and created by the motor system.

moving around the graph

How does the motor system take the body from an arbitrary BodyPose
in the graph to a particular ‘desired pose’® To do this, recall, we need to
search for the shortest path along the edges of the graph.

A popular graph search algorithm goes by the name of the A* search al-
gorithm. [55] It is applicable here because it can take advantage of both
the intrinsic distance metric between connected nodes, and the extrinsic



metric between any two nodes — it knows to try to head ‘in the right di-
rection” when finding the shortest path.

The use of the A* algorithm will generate search results on demand -
rather than a statically computed ‘all pairs shortest path’ algorithm. This
allows us to change the distances of edges and change content and topol-
ogy at run-time without an expensive recomputation.

Graph based motor systems can use the A* secarch algorithm to find the
shortest paths from a current body configuration to a target body config-
uration, and hence can find out the minimum distances body configura-
tions. We can travel along those paths by interpolating between the joint
angles contained in BodyPose. We could perform this task in exactly the
same way as we’d interpolate key-frames from source animation materi-
al’, and exactly the same way as we performed ‘temporal blending’ for
our blend-based motor systems.

That gets us the data for the key frames, but what about the times of
those frames? If the two nodes originated from nearby each other in the
same animation, we’re in luck — we know the time difference between the
nodes. Failing that, we can estimate the time it might take to interpolate
between two frames based on the current joint positions and velocities of
the two nodes — this calculation is similar to those that we performed to
calculate the distance metric. Finally, it’s worth noting that even these
calculated time deltas might be modulated or overridden by a human eye
during the re-editing process.

With this representation in place several problems dissolve. One problem
originally discussed above, simply stated for a dog, is 'how do I get my
nose there'. This general problem is similar to the head orientation, or

9. but while we can usually get away with a (spherically) linear interpolation
between the finely sampled frames of an example animation, the nodes of a
graph might not be sampled at such a high resolution. Therefore a higher order
interpolation method makes more sense — thankfully one exists, referred to as
squad in the literature. see, [82,100].
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the shepherd stick positioning discussed above. But given the wide vari-
ety of strategies that the dog might employ neither inverse kinematics
or a blind animation blend will work. We have to get the dog's nose 'there'
in style.

If we have precomputed the position of its nose in many of the nodes in
the graph we can search the graph for the pose that gets us as close to
'there' as possible. Given a graph the current body configuration is either
at a node or travelling (interpolating) between two nodes along an edge,
we can search for a path that takes the dog from where-ever is in this
graph, to that desired pose. This means that the graph representation
can be used to solve motor problems.

complex labels

In the current implementation a graph motor system contains the ability
to, under behavior system command, find paths from the current Body-
Pose to any labelled node. But consider a MotorProgram which can be
executed to return a graph node:

desiredState «— motor-program.exec(¢)

These programs can act as labelled nodes that generates other nodes as
targets — becoming a dynamic alias for other nodes in the graph.

We can use motor programs to complete common tasks that motor sys-
tems are called upon to achieve. In particular they handle the generation
of cycles in graph based motor systems.
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A simplest example program might be:

walk:

getTo “walk middle”; wait

getTo “walk start”; wait
T cycle

and this might generate a walk cycle. In each case the labels “walk start”
and “walk middle” refer to labelled nodes, but they could refer to other
motor programs — in which case

getTo “walk start”;

would set a course for whatever node program “walk start” decides to go
to, and:

wait
will wait this program ends or until it cycle’s. Therefore we keep the abil-
ity to have a stack of programs and sub-programs active at any one time.
A better, more sophisticated program might be something like this:

walk:
getToClosest {“walk start”, “walk middle”}; wait
T getToFurthest {“walk start”, “walk middle”}; wait
cycle 1

This would have the property that it would get to closer of either of these
two points of a walk animation (remember the biphasic nature of a walk
cycle).

The point here is not to replace the functionality that could be better put
into a behavior system, or even a behavior style layer above the motor sys-
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tem. Motor programs serves as the replacement for fundamentals like an-
imation cycling.

Multiple nodes can be associated with the same label. In this case the
motor system chooses the closest — either by finding shortest path
lengths or, if we’re short on time, by just using the extrinsic metric.

An immediate result of this is that we can write programs like:

besg:
getTo {“beg middle”}; wait
forcedGetTo {“low energy state”}; wait
end

motor program graphs

These ‘language’ that motor programs are written in is left as an option
in the current implementation. While the above style of writing is easily
translated into a simple stack machine, we can envisage other kinds of

“program”. One other way of describing motor programs is worth men-
tioning, because it more succinctly handles a number of program flow

scenarios that arise in such motor programming and begins to highlight
the relationship between this motor work and other motor control work.

We can create motor program graphs, where the program statements are
laid out as vertices and program flow moves along edges:



start

getTo “walk start”

exit
[} wait

getTo “walk middle”

exit
wait

Flow begins at the special (and unique) node “start” and continues
along nodes, taking the shortest path in each case. If a program has to
finish (because the behavior system, or a program further up the stack
has decided to move somewhere else) the behavior system can calculate
the shortest path to a (not necessarily unique) node “exit”.

But we can quickly draw more complex graphs:

start

getTo “walk middle” getTo “walk start”

exit M exit

wait wait
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Finally, the “forced low energy state example” again:

start

v
] getTo “beg”

(]

v
[] wait

v
.| getTo “low energy state”

wait

So far all three of these kinds of models have been built and used. It is a
matter for future work to refine the interface for the creation and debug-
ging of these graphs.

learning to chase your tail — part 1

With these techniques a complete body description can be much more
compact — communication ‘upwards’ from the motor system to the be-
havior system is much lighter. The current state of the body can always
be described as ‘this far between node n and node m’, or, if more that one
graph is operating, one such statement for each graph.

This finally puts us in a position to approach the complex shaping prob-
lem — the dog learning to chase its tail. To achieve this the dog must

build up a model of what motor actions to perform (typically, what motor
actions it should perform in order for food or other rewards to appear).



Building up this model, in real time, using a representation consisting of
raw, sampled joint angle positions is a daunting task for a blend based
motor system. Firstly the amount of data involved is too large to conduct
real time gesture ‘recognition’. This pattern matching is required if we
are to build models of these actions. We get models with sizes of around
625 quaternion values!?. If we are to perform techniques such as discrete
time warping not only is this number too large, but the quaternion dis-
tance metric is not a Euclidean distance metric — thus highly optimised
off-the-shelf recognition primitives cannot be used!!.

Secondly, lets say that we are successful in learning a new action - one
that leaves you with your nose in the air. A blend-based motor system,
that operates on the level of animations rather than poses, might have
no way to get the dog from this pose to any other pose (other than blind
interpolation). There is insufficient contextual information stored in a
verb graph to enable the creation of new parts of the animation-level
transition graph automatically on demand.

Instead we can build a model consisting of node-node transitions. This

model that does not look at the contents, but the identities of the nodes.
What we had before was some 625 quaternions — “a set of all joint posi-
tions sampled over time”. What we have now is a few node references —
“node A, moving to node B, moving to node C”.

Working with this representation is far faster. It is trivial to see if “node
A” is the same as “node A” — we do this by pointer comparison. We are,
in short, simplitying the gesture recognition and modelling problem by
exploiting the fact that we ourselves are generating the data. Since we
generate the data, we already know a good categorisation for the data

10.For example, if a dog has 35 degrees-of-freedom (each a quaternion) sampled at
5 times a second. For actions lasting around 5 seconds this results in a model
too large to process live (around 2500 floats).

11.For example, the Intel recognition primitives library [44].
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(the nodes) — thus, there is no need to approach this as a blind gesture
recognition problem.

gesture graph generation

To build this model we can reuse the engineering created to handle di-
rected-weighted graphs of the motor system — for these models them-
selves will be directed weight graphs. We choose a model in the style of
Augmented Markov Models [37]. These are capable of capturing move-
ment by the motor system as transition probabilities, and timing infor-
mation (in a more tlexible manner than straightforward Markov Models
[72]). One final twist arises from the need to handle loops in the incom-
ing data.

What we expect to happen, as we are learning a new gesture, is the ap-
pearance of a model that has a good, simple core of node transitions sur-
rounded by non-causal and uncorrelated node transitions. Using this
model we can define a confidence measure for a node — confidence, that
is, that the node is part of the core of the model.

At present this measure consists of two terms. The first captures the in-
crease in confidence associated with a node being present in many of the
input data-sets. A second term reflects a decrease in confidence associ-
ated with having a range of outward transitions (i.e being part of a tan-
gled mess) — this can be formally captured in the entropy of the
transition probability distribution.

The segmentation technique attempts to identify the core of the gesture
by starting at the node with the highest confidence and working out-
wards, both forward and backward in time along the paths of highest
probability, until the confidence drops below a threshold for two transi-
tions. This is by no means an optimal segmentation algorithm and others
are being investigated. Incidentally, this is the segmentation algorithm
used to support the simultaneous activation models discussed previously
(see page 52).
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1. This is a simple
demonstration of learning a
new “gesture”, a new sequence
of motor BodyPose’s. Initially
the model starts of blank. Then
the contents of a BodyMemory
is added to it. Here it is the
sequence “12345”. Above,
arrows point backwards in time.
In these graphs the distances
are related to the transition
probability - not the transition
time (although we also keep
this information in the
GestureNode representation)

figure 32.learning
and segmenting a
gesture
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2. In order to know how to add
data to this model, we need to
know how to recognize where
to put it. Here we have the
sequence “23456”. In the light
of the model this is well
explained by the substring

“2345” - therefore we know just

to put “6” on the end of the
model

BodyMemory
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3. One trick: the need to
handle loops correctly. It is
insufficient to produce a
tangled graph like the one on
the left. Instead we must
generate new nodes for
repeated poses, and, when
matching, try to match the
most likely subsequence.
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T

4. Here we show the evolution
of a simple gesture model as it
receives different but related
subsequences from a
BodyMemory.

segmented model

“

high entropy low entropy

6. We can separate out this
core, by selecting connected
areas pools of core nodes.
Presently, membership of the
core is dictated by two
heuristics: transition
distribution entropy (i.c. how
tangled is the stuff coming
from the node), and visit count
(i.c. how many times have we
actually seen this node).

7. This heuristic is fast to
compute. At any time (before
or after segmentation) we can
execute the model, that is play
out the node transitions as a
sequence of desired body poses
to the motor system, complete
with timing information
collected in the nodes. Thus
this model represents a
probabilistically stored
animation sequence that is fast
enough to work with at run-
time

5. What we see here is typical of
what we see in more complex
models. A tight core of simple
gestural material surrounded by
low probability, uncorrelated /
uncausal noise.



e

figure 33.blended
joint angles are not
equal to blended end-
effector positions
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learning to chase your tail — part 2

Regardless, this model can be sampled to create an executable Motor-
Program - it should be apparent that it is already quite close to an exe-
cutable motor program graph. Because of this we can attack the
‘learning to chase your tail’ style, complex shaping. We do this by embed-
ding these gesture models into an Ac percept (compare with the simple
shaping solutions). Note here that these gesture models posses all that
is required of a percept model — they can produce categorization proba-
bilities of incoming data (here data from a BodyMemory), and they can
be sampled from (here in order to be executed).

There is a twist involved if we want to complete the problem as specified;
a twist that is explicitly supported by our behavior system. Now, if we
have an ability to guide our dog’s nose with the training sick; and this
ability will be wrapped in an action-tuple. Say,

moving stick | follow stick with your nose | around 10s; V = 10

gets created (by hand or automatically). We want to conspire to create

. another action-tuple:

whenever | execute Ac’s motor program | around 10s; V = 0

The twist is that we give this action-tuple a proximity of 1 to the “follow
stick” action-tuple. This has two effects in a dog that follows the stick
and is constantly rewarded for it: one, this action-tuple’s Ac model will
begin to build up a model of the contents of the bodies memory, after
execution of “follow stick with your nose”. With consistent training, this
will be a model of, say, going around in a tight circle.

Secondly. this action-tuple will begin to grow in value as (and if) “follow
the stick” grows in value. So soon, the second action-tuple might take
over — eventually our dog’s action selection will choose the latter action-
tuple to execute. Then, if this experimentation is successful, a few execu-
tions with sufficient reward, we’ll have a model in Ac that looks like chas-
ing its tail.
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After a certain point, we can pull out the core of Ac and ‘dispatch’ it down
to the motor system — treating it as new animation material to be added
to the graph in the same way that we treat new animation material from
the animators. This material will either be stitched into the graph, or we
will perturb the distances between the nodes involved in the new material
present in the original graph. And leave behind in its place an alternative
action-tuple, say,

whenever | execute MotorProgram new_gesture 1 | around 10s; V=50

creating a MotorProgram that walks the motor system through the new
material.

Finally, if we like, we can place the Ac payload “execute MotorProgram
new_gesture_1” into an Ac percept tree. This means that the rest of the
behavior system can try out this motor command as material from which
to form action-tuple hypotheses.

communication with the behavior system

The communication between the behavior system and the motor system
becomes simpler and easier to maintain. We are getting closer to a mo-
tor system that can communicate with the behavior system in the “prob-
lem solving” ways that we’d like:

m different resolutions. While the behavior system can talk in terms of
‘sit down’ (coarse resolution) it can also talk in terms of 'get my
nose here x' (fine resolution). The graph supports the solving of the
problem of how the body should get there.

m different kinds of labels. The richness of the representation lets us
build different kinds of labelled states into the system. These include
small programme like nodes (see below), special markers like ‘low
energy state’ and pre-computed end-effector positions.

m pre-categorized body description. Now that we have a graph of
BodyPose’s we can express the state of a body in a far more com-



pact fashion. Instead of returning a set of all joint angles and veloci-
ties the motor system can describe its state as ‘halfway between
node 32 and node 477, and we can compute connected distances
along the graph between nodes. We’ll see how this can be used soon.

enforcing physical constraints

The graph structure detailed above gives us a few opportunities to im-
prove the physical plausibility of the animations that the motor system
produces. Consider what happens once the dog succeeds in getting his
nose as close to the stick as possible. If he happens to be precariously bal-
anced on his hind legs then he shouldn't stay there, he should return to
the nearest 'low energy’ state. Low energy states can be hand marked (by
animator) or annotated automatically (where we have zero velocity poses
for long periods of time). All this occurs without behavior system inter-
vention, and more importantly, without behavior system management.

Another example: precomputed end-effector positions enable the stabi-
lizing of feet position. Taking them closer, that is, to positions given by
a Euclidean interpolation (e.g. on the floor) rather than where interpo-
lated joint angles on articulated chains put them (e.g. through the
tfloor). You can do this by exploiting our ability to move the entire crea-
ture (e.g. upwards) to compensate.

We can proceed along the following lines: blend the end-effector posi-
tions in Euclidean space, perform the joint angle interpolation, work out
where those end-effectors ended up and compute the difference. Then we
attempt to reduce the difference between the Euclidean blend and the
pose blend by translating the root node by the average of the difference.

In the specific case of a creature-on-floor we can do a little better than

this — by weighting the average by the reciprocal of the distance from the
tfloor. This makes sense because people are using the floor to judge where
the character is in 3-dimensional space — it is more important for a crea-
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ture to keep his feet exactly on the floor than it is for him to keep his feet
exactly at some arbitrary location in space.

future extensions

self-intersection removal

Another ‘physical’ problem that plagues blend-based motor systems is
that of self penetration. The graph structure gives us mechanism where
self-penetration can be reduced. Of course, for this we need an algorithm
that can detect self penetration. Such algorithms are slow (with arbitrary
geometry intersecting with arbitrary geometry, far too slow for real
time). But if we wanted to, we could run the entire graph through such
an algorithm off-line, removing the edges that result in self intersec-
tions.

persistent ‘mergeable’ graphs

Such off-line, path based approaches have the advantage of parallelizing
well — especially when a character’s motor graph is seen as a single
group-wide persistent entity. With some engineering I believe the merg-
ing and concurrent versions management abilities offered by existing
software (already used by groups of developers) could be leveraged to-
wards this end.

Further, it is already the case that the graph upon which motor systems
are based is persistent — it has to be to support the addition and editing
of animation by animators. A construction of a text based external rep-
resentation that allows merging and simultaneous editing of graphs
completes the reintegration of the animator into the development cycle.
The challenge remains to provide the necessary user interface compo-
nents to explore and maintain such graphs'2.
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node models

Above we used self-organising maps to learn smooth surfaces fitted to
some source data. The benefit with such a representation is, of course,
the ability to evaluate the surface at points not in the original example
set. We can perform exactly the same task with basis function interpola-
tion. We cannot however, easily create in-between poses with a directed
weighted graph — unless those poses happen to lie along the edges of the
graph. Although the self-organising maps (SOM) and the directed-
weighted graph are at two ends of a continuum, SOM’s don’t learn high
dimensional, non-simply-connected manifolds very well — we can’t re-
place the graph with a SOM and train it up on some animation data.

In losing the ability to provide a continuous variety of motor movement
we've lost a lot. It was this interpolation ability that let us walk smoothly
around, and perform simple shaping. Thankfully, we can envisage the re-
integration of these things back into a directed-weighted graph repre-
sentation with more complex vertices.

Two techniques can be used to recapture what blend-based motor sys-
tems could do, while keeping what graph-based motor systems have won
us. Firstly, with minimal engineering, we can create paths that are the
result of interpolating paths through the graph. We can do this by con-
struction a new kind of connection — called here the spoke. While anima-
tion usually flows along edges, it flows perpendicular to spokes. The
following diagram shows this in action. Vertices that perform this task
would still contain BodyPose’s, but augmented with some additional
logic.

12.some steps towards these components have been taken — not least the graph vis-
ualization software developed during this thesis (which is responsible for all the
directed weighted graph diagrams in the printed matter).
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figure 34.adding blend-
ing back into graphs

““beg high”

“beg low”

“« »

sit

1. above is a part of a motor
graph. Marked is a pose
corresponding to “sit” and two
nodes corresponding to the
apex of “beg” animations.
Other material (not shown) will
take the character back to a
sitting position.

2. Paths that the motor system
can take are limited.




3. In order to recapture some of 4. Searches for solutions to

the benetfits of the blend-based
motor system we define cross
linkages between nodes.

motor programs can take place
at higher resolution with no
extra cost if the interpolated
solution is located on a cross-
link that has the closest node
as one of its ends.

5. A motor path can then be
made from interpolating paths
cither side of the cross links.
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6. Since interpolating between
paths is so trivial, there are few
constraints on the layout of the
paths. This graph
representation can recapture
the piecewise linear
timewarping used for adverb
blending, and can attempt to
automatically generate
correspondence points through
the BodyPose metric.

Note that we are essentially
performing automatic
correspondence point finding,
in this representation.

7. Finally, we can embed little
self-organising maps into the
graph nodes themselves. These
nodes are, of course, trained on
animation data.




Note our ability to search for solutions on graphs containing such struc-
tures can be maintained if a few conditions hold. For example, if we are
looking to put our end-effector nose as close to a particular place x then
the real solution may lie along a spoke. Since we cannot search the entire
space created by all the spokes (that would take to long) we will only be
able to find the correct solution if the closest node lies at one end of the
spoke containing the best solution. We can then quickly find the blend

parameter along the spoke that we require analytically (for a taste of this
mathematics, see back to the derivation of the distance metric page 123,
or page 218).

An alternative would be to keep these linear blend extensions internal to
the nodes, thus removing the ability to solve problems with this extra di-
mension. This approach is more applicable when the blend access is ac-
counting for emotional change — if the dog is sad then it cannot use
happy dog animations to get its nose nearer the food. Looking back over
the two approaches we can see much of the ground-work for blend-based
motor systems is present in the graph based work. Here the spokes
framework take the place of the timewarp into neutral time rather natu-
rally.

For other applications this additional blend dimension will be insuffi-
cient. The next level of complexity consists of incorporating statistical
models into the nodes themselves — models which learn the relationship
between new style adverb parameters and BodyPose material (including
timing information).

The only fear here is whether increasing the complexity of BodyPose will
cause the complex shaping approach to fail — recall that this is tenable
only because we can quickly state that the distance from “node A” to
“node A” was zero using pointer comparison. With more complex nodes,
this might no longer be the case — we might have “node
A(a=0.2,b=0.5)” to “node A(a=0.7,b=0.1)"; with ‘a’ and ‘b’ adverb pa-
rameters. But these fears are groundless, for we can still compute fast
metrics between these nodes by using the adverb parameters and I ex-
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pect these metrics to be no less well behaved than those in use already.
This is, after all, a space that we have learned from the original example
animation data — what better space is there to define a distance in?

concluding remarks

In this chapter we have built two different kinds of motor system, one of
which (the graph-based) is completely new. While the blend based motor
system has precedent in the literature (i.e. [75]) we’ve been able to push
it further because of the facilities provided by the behavior system. There
can be no doubt that the graph-based representation is very simple — but
we are constrained by both the example-based and the real-time natures
of our chosen domain.

Both serve different ends. The next stage is to work out a hybrid motor
system that supports both. A real solution here is less a hybrid graph/
blend system than a programming environment that makes it easy to
move between the two paradigms as the character authorship situation
demands.

Having such a malleable motor system is of great benefit to our work. It
lets us build with hierarchies of temporal constraints. Our experience of
previous architectures and installations shows that it isn’t sufficient to
have a behavior system that is ignorant of temporal constraints and leave
it all up to the motor system, nor is it sufficient to have a motor system
that know no constraints and leave it up to the creators of the charac-
ter’s behavior.

Although this work stops short of demonstrating a solution to the com-
plex shaping problem — a dog learning to chase its tail — we’ve made a
significant approach. We have our problem solving ability to guide the
dog’s attention towards the ‘training stick’; our gesture learning tech-
niques to learn the chase tail; motor programs to play out the animation;
the behavior system modelling to support the learning and eventually to
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reuse the learnt gesture. It is now, for the first time, feasible to create a
synthetic character who can learn new animation material at run time.
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music

This section serves two roles. Firstly it at-
tempts to justify the approach: the crea-
tion of music with synthetic characters. It
locates this work in the wider context of in-
teractive works with musical components,
the authorship environments used for such
works and the recent emergence of a com-
munity focusing on the biological roots of
music.

Secondly, it details some musical applica-
tions of the structures discussed previous-
ly. These applications have typically taken
the form of installations or short videos or
performance works and here we put them
into context of work pre-dating this thesis
in the Synthetic Characters Group.

This chapter, like those proceeding it, is a
chapter of unfinished ends, of works-in-
progress. Having decided to make interac-
tive musics with virtually embodied reac-
tive creatures, it is important to first
sketch the shape of the aesthetic space this
idea contains. These works are that sketch.
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why do music this way?

(void *): a cast of characters

At SIGGRAPH ‘99 the Synthetic Characters Group premiered an instal-
lation entitled, (void *): a cast of characters|[7]. More complete descrip-
tions of the work have been given elsewhere [104] — but the work
contained the first example of music from a character, so we’ll briefly dis-
cuss the environment. The piece contained three characters — fast Eddie,
the “dude”; Elliot, the “salesman” and Earl, the “trucker”. Without hu-
man participants these characters would sit at lonely bar (with no chance
of service). However, equipped with a pair of forks stuck into bread rolls,
participants could select one of the characters to possess, forcing their
legs, perhaps against their will, to dance®. By gesturing with the bread
rolls, the characters on screen mimicked your dance moves.

Initially Elliot and Earl will dance very reluctantly, but, if the participant
treats the characters well (criteria include not making them fall over and
not making them do painful dance moves) they will begin to open up and
enjoy themselves. This will be reflected in their facial expression (created
by two target vertex blending); the quality of their animation (a two ex-
ample, one axis adverb space between happy-nervous/sad-angry); the be-
havior of the characters around them (for example, they’ll begin to
applaud if they see somebody ‘loosen up’); whether they keep dancing by
themselves when you put down the bread rolls (they will perform the
dance moves that they’ve discovered that they like); and finally, their
starting position along the happy-nervous/sad axis the next time they get
possessed changed to reflect their previous dancing experience.

It was the intention that the piece should have a cinematic feel. Since
there is no navigational component to the piece there was no obligation
for the camera to maintain a constant orientation with respect to the

1. inspiration: interaction, taken from Chaplin [18], set taken from Hopper [41].
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controlled character. The camera is therefore much freer — to pan, cut,
select close-ups. The creation of the this cinematic ‘camera creature’ is
described in detail in [93,94].

The missing piece of cinematic tradition is the film score. Hence the de-
sire for a “music creature”. Its role: to help ensure this cinematic mood
by the addition of a suitable film score. The problem simply stated is how
should one write a film score when there is no script? Going over the out-
line of the interaction above we realise that this is a rich interaction to
score. Short and long term emotional changes take place, discrete be-
havioral decisions occur, each by three characters. In addition there is a
complex camera system that is not always showing every character on the
screen.

The prime consideration for the music in (void *) was that it should nev-
er sound bad. It should never really become the center of attention, and
it should certainly never do this by sounding broken. In this sense the
music had to support what was happening on the screen but not come in
front of it. Many people never noticed the dynamic quality of the music
— this is probably a symptom of success.

figure 35.images
from (void*)
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1. low level output system built
from tiles of pre-composed
music.

2. the layout of these tiles are
placed under behavior-system
control (using the Scoot
behavior system). This behavior
system runs on a separate
machine from the output layer.

3. tiles get layout out in time,
under behavior-system
direction...

4. ...just in time to get played.
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5. in addition to changing
which tiles get laid out when,
the behavior-system can also
modulate the contents of the
tiles (changing volume, and
MIDI controllers).

6. constraints, such as beat
alignment and tempo matching
can be solved automatically by
the output layer (see,
correspondence points for
adverb blending)

7. beat alignment through time
shifting.

8. beat alignment through time
stretching.

figure 36.the
(void*) music sys-
tem
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9. pattern generators can act as
intermediaries between
behavior system and tile layout.
These can encode simple
sequencing tasks better than
Scoot’s reactive behaviors.

10. pattern generators can be
used to predict the future.
Therefore contflicts can be
“reacted” to well before they
get played.

11. All this can be recaptured by the new
action-tuple based behavior and graph-
based motor systems.

m  behavior system — action-tuples

= output layer — motor system

u temporal constraints — either the
action-tuple’s Du context, or motor
system

m pattern generators — motor programs

While this output layer (and large parts of
the behavior system) was custom built for
(void*), only the very lowest level
representation (the content and metrics for
BodyPose) need be changed for the new
motor system to produce notes.
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interactive music score

The use of music to aid and reward the voluntary suspension of disbelief
is traditional. Music is present today as a background to the most perva-
sive story media — television, films ete. It seems clear that an unfamiliar
medium without many pre-established conventions might benefit from
the inclusion of such non-diegetic music.

Events in the world often cause and are caused by emotional changes in
the characters — their actions occur in a rich emotional context. Partic-
ipants become immersed in a scene only if they can make sense of that
scene. Our core goal — that participants must be able to 'read' characters
— can be aided by music.

Interactive music has precedent in computer games. But the problem
there is a far less interesting one. Computer game characters typically
have much less internal state, no emotion system to speak of and little
no long term memory. There is, frankly, much less to score, and you can
achieve the ‘never sound bad’ criterion by the looping of CD audio (with
loops attached to environmental locations) and the occasional fade to
and from silence (between locations). Indeed, as soon as game engineers
discovered how to stream CD quality audio during gameplay, the indus-
tries brief flirtation with note-level in-game composition all but ended.
Sound is now commonly limited to crossfading safe, environmental back-
ground music.

But when the characters become complex these static, looped approach-
es break down. In failure, either the integrity of the music or the reada-
bility of the characters is threatened by a disconnect between the sound
and the visuals — violating those very conventions that we hoped to bor-

row. To go beyond this is to go beyond uncommitted and possibly irrele-
vant background music; to provide a musical score for a medium with no
script; to rise musically to the challenges offered by the richness of the

characters.



output methods

In (void *) the music was tied to the fate of the characters in the diner
in a number of simple ways. Rather than building the score from individ-
ual notes, small segments of music pre-composed by a human musician
were dynamically ordered, stretched, overlaid and arranged just before it
has to be played.

m Thematic development was driven by developments on screen on a
character by character basis - this is nothing more than leit motif.

m Key events, for example a character becoming possessed, have spe-
cially written music - just as film scores are build around 'spotted’
music created for key scenes.

m A character's stance towards the user's control is connected to the
timbre of the characters' music - the orchestra is not deaf to the
emotional content of the scene.

m Thematic balance is biased to take into account what characters are
visible on screen - similar to the final mixing and composition proc-
ess in, again, film score.

Ideally, all of this control acts to subtly but robustly reinforce the user's
interpretation of the scene.

In the finished piece one finds, anecdotally, that it is the good stories
that make the most interesting music. Interactions in which many things
happen at a well ordered pace and seem to fall into some sort of 'arc' re-
sult in the most varied but coherent music. An alternative outcome -
where the best music is generated when nothing happens - would have
suggested a return to the static looped background piece, and would
have been much simpler to construct. It is clear that by motivating music
change by events onscreen the two most common complaints of 'algo-
rithmic composition' - that the music never changes, and when it does it
isn't clear why - has been avoided.

163



164

after (void *) — lessons learned

Since the music was another character, a common currency between
characters echoed the sort of information flow that we expect to need.
This eased the flow of information between all the characters - including
the camera - to the music.

This architectural decision points towards the idea of an autonomous
music. A music that is serving and protecting its own (musical) needs -
including never sounding 'bad' - while surviving and serving in the dynam-
ically changing virtual world of the emotions and decisions taken by the
creatures it provides the scores for. The goals of a good action selection
mechanism — of coherency and relevance — apply equally to this music. It
must survive through contflicting goals, sudden changes, and constrained
actions.

the case against direct control

In creating the music system for (void *), I ruled out the option of giving
participants direct control over the music. In general people aren't, don’t
want to be, and certainly shouldn't have to be, competent musicians.
What was needed in (void*) was a music that took care of itself. Second-
ly it had to do this with an apparent transparency of intention - exactly
the same interpretable depth and presence that we seek for our synthetic
characters. In short participants must be able to 'read' the music in the
same ways as they must be able to 'read' the characters and the scene as
a whole. These are precisely the same reasons behind the decision not to
give direct control over character animation to participants.

In general terms, this rejection of direct control, or even literal control,
leads us back to a character based music approach. To support transpar-
ency throughout the complexity we need for a layer of intelligence some-
where. What sort of relationship should the participants have with the
music? There are particularly appealing modes of interaction that take
place between embodied agents — conversations and dialogues, people



can play with creatures, duet with them, people recognise and can be
recognised - and conversations occur between embodied things. Other
kinds of relationships are less rewarding.

However, this character metaphor remained in the background through-
out the piece. In (void *) never was the music center stage. Nobody, out
of the hundreds of people who interacted with the piece interacted with
it for the music (at least consciously). Had it have been missing, it might
have been missed, had it have been broken, it would have received much
more attention. Any further investigation of what it means to make a
‘music creature’ really had to put a music creature at the focus of an in-
stallation, otherwise we might stall the aesthetic ambitions of this
project.

the case against low risk music

This project then returns to another of the themes of this thesis: risk.
The music in (void *) is low risk — it plays pre-composed music, bent,
layered and faded into shape, but pre-composed all the same. To do any-
thing else is a risk by comparison.

We can alleviate some of the pressure by changing the aesthetic — by
moving away from the interactive film score goal towards an interactive
music installation. The risk now becomes the lack of author control over
the piece, threatening the artistic integrity of the whole venture.

Splitting up animations into graph fragments is a similar risk, indeed giv-
ing up conventional ideas of author authority when entering an interac-
tive medium is a risk. In the end however, I believe that this risk is
necessary, interesting, and inevitable if we are to go any further.

Presently, the artifacts detailed below mark a move away from what one
might call an example driven approach to computer music. I believe this
apparent step backwards is only an initial step. Just as we had to weaken
the rule of the example when developing the graph-based motor systems,
here we reduce our reliance on the precomposed segment of music. Just
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as we dissolved the example animation with the intention of building hav-
ing creatures competent enough to put them back together, we do the
same here for music — replacing the role of a human crafted musical
structure with the first steps towards creatures capable of recapturing
those structures by themselves.

the case against radically different music creatures

The music creature for (void *) was built with some of the same under-
lying structures as the other, on screen, characters. This was the Scoot
behavior system augmented with a completely custom output layer.
Rather than playing animations, the music creature's ‘motor system’
plays small lines of music; rather than using its ‘motor system’ to move
around the world, the music creature moves around a score.

Where the reasons, intentions and emotions must be conveyed in the
characters' motor systems so too the music must convey them through
its 'motor system' - the sound. Where the motor system shouldn't fail on
the technical level, the sound system also shouldn't fail — notes and key-
frames both must be delivered 'on time'. Where the animations shouldn't
fail stylistically, the elements of the composition shouldn't fail. Similar
transparency and robustness is required by the author of the composi-
tion. Otherwise, the (necessarily interactive) composition process for an
interactive piece is untenable.

While we were reusing the behavior system for the creation of the music,
the music creature’s ‘motor system’ was a motor system only in name.
After the finalization of the (void *) piece it became clear to me that
many of the problems that the music creatures “output layer” was at-
tempting to solve were common to other creatures as well. These includ-
ed the synchronization of different elements that had extension in real
time; the specification of temporal constraints; the patterning (or se-
quencing) of smaller routines into larger routines. It was low down in this
layer that Scoot’s inability to deal with time was being compensated for.
The behavioral problems discussed in the introduction to this thesis were



being solved locally inside the music creature — why shouldn’t all crea-
tures benefit?

The reverse is also true — if we increase the sophistication of the other
creatures and we might leave music creatures deficient. So many of the
problems surrounding the creation of music with our creatures were ei-
ther problems faced (and perhaps dodged) by the behavior system or
were problems that were going to be faced soon enough that to keep
their development separate did not make sense. This is an argument for
a parsimony of effort — common problems should have common solutions
(and common engineering). But it is biased by a belief that movement
and music are not unrelated, that it makes sense to think of ‘the tempo-
ral arts’ [31] — especially when building the core competencies of crea-
tures up from nothing.
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sketches

common themes

This section details some of the installations and videos created after
(void *), with the express purpose of sketching the shape of music crea-
ture based music. Common themes throughout these sketches include:

m motivation based authoring. Creatures that have their behavior
described at the highest level in terms of motivations. There is a nice
progression through these motivations to an installation design pat-
tern that starts from agreed texts and what might be called musical
character books. We'll see below creatures that ‘get lonely when
nobody sings to them’ and ‘get angry after a while of being shut out’
ete. Evaluation of the ‘truthfulness’ of these statements are irrele-
vant. Instead I hope to have shown that this thinking is a powerful
way of approaching the authorship of installations with musical com-
ponents — an area with traditionally few handles for the author to
grasp.

m virtually embodied simple creatures. Music creatures with bodies —
be they graphically represented, tangibly present in an installation
or altogether hypothetical.

m proto-musical abilities. The recent interest in the biological origins
of music research focuses on a top-down, deconstructive approach to
this problem. Some of these installations can be seen as bottom-up,
constructive reaches into these fields. Here we combine in creatures
a small number of very simple perceptual abilities that are aspects of
music perception and composition and see what we can get from
them.

m complex systems created by a number of simple creatures. Can we
take our texts and our ideas and create installations (and musics)
this way?



169

m equivalence of live performers. There is not an obsession with
ground-truth fidelity in these creatures — we are, after all, not build-
ing robots. But in some of the pieces detailed below there is an
opportunity for live performers to communicate with creatures in
exactly the same manner as they communicate with each other. This
is a place to locate the human performer that aids transparency and
interaction rather than fostering a process of conducting or even
editing the output of complex systems.

m gestural and 3-space control metaphors. Gestural control tech-
niques seek to provide mappings between gesture and music — typi-
cally gesture and synthesis parameters, or gesture and algorithmic
composition parameters.

There is now something close to a rich tradition of this kind of work
in the interactive music community (for a review see [66]). It might
sound obvious when stated — that there is, after all, something
rather special about 3-dimensional space — but it is worth stating
nonetheless. Gestural control and other spacial mappings leverage
authors’ and participants’ ease and natural abilities in real space.

If it makes sense to map the gesture of humans to music this way, if
it makes sense for composers to think about music this way, perhaps
it can make sense to map the gestures of virtual creatures to music
as well.

m interactive authorship of non-interactive works. Finally, if we’re
looking at using music creatures to make interactive pieces, to use
music creature metaphors to author complex worlds, perhaps we
can use them to create finished pieces. There is a tradition, more
present in music than elsewhere, of constructing systems, winding
them up and letting them go. If characters are useful for interactive
pieces then they are useful here too.
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sand:stone (installation)

introduction I met a traveller from an

. . A 3 . N antique land
sand:stone was an small interactive installation [95], the first after R
Who said: *Two vast and

(void *), and the first to approach some of the themes mentioned above.  runkless legs of stone
Music here is a major component of the installation and the most inter- stand in the desert. Near

esting component of the interaction. them, on the sand,
. . , . . Half sunk, a shattered vis-
The piece is loosely a response to Shelley’s poem Ogymandias. The inter-  age lies, whose frown,

action interface consists of six rocks on a bed of sand. On screen, a single  And wrinkled lip, and
character — a statue. The proximity to the center of the bed of sand and ~ sneer of cold command,
the identity of the rocks is sensed® and forms the basis of the interaction Tell that its sculptor well
— firstly by directly modulating the pose of the character on screen, and those passions read

. . Which yet survive,
secondly by controlling the colony of music creatures. :

stamped on these lifeless

things,
music creature design The hand that mocked
« - . . . them and the heart that
Each rock “contains” a simple musical creature. Each creature can sing fed.
—decide to play out individual, precomposed music — and the decision tO  and on the pedestal these
sing is based on a simple motivation mechanism. The creature’s presence words appear -

in the center of the sand bed increases its motivation to sing, the rate of "My name is thZ_.VmﬂﬂdiﬂS»

. . . . . . KIng ol Kings:

increase is governed by a boredom variable. Singing is suppressed on ¢ ¢

h . 1 d icf h Finall . . Look on my works, ye
earing uncorrelated music from other creatures. Finally, singing uses  \juhty. and despair!”

¢ ) 7! Q o 1 Q 3
breath’, and when a creature runs out of breath it must pause. Nothing beside remains.

. : . . . Round the decay
Such descriptions might be hard to describe (and understand) in English ound fhe deem

but they are well modelled by “synthetic chemistry” — [39] a model of
(linear) ‘chemistry’. Here we use the expressive power to create interac-

Of that colossal wreck,
boundless and bare

The lone and level sands

tions between motivational (the desire to sing) and sensory variables. stretch far away.
The internal time and how this time progresses through the creatures
precomposed segments is governed by a final piece of motivational state. Ozymandias —

Percy Bysshe Shelley

2. sensing technology developed by the Responsive Environments Group at the
MIT Media Lab. [67]



figure 37.synthetic
chemistry for motiva-
tional variables

Timbre is modulated directly by the boredom model, and by the time of
day in the installation world.

Although this piece, like (void*), is reliant on precomposed passages, it
moves towards characters that have an awareness of the contents of the
the progress through those passages. The motivational model, perceptu-
al abilities — based on a ‘circle of fifths’ distance metric — and action se-
lection create simple, but complete, character. A colony of such
characters is capable of producing interesting musical forms from a tan-
gible interaction. Once revealed participants find the creature metaphor
compelling and understandable musically.

status

This installation is on tour internationally with the 7th New York Digital
Salon.

motivation to sing

air presence in center
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control
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shyness control heard
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figure 38.images
from sand:stone
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three creatures (performance)

introduction

three creatures is a performance piece for piano and two independent
musical creatures. The title is, of course, driving home the idea of equiv-
alent communication between creatures.

The creatures in the title are simple ‘creatures’ coded entirely in esound
[24]- and run on physically separate machines. Without graphical in-
stantiations, they communicate through a loudspeaker each, and hear
through a microphone. They communicate, therefore, with each other,
in the same manner that the performer communicates with them.

Each has a simple motivational model — controlling the sound that they
hear, and their willingness to sing it back out. This is driven in part by a
simple correlation metric across what they hear and what they remem-
ber. Their memories were periodically flushed with pre-selected samples
by an external “score providing” computer.

This installation was an exercise in the design of a system with a “crea-
ture metaphor” outside the context of the behavior, motor and graphics
systems of this work and instead inside a dataflow language increasingly
used for real-time interactive sound.

Although interesting (and enjoyable) to play, the piece was most intimi-
dating to develop and it is almost impossible to consider extending it fur-
ther. It serves now only to disprove a null hypothesis — that we might be
able to create character-like music without the burden of behavior-based
Al

But the dataflow representation demanded by the language is simultane-
ously at too low a level to create an illusion of intelligence in the “crea-
ture” and, bizarrely, at too high a level (that of information flows rather
than sample manipulation) to construct any perceptual abilities.
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What the installation suggests is a hybridization of the lightweight data-
flow synthesis paradigm with the rest of the work of this thesis — but it
also illuminates the necessity for a connection between these worlds that
is both bidirectional and surprisingly high bandwidth. This is less surpris-
ing in light of idea that the complexity of the interaction (from the mu-
sician and other creatures) must come from both the perceptive abilities
of a creature (from the low-level system), and the complexity of the crea-
ture’s action (to the low-level system). If either part of the whole is defi-
cient or mismatched then the metaphor breaks down.
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soundcreatures (installation)

introduction

soundcreatures is an installation for one or more creatures. Here, each
creature has a graphical representation, in addition to a microphone-as-
ear and a loudspeaker-as-mouth. This installation is a study using some
of the aural percept models previously discussed to analyse auditory
events and the use of action-tuples to represent musical events.

creature design

soundcreatures stores their sonic repertoire in Ac percept trees using
our cepstral aural model (page 65). Persistent aural models (that is mod-
els that can be saved out from one instance of a creature and reloaded
into another) offer an ability to seed the creatures with musical material.
Key elements of their behavior are:

m the perception of sound rewards behavior. Their preference
towards exploitation versus exploration is controlled by a motiva-
tional variable — a motivation to hear things — which in turn is
increased during times without sound. Therefore creatures are
learning what sounds they need to produce in order to hear sounds

back.

m sounds they hear get incorporated into their repertoire. Sounds
that they hear are classified into trees by the percept tree mecha-
nism. This common tree is shared in both Tr and Ac areas of the
action-tuples. Attended sounds can then become material for use in
creating new action-tuple hypotheses. These Ac trees are discussed
below.
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m StateObject processing allows the filtering out of self-made

sounds.One technical thing that these creatures need to do is to not
listen while singing — we cannot expect that the creature’s ear
(microphone) will not pick up the creature’s mouth (loudspeaker).
This inhibition of hearing while singing is easy to produce with
StateObject’s ability to process the saliency of data before passing it
on to the Percepts for evaluation (see page 39).

Although such half-duplex communication does not strictly occur in
humans auditory systems, it does occur in their visual systems —
optical processing is inhibited during a saccade (a rapid, ballistic eye
movement). It is possible within the framework to simulate this with
a trivial amount of engineering.

sound processing and playback through graphical movement. It is
the creature’s body that produces the sound - the creature literally
breathes out the notes. The body here is manipulated using our
blend-based motor system. Labelled positions on the animated body
control parameters such as amplitude modulation (e.g. rib cage)

new sounds incoming
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figure 39.new
sounds are incor-
porated as triggers



and a simple low-pass filter (e.g. here, back angle). Finally, the
amplitude of the resulting sound “blows” the camera around the
creature.

Some time was spent building the tools to enable the connection of
positions, distances, angles and velocities constructed from end-
effectors, blended-vertices and planes to be connected to real-time
sound processing through common signal processing elements®. The
result is an open framework for processing sound with movement.

aural Ac percept trees

Recall that we can arrange Ac percepts into trees, just like other kinds
of percept. The use of Tr percept trees to guide hypothesis generation is
pervasive in our creatures. We create children action-tuples with Tr’s re-
ferring to the children of percepts. Ac trees creates a parallel mechanism
by which, in response to increases in value, new actions can be generated.
Here it is simply used to create new, and more specific, sonic material;
the dynamically growing tree becomes a templates for the sounds that
the creatures can produce (as well as being reused by Tr percepts to
model the sounds that we can react to).

Action-tuples start at the top of the tree, carrying a payload that plays
out a wide variety of sounds (here, a wide variety of notes) and slowly re-
fine what it is that they should be playing on the basis value propagation
through the behavior system.

For this we might not use cepstral models alone — without phase infor-
mation we couldn’t reconstruct model samples perfectly. So here we
cheat and also keep the raw samples around®.

3. although a better (and future) approach is to off-load all the sound processing
onto separate hardware, communicate via a network protocol, and use existing
real-time sound manipulation software.
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A better space to produce and categorize musical sounds, especially if we
want to include extra causal dimensions (including value, but also per-
haps some motivational state of the creature) might be found in [81].
This work combines a data-driven methodology necessary for accepting
raw sound; a cluster based model ideal for putting into Percepts; and an
incremental update algorithm that might perhaps be put into a on-line
creature.

musical structures from behavior

Creatures like these are platforms for directly investigating what musical
structures can be obtained from the behavior system that we’ve built.
The current installation only scratches the surface.

Looking towards the future we can see a continuing exploitation of the
action-tuple structures for musical ends. As hinted at in the opening dis-
cussion of the behavior system, the behavior system is capable of repre-
senting, through action-tuples with forward transition Du models, the
network structures used in musical analysis and data-driven music com-
position. But the tangled, hierarchically natured arrangements that are
possible — both structures in the behavior and motor systems possess the
comgutational power of structures like augmented transition networks.
[21]°.

The hierarchies of actions and the goal directed value modulation devel-
oped in the behavior system can echo the hierarchical organisation of
some musics. Properties, uses and shortcomings of this view of musics

4. More investigation is required to ascertain properties that blending in this
space possesses although it is probably interesting to blend raw samples after a
discrete time warp.

5. Augmented transition networks are a tool from computational linguistics. Of
course we cannot mimic the parsing abilities of these networks with behavior
system structures directly — in particular there is no way to back-track in real-
time. However we can mimic the generative abilities of such labelled arc transi-
tion networks rather easily.
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have been discussed at great length in the literature. Gone, however,
from our representation are the hard hierarchical boundaries. No hard
edges (we can have multiple membership in hierarchical actions and soft
goal distances in value modulation) and no hard coded dogma (goal dis-
tances can be learned and action hierarchies generated in response to
changes in value). I am confident that these structures are a proper su-
perset of many algorithmic composition techniques.

status

A single soundcreature was shown in April 2000 at the Digital Life open
house at the MIT Media Lab. Multiple sound creatures have played to-
gether only informally, and await public performance. Finally, there is in-
terest in giving a sound creature or two to one of the “parrots in
residence” at the Media Lab — bringing our inspiration from nature full
circle.
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figure 40.images of a
sound creature (in-
verted)



ozymandias (video)

introduction

Ogymandias is a piece for video reusing images generated by the
sand:stone installation. Audio for this video is supplied by a driving a col-
ony of simple sound creatures with the spoken text of the poem.

Simple creatures are trained on the text of the poem (by repeatedly play-
ing the text at them). These creatures are similar to those in soundcrea-
tures although the reward strategy is different - here the author controls
the reward of these creatures with a simple mouse-click. The resulting
creatures act as a stimulateable delay line, or some complex echo cham-
ber, becoming excited by the text of the poem, and reading parts of the
audio material back out of time.

While in training creatures can produce their sound live, but instructions
concerning the manipulation of sound are also stored to file — equivalent
in use to an Edit Decision List (EDL)- for higher fidelity off-line manipu-
lation.

off-line image processing — image creatures

Of all the pieces discussed in this chapter, this one is unique for the off-
line processing of graphics. The source material for this piece was around
1200 frames taken from the sand:stone installation. From a low resolu-

tion sub-sampling (120 frames) of this video stream a tangled, directed
graph was created. This structure is directly analogous to the one used

in the graph-based motor systems®. The distance metric is based on the
sum of the squared differences between frames.These graphs capture a

complex structure of ambiguities present in a video stream, in a way that
allows graphical exploration.

6. although this work actually pre-dated the graph-based motor system.
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The creation of the video stream comes down to another, trivial, behavior
system — which explores the graph in response to the commands read in
from the audio EDL. Its purpose, using the “problem solving” capabili-
ties of the graph, is two-fold: to move along paths created to get to video
material corresponding to the time that the sonic creature has taken au-
dio material from; and to modulate how these paths are played out ac-
cording to the number of times that the nodes have been traversed —
specifically the amount of motion blur applied along the path.

This extends our ideas of characters into rich image based rendering.
Similar structures, without the benefit of a unifying motor system frame-
work, are explored in [80].
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1. Image-graphs can be
used, just like motor
graphs, to represent
common structures found
in video. They are
interesting because they
can also recognize flow
ambiguities in this
footage. Here we represent
a looped animation.

2. Unlike motor-graphs,
computation of distances and
the initial generation of the
graph would be prohibitively
expensive if we fed, in this case
1200, frames of animation into
the graph generating
algorithm. Instead we
subsample the images by a
factor of, here, 10; compute the
graph based on that, and add in
the in-between frames to the
graph. These structures are not
too dissimilar to the spokes
discussed previously.
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3. Above shows one of the
structures present in a graph of
the rotating cube footage. This
simple (sum-of-differences-
squared) distance metric is
dominated by the mass of the
cube, but the symmetry of the
animation structure is broken
by the textured faces. Lacking
in the original implementation
was any equivalent of the
velocity information present in
the BodyPose metric, although
an easy step towards this would
come from optic flow
techniques.

4. Finally we can redefine
common video processing
techniques along the paths
generated by the “motor
system” surrounding these
graphs. Of particular interest
for the Ozymandias piece,
which deals with the
destruction of material over
time, is motion blur. Instead of
generating material by
interpolating (by weighted
sum) between nodes in the
graph, we can take weighted
sums of groups of nodes along
the path.




exchange (installation)

exchange is an installation for a small colony of creatures. Like the
soundcreatures these creatures have virtual bodies that effect the pro-
duction of sound. Here, the emphasis is on the arrangement of notes, not
necessarily the content of the nodes themselves.

The exchange creatures have the ability to play notes (through external
MIDI” communication) and to hear notes that other creatures (and peo-
ple) play (again through MIDI, or, more robustly, though a UDP proto-
col®). They are also equipped with microphones.

These creatures can play a variety of very simple “games” with musical
material that they hear. The simplest is quickly stated by two “rules”:

m every time a creature hears a note, it places a copy of that note “in
space”

m cvery time a creature strikes a note in space, it plays.

The notes in space are represented in note objects discussed below.

creature design - behavior

These rules are played out by a character with a prepared graph based
motor system — created with source animation material from, and re-ed-
ited in 3D Studio Max [30] (see page 132).

In the absence of any modulating motivational state a slow progression
around this graph is enough to produce organised sound that is some-
times startlingly “musical”. Played out in a spatial representation, it is

7. MIDI — Musical Instrument Digital Interface, is an interface for passing notes and
other synthesis parameters around among computers, keyboards, synthesizers
ete. [61]

8. UDP - Unicast Datagram Protocol, is a lightweight protocol for the exchange of
packets of data over standard physical transports (including local ethernet and
the internet at large)
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clear that passages will get exchanged between the creatures and then
distorted — retrograde variations, repeated subsegments are swapped
back and forth in an accidental recombinant evolution.

But the graph based motor system that we have built enables characters
to do much more than blindly bump into these note objects.

The first extension we can build in is a “hunger” for notes. The motor sys-
tem knows how to answer questions like “what is the closest note ob-
ject?” (in a distance metric appropriate to the motor system). Then,
having answered, the motor system knows how to take us there. Once a
character can find note objects in space (i.e. the behavior), we can con-
trol from a high level the desire to find notes (i.e. the motivation).

To complete the control of this motivational state we tie this desire for
notes to the hearing of sound. If a creature gets “bored”, it is more likely
to head directly for any musical material around.

G
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1. Notes can be encoded in 2. Several, musically
space and played out by interesting, transformations
moving objects. can be conducting within this

spacial domain.

figure 41.note-space
metaphors are musi-



One final twist offered by the graph-based motor system for the author-
ing of these non-representational characters is the ability to perturb the
distance metric of the BodyPose structure. Here we disrupt the time-dif-
ference component of the metric to unusually favour low-integer-ratios
of the source animation length. This distorted metric echoes that found
in sound perception, and enables the animator to carve the temporal
equivalent of the note triads out of animation material.

A brief look back over the last description will reveal that we’ve intro-
duced a large number of “constants” into the description of the creature
— the signal processing of all these quantities, the expected ranges of the
“boredom” state variable, etc. Such constants are the bane of any char-
acter designer. The setting of them is, in short, a tedious and not partic-
ularly interactive search through a complex high dimensional space —
exactly the worst excesses of producedural authorship that I have argued
against.

One part of this problem will remain a genuine user (or author) interface
problem, and the current environment goes some way to try to ease this
aspect. But we can go some way to dissolving the problem by including
some of the adaptive models discussed before. The relationship with the
motivational boredom variable and the behavior can be mediated by a
maodel of that motivation variable and hence specified in abstract terms
—that is to say, terms free of the specifics of the numbers. This is no more
that the Gaussian model discussed earlier (page 50). Similar scale-free
techniques can be implemented elsewhere. In this example the connec-
tion with perceived note density and the motivational state was similarly
mediated.

This motivational linkage helps keep the music on a certain edge be-
tween excessive complexity and complete decay. We can then script this
linkage overtime to create a waxing and waning of a creature’s musical
complexity. This kind of high level control (well discussed in [8]) is a nat-
ural feature of character-based design.
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musical worlds

The above discussion of this musical game refers to “placing a note in
space”. What does that mean?

Theses spacial notes are represented by virtually embodied note objects.
These note objects have a specific role to play in shielding the rest of the
installation design from the underlying musical synthesis paradigm. This
is a good thing because the most common paradigm is still MIDI”. In this
architecture, each note is treated as an independent entity, orthogonal
to all other notes, including notes of the same pitch. This is not a good
model for anything other than (perhaps) keyboard instruments — it
would not be appropriate for this unbiological, uninspiring, and unmusi-
cal representation to “leak back” into the design of musical creatures.

More useful models can be made out of the things that MIDI offers. Note
objects can support the idea of “being stuck” and closely subsequent
striking events can perturb (the synthesis of) a note already in progress.
The idea can be extended into cases where the objects themselves have
behavior - sliding into the situation of inter-character interaction
through physical contact.

Actually the geometry, and some of the behavior, of these objects has
been explored in other fields; most notably the interactive dance commu-
nity has had an interest in virtual tangible objects (be they 3-dimensional
objects, or planes projected out of 2-dimensional camera space) and
their relationship to tone generation (for example, the Palindrome
dance group [65], [20] or [3]).

It is here that we can begin to leverage 3 dimensional spaces for the pur-
poses of synthesis control. Here the possibilities are, trivially, endless:

9. a transport layer to the software synthesis programs SuperCollider [87]and
Max/MSP [25] has also been constructed that does not suffer from these limita-
tions.



figure 42.a music
creature chasing
down two notes
(inverted)
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distances between characters limbs and objects; plane crossings and col-
lision geometries; physics simulations on note objects etc.

The difference here, of course, is that these possibilities are being played
out in a world without sensor problems or soldering. I propose that, while
fun to explore, these possibilities only become interesting in a virtual en-
vironment if the entity at the center of all this interactive opportunity
has the ability to interact convincingly with it — in short, if that entity is
a compelling synthetic character, equipped with appropriate perceptual
and behavioral intelligence.




190

listen (installation)

introduction

The idea: create a creature that can dance, by using very simple musical
perception. The methodology: repurpose many of the ideas that we’ve
discussed above, use the body representations to represent music, and
use musical ideas to represent space.

creature design

listen creatures possess a body — a similar body to the exchange creatures.
Creatures can listen, again over MIDI or over the same UDP protocol as
the exchange creatures. Over these channels they obtain labelled note
events (time, pitch, volume).

While active the bulk of the creatures computation is spent maintaining
a population of percepts modelling sequences and timings of notes.
These models are nothing other than the gesture recognition models
from the graph-based motor system, page 123.
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1. the percept tree consists of a 2. Here however, the nodes 3. At any one time there is a 4. Models which fall below a
population of “gesture” models. keep track of notes, and keep model which best fits the certain standard are removed.
references to body poses. memory of the recently heard ~ When the recently heard model

nodes. This model dictates the  is not matched by anything in
movement of the creature, and, memory, new models are
with behavior system created.

interaction, can get updated

with this recently heard music.

figure 43.keeping a
model population in a
percept
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Although here, the nodes do not just contain references to BodyPose
they have been repurposed to contain also references to Note’s that have
been heard by the creature.

Since these models have classification abilities (page 142), at any time
there is a model that is doing the best job of matching a buffer contain-
ing our running memory of musical events. This model is “played out”
through the animation system using the stored references to BodyPose.

Movement is therefore created out of the creatures modelling of the mu-
sic it hears — a dance originating in both reactive and predictive respons-
es to music.

extensions

The seed idea for this piece trivially opens up to a large number of possi-
ble treatments, and there are a number of versions of this work that
could be realized.

The most promising of these considers an internal musical space — an ab-
stract inversion of the exchange creatures (where space is turned into
notes) — mapped out by the music that the creature hears and remem-
bers.

To perform this, two self-organising maps are used to simultaneously
learn two distributions. Firstly, the temporally local distribution of mu-
sical material and secondly a map of body movement derived from an an-
imation playing continuously in the background (providing a
background cyclic structure to this graph). SOM node plasticity can be
connected to the saliency of note events — memorable notes result in
memorable poses. In the current implementation we use note velocity as
a salience signal, but in the future, this can be driven from a expectation
violation event.

Together this provides a platform for testing the self-organising repre-
sentation extensions of the directed-weighted graph structures. The rest
of the behavior system is unaltered — the predicting population of models
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can now dance by finding (paths to) body pose clusters related to note
clusters in a dynamically changing music-pose mapping.

status

Both exchange creatures and listen creatures exist as a video — exchange:
listen: exchange. This was obtained as a single continuous take without
any external interaction other than the injection of three musical frag-
ments into the “ear” of one exchange creature. Motivational changes
were pre-scripted. listen listens to the two creatures play with this mate-
rial. listen premiered at SIGGRAPH 2000 (listening to music from [67])
and an exchange: listen: exchange installation premiered at the opening
of Medial.abEurope, July 2000.
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1. here a self-organising
map (with BodyPose
nodes) is being trained on
a slowly changing
animation. This use of the
self-organising map is in
some ways an abuse —
such maps are typically
used with data presented
in a random order to
prevent the patterns seen
above. Here however, we
are interested in tracking
non-stationary
distributions — and seek to
use the artifacts above as
a memory of pose
configuration.

2. Here a SOM is
modeling recently heard
music can be connected
by strict topology to the
pose SOM.




figure 44.two stills from
exchange:listen:ex-
change

figure 44 .listen dancing
frenetically
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curve (technology)

introduction

curve is an platform for experimenting with characters with bodies made
not with triangles but with lines. Up until this project the perceptual
worlds that characters inhabit focused on external phenomena — distanc-
es from objects, sounds, etc. — rather than movement directly. curve
seeks to help create line drawn characters that perceive and respond to
spatial configurations of other such creatures.

Other than a certain freshness of the aesthetic, concentrating on ab-
stract lines as a body enables us to explore simple physical constraints
with the introduction of ‘spring physics’ into the world. The graph-based
motor system allows characters to understand the effect of physical con-
straints and physics based interaction on their bodies — albeit currently
in very simple ways. Limited learning of static differences between
BodyPose and pose realization can be offered by reblending BodyPose’s
with contents of BodyMemory’s.

It is hoped that by moving along this path we can create visual creatures
with an awareness of their own and others’ shapes. This could extend the
graph motor work towards creatures that learn through imitation.

The project’s engineering includes a new BodyPose representation suit-
able for encoding 3 dimensional splines; spring system and optic flow
based dynamics; and three new renderers for displaying these splines —
either in the current 3 dimensional graphics system, a 2 dimensional
Java 2D'0 based system, or direct to Postseript'!. With the addition of
the ability to read Postscript the animation tools now become incredibly
simple — a piece of paper, a pen and a scanner.

10.Java2D: an application interface for drawing and imaging on screens for the
Java programming environment. [38]

11.Postscript: a document interchange format, originally designed for interpreta-
tion by computer printers. [1]
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figure 46.eight
creatures from
curve



figure 47.scanned
synthesis models
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1. many scanned synthesis 2. forces can be applied to this 3. these structures are then
models start with a finite model, which as vibrational “scanned” repeatedly at audio
element system or a spring modes below 15Hz (kHz) rates

system.

scanned synthesis models (technology)

However, there are musical applications of this line representation — we
can introduce scanned synthesis models into our world. So far the instal-
lations described here have either dealt with raw audio or music made by
off-board MIDI controlled synthesizers. Here we consider a direct con-
nection between the characters and the synthesis technology.

Scanned synthesis models are a class of low-level synthesis algorithms for
creating sounds with musically interesting timbres. Although the term
was coined in [11] there are quite a few other synthesis techniques that
could equally be described as involving “scanned synthesis” (e.g. [56]).

Such techniques are all interesting to us here because of their particu-
larly gestural control. Indeed they are (perhaps retrospectively) motivat-
ed by considerations of such control mechanisms. Here we consider
these techniques as an addition to the instruments we can place in the
virtual musical worlds discussed above.
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Scanned synthesis models rely on the simulation of a dynamical system
with natural vibrational frequencies lower than 10-15Hz — for example,
textbook finite element models of strings and sheets. This frequency cut-
off is chosen to place the vibrational modes in the domain of haptic or
gestural control — and we note that motor timescales are roughly the
same as timescales on which musically interesting timbres change.
These inaudibly low frequency patterns are turned into audible sound by
repeatedly scanning the model along a particular path at audio rates.

artificial gestural control

The relevance here is that this is a synthesis algorithm (and one which is
particularly cheap to evaluate) which has a direct and obvious interface
with movement. What is lacking in this community is any tradition of
creating, composing or working with artificially generated movements.
Hence there is a obvious hybrid to be made between our character ani-
mation technology and this synthesis model — to connect characters’
bodies to such a synthesis technique.

There are two ways that we can achieve this connection. Firstly we can
have the nearby movement of a character’s limbs atfect a number of syn-
thetic strings. We can do this by embedding both character and string
inside a motion flow simulation — a particularly cheap fluid dynamics sys-
tem which discretely simulate a dispersion and propagation of movement
throughout a plane or space.

Secondly we can relate the body of a creature to the body of the string

-----------------------------------------------------------
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figure 48.motion
flow fields gener-
ated by an ani-
mated limb
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itself through the curve extensions to our system — either directly or
through a spring system. Thus our body pose representations become
timbral representations; our ways of orchestrating movement through
pose space become techniques for changing timbre — the whole machin-
ery, from animators tools through the behavior and motor systems gets
repurposed for software synthesis.
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beginnings and endings

Here we conclude this work, both by locat-
ing some of work that influenced it and by
summarizing what has been achieved.



technical influences

This work draws from a diverse array of traditions. Several ideas have
been borrowed from other implementations; several others have been
more inspirational than proscriptive; still more are ideas that have been
kept in mind during the development of the system, but are as yet only
the horizon. Either way the heterogeneity of all aspects of this work is in-
tentional — we have actively sought to build not dogma, but framework.

behavior-based Al

Perhaps the most important influence after our previous work is the be-
havior based artificial intelligence community of which we are a part. In
general we agree with Brooks [14,16] that the deliberative Al tradition
has failed to live up to its promises: promises of usefulness, especially
when placed into dynamic, unpredictable, noisy, real worlds; and prom-
ises of insight into organic systems. We note that the interactive worlds
that we wish to build with our system are, if they are anything, dynamic
and unpredictable (they are, after all, interactive); and the creatures and
conventions we seek to reference are biological. This difference in style
is most succinctly expressed in the title of one of Brooks’ papers — Ele-
phants don’t play chess. It should be clear by now that the chess playing
abilities of our characters are irrelevant to our goals.

However, the architecture described here departs from the now tradi-
tional behavior based approach in many ways. The most significant de-
parture is how we represent time — indeed the very fact that we represent
time at all in our architecture differentiates us from mainstream reactive
Al In the original (and many contemporary) reactive architectures
‘time’ was never handled explicitly and temporal coherence left to be-
come an emergent effect. The result: the creature, typically a robot, en-
countered each slice of time almost afresh.

Controlling an emergent phenomenon is hard and unnecessarily indi-
rect. Such architectures make both actions which last sizable lengths of
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time, and the representation of perceived objects (that are persistent
over time), unnecessarily difficult to achieve. While this short-coming is
understandable given the community (mainly robotics) that were the
driving force behind this approach it was not clear how we were to build
either musical creatures or virtual dogs without better tools to create
temporal coherence.

traditional machine-learning

There is a long, rich tradition of machine learning techniques. A com-
mon theme is the desire to take other people’s ideas and embed them
inside our framework. Growing character complexity demands that we
find a way of embedding the best of this tradition into characters in a way
that lets the character address more open domains. Subtle, complex, and
successful modelling technologies exist and nowhere more than here do
we seek to reuse and repurpose other people’s work.

Previously this statistical modelling was kept away from the core of the
creature system. For example, previous installations required the statis-
tical recognition of gestures performed with the participant interface
[102]. This classification obviously had to happen in real time and the
results relayed to the other characters in the world. But the approach
there was to treat the recognition as an entirely separate process — en-
capsulated as a server of labelled gestures. This was by no means just an
engineering fact — it was an enforced conceptual reality of the system.
The variety of actions and the subtlety of the action selection was advanc-
ing beyond the perceptual intelligences that our creatures could sup-
port. As the development of (void*) progressed this decision made less
and less sense. What was needed was a closer coupling between behavio-
ral structures and gesture recognition models and processes. This lead
to the question: why can’t creatures do gesture recognition?

Throughout the development of this behavior system attention has
therefore been paid to embedding such modelling techniques into the
behavior system. Throughout there are other, clear inspirations taken



from other “limited domain” techniques. For example, we’ve seen shades
of temporal difference learning, speech recognition and gesture recogni-
tion throughout this thesis.

deliberative Al

Some of these choices were also made with reference to deliberative Al
There are three aspects from this style that are of interest here.

m explicitness. Deliberative approaches can possess a clarity of state-
ment lacking elsewhere. Formal logics or hybrids (for example,
[34]) when packaged well are readable by humans. We have tried to
share this clarity with the design of the action-tuple — a single state-
ment of “when this, do this, until this”. In deeply tangled trees of
behaviors we can lose sight of this simplicity, and, in previous work,
character authors have been driven to creating such impenetrable
forests of behaviors. However, with the constrained format of the
action-tuple, we have a formal mechanism for introducing new
hypotheses into the creature — a useful mechanism is absent from
arbitrary statements of formal logic. I hypothesize that this unex-
plored middle-ground between hard complex formal logic and amor-
phous low level behaviors will turn out to be fertile ground.

m temporal logic. The work of Pinhanez [69] (and Allen [2]) is an
approach to constructing action representations that know about
time and temporal relationships.We look to areas like temporal logic
to verify and reassure us of the representational power of the struc-
tures that we have built.

m computer music work. Several musical works also serve a similar
purpose — we seek to mimic their power but not to use them in their
original domains. We can see structures like augmented transition
networks in both the forward transition modelling extensions to the
behavior architecture and the graph based motor systems and pro-
grams. These are used to musical effect most notably by Cope [21].
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We also see shades of Desain and Honing’s statistical models of
rhythm induction [28] in our temporal models.

Finally, transcending categories (and section headings) are the sem-
inal works by Minsky on the relevance of music to artificial intelli-
gence and vice versa — [62,63] — his comments are topical and
relevant today, some 20 years later.

interactive music

In addition to the above artificial intelligence work there are other inter-
active music techniques that are of interest here. In particular, there are
two works that have consciously created music from embodied creatures
— Pete Rice’s Stretchable music [74] and Toshio Iwai’s music insects
[45]. Although both very compelling works, both lack the scope of a full
character metaphor — neither of the graphical creatures involved have
significant autonomy, internal state, perceptual abilities, or adaptation.
However, our goal could be seen as the retaining of which works’ trans-
parency after the inclusion of these aspects.

origins of music

There has be recent resurgence of interest in what might be described as
biomusicology — a field that seeks to give neurophysiological, psycholog-
ical and evolutionary perspectives to the origins and purposes of music
(for a review see [99]). What is music for? Why does every human culture
posses music? What meaning can be given to the proto-musical struc-
tures found in animals?

Music from characters is in a unique position with respect to this work —
work which looks at how music is grounded in emotion and behavior, mu-
sic’s communicative roles and a willingness to consider animal behavior
as containing some musical elements. In retrospect many of the “game
like” installations detailed in this thesis seem to target an “animal level
music”. Of all the work in this field one idea that stands out as particu-
larly relevant is that our human language competencies are in fact para-



sitic on our musical competencies. This justifies our study of the musical
applications of our ‘pre-verbal’ synthetic characters, and, should we wish
to create one day characters with language, characters with musical abil-
ities are a necessary step.

We might also look to this literature to support my claim that music and
movement share common competencies sufficient to merit a joint inves-
tigation [31]. Considerable anthropological evidence suggests that the
tendencies of Western culture to regard movement and music as sepa-
rate are recent and incorrect (e.g. the inseparable cultural role of dance
and music in aboriginal societies). Studies conducted with children —
who, for example, find it hard to sing without movement — supports this
work [86]. Finally, in a more computational vein, we have work like [29]
investigating the relationship between performance tendencies (here
physical motion is used as a model for understanding the timing of the
ends of pieces of music). Other work (e.g. [90]) goes further and seeks
to explain other aspects of performance in terms of the functioning of
the vestibular system, identifying such a connection as having generative
influence on the structure of written music. Finally we might turn to the
arguments presented in the gestural control community (most notably,
[57]) and run them in reverse to suggest a functional connection be-
tween gesture and music production.

In this light, future work using the ideas contained in this thesis may
complement biomusicology’s almost exclusively top-down approach (for
an exception see [92]).

previous work inside the group

The Synthetic Characters’ Group have completed several large-scale in-
stallations in recent years and a variety of smaller sketches — the most
relevant of these are discussed in detail throughout the text. The com-
plete list reads: (in chronological order) Swamped!, SIGGRAPH ‘98 [9];
(void *): a cast of characters, SIGGRAPH ‘99 [7]; sand:stone, 7Tth New
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York Digital Salon [95]; sheep |dog: trial by Eire, at the opening of Medi-
al.abEurope.

The lessons learnt from these installations, of which I contributed to all
but the first, run too deep in this work to be fully disentangled. One point
worth noting: the creatures in (void*) totalled some seven thousand
lines each, of a custom built language for describing characters. Despite
the fact that the characters appeared very similar each character descrip-
tion was significantly different. These files consist of an intimidating
number of numbers; character design often proceeded by changing these
numbers.

While it is hard to compare characters from different installations, and
the creatures from (void*) have not been reimplemented with the work
here, the size of the behavioral atoms (now action-tuples) suggests that
we can now make more complex characters with less work. While it is not
true that we have no more numbers — we have values, filter constants, a
free parameter in the action-selection mechanism, saliencies, etc. — we
have the twin abilities to quickly raise character scaffolding and to learn
what many of these more concrete numbers should be.

where this leaves us
We began with three problems of synthetic character design:
m our synthetic characters needed awareness of their own bodies.

m our synthetic characters were naive about time and the temporal
extent and location of actions. They were unable to represent or pre-
dict future states — fundamental to representing the passage of time.

m modelling, learning or adaptation were not well integrated into our
characters — neither conceptually or in the engineering.

To approach these issues I introduced a new behavior system for synthet-
ic characters; one with learning integrated into the core that has been
shown to be robust in publicly displayed installations. This system can in-
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corporate statistical models and can change complexity, in response to
it perceptions, at run-time.

Through the action-tuple structure, this modelling capability provides
sophisticated temporal relationships essential for the creation of musi-
cal structures. These models, which can learn from the action itself, pro-
vides an explicit representation of the temporal extent of actions. We can
also reuse these models as models for adaptable parameterized actions.

The organisation of percepts which are containers of these models, into
dynamically growing trees allows character authors to guide the creation
of new action-tuple hypotheses. The learning capabilities allows these hy-
potheses to be tested and the value to the creature, learnt.

For these structures, a new action-selection strategy was proposed that
exploits the information present in action-tuples to produce coherent
and relevant behavior.

A variety of new models and techniques for incorporating textbook mod-
els were presented that fit well into the framework. These extend the ca-
pabilities of the creatures. All of these models have been used to some
extent in the production of the installation work for this thesis.

A reuse of the action selection strategy to synthesize perceptual abilities
was suggested. This is particularly useful — it is important that the per-
ceptual abilities of our characters are well matched to the abilities of
their actions. What has not been discussed is an extension of the percep-
tual structures to allow a variable number of generic objects to be at-
tended to by the same percept tree at the same time. This has not been
discussed because it has not been required by the installations detailed
here. This remains work-in-progress, but I believe that the action-tuple
intermediate layer will play an ever more important role in representing
a dynamically changing number of persistent objects.

Several mechanisms for generating and using motivational state in char-
acters were discussed; some of which, including the expectation genera-
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tion and the emotional tag learning, are uniquely easy to incorporate this
framework; others provide a focus of attention for the action-selecting
capabilities — potentially allowing strong motivational or emotional state
to enable creatures to make decisions faster.

However, no unified approach to the modelling of emotion or the inte-
gration of the variety of ways of generating emotional content has been
given in this thesis. Finding such an approach is a topic for future work,
but it remains significant that we now possess an over-abundance of op-
tions and mechanisms for grounding emotional change in our characters
— the elements are clearly there for a principled approach to motivation
and emotion modelling.

Next we looked at the design of motor systems for synthetic characters —
since there is no reason to have a complex behavior system if it can never
be expressed by the characters.

We begin with an extension of some more traditional “blend-based” mo-
tor systems to solve some “simple shaping” problems — here we combine
the example blending capabilities of our motor system with the parame-
terized action modelling of the behavior system. By further exploiting
this modelling we demonstrated that we can use learning as an engineer-
ing tool (with the learning to look at things, page 116) — here to engi-
neer an ability to move the head to correctly attend to objects.

However, these blend based motor systems ultimately fall short. In par-
ticular they offer us no insight into the “complex shaping” problem, nor
do they offer a representation that is amenable to fine-level learning. To
g0 beyond this a new class of motor system was developed using directed
weighted graph structures. There we showed that there can be synthesis
of animation creation and gesture recognition paradigms fast enough to
support learning at run-time in our creatures. These graphs have the ad-
vantage that the dialogue with the behavior system can take place in
terms of problem solving.
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In this way, the behavior system is well shielded from the competencies
of the motor system. “Desired poses” may be statically computed key-
frames, small problems to solve, animations, complex motor programs or
involve entire subsystems. We can change radically the style of graphics
system (see ogymandias, page 181 or curve, page 196) and still main-
tain a behavior system that is capable of modelling and moulding the
body of the creature.

Although these graph structures take far greater risks with the anima-

tor’s source material, these graph structures also promote a new way of
designing characters — one where the animator remains far closer to the
development loop. Finally, not only does it becomes ecasier to enforce a
small (but common) class of physical constraints automatically, but also
when other constraints are seen to be violated there is something that

the animator can do to prevent it happening again.

This approach, when fully hybridised with blending capabilities, and tak-
en with the behavior system structures, points towards a day when the
question most frequently asked of our characters — “but can it learn an-
ything new?” — can be answered with a simple “yes.”

In the future we will explore these motor systems further — it is impera-
tive that they are incorporated into a large multi-person installation of
the size of (void *). We have yet to really explore the recognition or stor-
age capabilities of graph based motor systems. Here I expect this to have
applications in learning by imitation and the recognition and learning of
the meaning of body poses of other creatures. These are fundamental fea-
tures of social behavior between animals. Social behavior between syn-
thetic characters is now the next time scale frontier, and a rich area for
musical exploration.

Next we turned to concentrate on the musical instantiations of this work.
The overarching goal is to use the small structures and competencies as
the fundamental building blocks of organised sound. In discussing the

(void*) work, we showed the equivalence with the new structures, that
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one can start with larger pre-made musical segments within this frame-
work.

These installations are presented here to serve as a sketch of this future
interactive music paradigm — that of character based music. The goal re-
mains that of the introduction, how to create engaging, long term inter-
active music pieces. The reality is that the only things participants have
a tradition of complex long term relationships with are, in the broadest
sense, characters — they are our friends, our pets, and our stories. Char-
acters are particularly appropriate for this new medium.

To conclude, I have attacked all three of the problems we initial started
with. These are real, relevant problems; publicly shown works that people
have found interesting were created to explore these areas; and at the
end of the process, we find ourselves in a more interesting position — in-
tellectually, artistically and technologically.

The promise of the behavioral and motor techniques developed here far
exceeds what could be exhausted within the time frame of this thesis. So
we have failed to rise to the challenge posed by the behavior system and
the motor system for musical ends. However, it was an ambition for those
musical ends that drove the conceptual content of those systems. The fu-
ture therefore is exciting, and artifact-rich.
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(quaternions)

Quaternions have been shown to be mathematical objects that are good
at representing rotations. They do not suffer from the well known prob-
lems of Euler angles — problems that include “gimbal lock” from their
singularity, and strange interpolation behavior. Quaternions are better
discussed elsewhere and the world probably doesn’t need yet another in-
troduction to quaterions. But they are not well integrated into the liter-
ature or into engineering maths, so I'll introduce the notation for the
concepts discussed in this thesis here.

Of particular interest here is how we interpolate between orientations —
this forms the basis for almost all of our character animation capabili-
ties.

preliminaries

First some definitions:

q = {W’x’yﬂz}

For which we can define a norm, from an inner product:

“Unit quaternions” have unit norms:

1

4l

They can always be written as:
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With v a unit vector. Vectors can enter this representation as:

v—{0,v}

And, obviously, may or may not be represented by a “unit quaternion”.
Quaternion multiplication is defined:

o . . (9 .. (9
q,= COS(?)’Ylsm(j) = Wl"_’lsm(j)
4354192 = {wwo (V) 0,), wiby Twoby +0 A}
q-l ={w, -x, -V, -z} if q= {W,X,y, z}

) )

From this definition we can show that quaterions can rotate vectors us-
ing the following construction:

qO(

-1 -1
u=gqvq =q{0,viq

An operation count shows that this is computationally more efficient
that a 3x3 matrix representation.



interpolation

We can define a spherical linear interpolation (in the literature, slerp)
between two unit quaternions:

1o
slerp(q1, 45;0) = (9,9, ) 9,

This has all the properties that we’d like it to have — it is a smooth, con-
tinuous, well-defined, parameterization of a geodesic (here, a great cir-
cle) on the 3-sphere on which unit quaternions live.

The above representation is great for analysis, but bad for practical use.
Better is the extrinsic form:

gy x sin((1-0a)9) + g, X sin(0.0)
sin(¢)

slerp(q,, g,;00) = with ¢ = acos(q, - q,)

Using this definition of “slerp” we can built up a higher (third) order
spline interpolant. Both interpolants are used in the motor system dis-
cussed in this work.

distance metric

Finally, we can define a distance metric for use with quaternions. ¢ from
the discussion above is one posibility. Easier to handle is:

distance(q,, 9,) = 1-(q, - q,)

By minimising this metric we can compute:

a = arg min{distance(slerp((q,, ¢,;0), p)) }
o
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namely, what o takes this geodesic as close to quaternion p as possible.
By working through the mathematics, we find the answer:

p
)

We’ll find use for this, and the distance metric, in the task of engineering
and analysing BodyPose’s.
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(video contents)

To complement this printed document, a video figure is presented. It
contains:

(void*): a cast of characters. Post-SIGGRAPH video
showing characters, interaction & demonstration. Music
to video is one continuous piece ‘written’ by the interac-
tive score system — although it may not be connected to
the edited visuals.

sand:stone. Video from premier gallery installation in
the New York School of Visual Arts. Background music
by earlier version of music creatures.

Isle of man’s best friend. Video showing Duncan (the
dog) in action — here there is a training scenario, value
learning, simple shaping and limited speech learning is
demonstrated. Shown at the Game Developers Confer-
ence 2000.

Graph-based motor work. Demonstration of problem
solving within a graph based motor system. Duncan tries
to get his nose near the red marker using a graph
derived automatically from three hand crafted anima-
tions.

exchange:listen:exchange. Short video showing two
exchange creatures (left and right) in action, with a lis-
ten creature between. One continuous take.

It is my intention to make this material publically visable at the following
address: http:/www.media.mit.edu/~marcd/thesis/video.html
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