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Abstract. The paper presents an algorithm for an EM-based reinforcement-driven clustering. As shown here it is
applicable to the reinforcement learning setting with continuous state/discrete action space. E-step of the algorithm
computes the posterior given the data and the reinforcement. Although designed to discover intrinsic states, the
algorithm performs action selection without explicit state identification.

Learning algorithms are an important area of research in intelligent robotic systems. Intelligence requires
that the system be able to adapt to its environment. One particularly difficult aspect of adaptation is the
problem of selective attention and the ability of the system to generalize. Efficient generalization in the
space of observations leads to emergence of observation states and results in more efficient action selection
algorithms.

In this paper we present our work on an EM-based reinforcement learning algorithm which allows for
action selection in the presence of a hidden state. The algorithm provides a probabilistic framework that
unifies the state identification task with action selection.

The algorithm helps an agent learn a simple association task - given sensory data and a discrete set of
actions the agent needs to find a mapping from observations to actions so that the reward is maximized1. We
approach this problem via a set of latent variables. For the purposes of this paper we restrict our attention
to the case where the number of states is known. In the future we plan to estimate that from data as well.

1 Related work

A similar problem of reinforcement-driven clustering was addressed by Likas in [4]. The reinforcement learning
algorithm was combined with a neural network to improve vector quantization in the input space. In contrast,
this paper extends the Expectation-Maximization (EM) algorithm first introduced in [2].

The problem of action selection in the presence of a hidden state is developed in [5]. In our current
experiments we are not concerned with the reinforcement learning itself, but rather we present a useful
connection between an un-supervised EM algorithm and any sort of traditional state-based reinforcement
learning algorithm. However, we are planning to fully explore the reinforcement learning algorithms in our
future work. For these purposes [3] and [7] provide an overview of the field of reinforcement learning. An
application of multiple-model Q-learning and a POMDP model in computer vision for selective attention
was introduced by Darrell and Pentland in [1] which uses this model for gesture recognition.

2 EM for perceptual coding

State identification is necessary in many traditional reinforcement learning algorithms. In continuous per-
ceptual spaces there often exist task-dependent natural perceptual categories. This paper is concerned with
discovery of such perceptual categories while allowing the agent to perform the action selection in the pres-
ence of unknown perceptual states. Without the task context such categories can be efficiently found in a
framework of density estimation by an Expectation Maximization algorithm with a mixture distribution.
We assume that observations come from a mixture, each tied to a state s, p(x|s), weighted by corresponding
prior state probabilities, p(s):
1 We want to use this algorithm as a part of a learning system of a synthetic creature.



p(x) =
∑

s

p(s)p(x|s) (1)

The EM algorithm lets us estimate the parameters of the mixture iteratively guaranteeing the improve-
ment in the likelihood at each step until it converges to a local maximum. In order to do so, it requires
computing the posterior distribution p(s|x) over the hidden variables s (E-step), and then maximizing the
expected error with respect to this distribution (M-step).

Getting every new observation xn we can now compute our best belief about the actual state which
generated this observation, p(s|xn), a “belief state”. Once the state is determined, we can proceed with any
traditional reinforcement learning algorithm to learn action selection.

However, the main drawback of this scheme is that the received reward in no way influences the class
membership function p(s|x). The clustering might as well be performed independently from the action
selection estimation procedure. The following section is devoted to an algorithm that fixes this problem and
takes into account the information that comes in the form of the reinforcement signal from the environment.
A simple intuition here is that we want to form the state space that is found significant with respect to the
reinforcement.

3 Q-table and action sampling

The algorithm presented here is largely based on a common interpretation of the Q-table (a table containing
an expected reward for each state-action pair) that gives rise to the conditional density function. This allows
for presenting exploration and exploitation of the action selection in the framework as sampling from this
pdf. In this interpretation, the conditional pdf is computed from the Q-function directly, interpreting each
value of the state-action pair as a multinomial count of the reward, from which, for fixed state, s, we can
get a Maximum Likelihood estimate of the probability distribution over the set of discrete actions p(a|s):

p(ai|s) =
Q(s, ai)∑

j

Q(s, aj)
(2)

Alternatively, a softmax function can be applied to the Q-table, which can be varied in accordance with
the average reward:

p(ai|s) =
ef(E[r])Q(s,ai)∑

j

ef(E[r])Q(s,aj)
(3)

This interpretation has the advantage of representing the action selection policy as sampling from this
distribution. For instance, ε-greedy policy, [7], is implemented as sampling from the distribution:

p(ai|s) =

{
1− ε if ai = arg max

j
(Q(s, aj)),

ε/(|a| − 1) otherwise.
(4)

Figure 1a) shows the probability distributions of interest. In the center of it is the table, representing the
conditional pdf, p(a|s)(white color represents a value close to 1, black - close to 0). In the figure, rows of p(a|s)
correspond to states and columns - to actions. Summation of this table along its columns pre-multiplied with
p(s|xn) corresponds to marginalization of p(a, s|xn) over s (see eqn. 5). It is easy to see independencies in this
structure, showing it as a graphical model (figure 1b)), most important being that action, a, is conditionally
independent of observation, x, given the state, s, which will be used in the subsequent sections.
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Fig. 1.: a) probability distributions of interest in the reinforcement-driven EM. The white color represents a
value close to 1, black - close to 0; b) its representation as a graphical model.

4 Reward propagation

Having computed p(a|s) from the Q-table, for each new observation, xn, we can find the probability distri-
bution over actions, p(a|xn), by a brute force approach - first computing the joint pdf, p(xn, s, a), and then
marginalizing out the state, s. The resulting joint pdf, p(xn, a), is easily converted into the conditional pdf.

A better alternative is to utilize factorizations in the joint pdf, p(x, s, a). The corresponding simple
graphical model is shown in figure 1b). Each new observation, xn, lets us compute p(a|xn) via p(a|s). After
receiving the reward and updating p(a|s), the effect of the reward can be propagated back to the node x to
compute and update p(x).

Below we detail the steps of the algorithm.

4.1 Action selection - computing p(a|xn)

The goal of the action selection is given an observation xn to choose an optimal action a according to
a probability distribution p(a|xn). When the mapping xn �→ si is known, the action selection is done by
sampling p(a|si). However in the case of an on-line EM action selection is typically more difficult because
the state is hidden and is being constantly re-estimated. The distribution p(a|xn) that is sampled to select
an action in this case is not the same as p(a|si), but is computed by marginalizing p(a, s|xn) as follows:

p(a|xn) =
∑
s

p(a, s|xn)

=
∑
s

p(a|s, xn)p(s|xn)

=
∑
s

p(a|s)p(s|xn)
(5)

The first factor of the resulting equation is the conditional pdf computed from the Q-function, the second
- the posterior probability distribution computed in the E-step of the EM for the new piece of data, xn. To
select an action a we sample the resulting density, p(a|xn), according to a chosen sampling strategy as shown
in section 3.

4.2 Parameter update - computing p(s|xn, an)

After the action is taken, the reward is received and the Q-table is updated, we can compute an improved
estimate of the posterior to replace the posterior p(s|xn) to take into account the evaluation of the action
selection. The intuition is that if no reward is received, it is not considered a new evidence and the posterior
should not change, while with an updated p(a|s), the posterior should take into account that attributing
xn to the state which produced the reward was beneficial. In other words, in the M-step of EM we replace
p(s|xn) with p(s|xn, an), which is propagated back through the Q-table as follows (reversing the arrows in
1b)):



p(s|xn, an) =
p(s, an|xn)
p(an|xn)

=
p(an|s, xn)p(s|xn)

p(an|xn)

=
p(an|s)p(s|xn)

p(an|xn)

(6)

The improved posterior, p(s|xn, an), is readily computed from the data which is already available - the
first factor in the numerator is a conditional pdf computed from the updated Q-table, while the second one
is the old posterior.

4.3 Summary of the algorithm

1. Initialize
Guess initial parameters of the distribution p(x) and iterate the following Expectation and Maximization
steps; For each new data point:

2. E-step

(a) compute p(s|xn) using the Bayes rule and the current parameters of the model;
(b) convert Q-table to p(a|s);
(c) compute p(a|xn), as given in eqn. (5);
(d) select an action according to p(a|xn), collect reward and update the Q-table;
(e) convert Q-table to p(a|s);
(f) compute p(s|xn, an) as given by eqn. (6);

3. M-step
Update the model parameters to maximize the expected log likelihood p(xn, s) with respect to the
distribution p(s|xn, an).

5 Experimental results

In this section we show results of the algorithm in two settings. In the first, the input space is modeled by
a mixture of Gaussians. The two sets of results are shown on synthetic data and the well-known IRIS data
set. In the second setting observations are modeled by a mixture of Hidden Markov Models.

We compare the proposed algorithm with an unguided clustering performed by EM algorithm with no
reinforcement feedback. It is not completely fair to compare performances of the two algorithms, however,
it is clear that performance of the unguided EM should provide a lower bound for the performance of the
proposed extension. In all comparisons against EM algorithm parameter estimation started from identical
initial conditions for both models.

In our current experiments we only attempt to learn direct associative relationship between observations
and actions. This implies that there is no need to estimate state dynamics, since the probability of being in
a particular state is independent of the previous state. With this in mind we simplify the estimation of the
Q-table as follows:

Q(s, a)← γQ(s, a) + δ(a, an)p(s|xn)r (7)

with 0.8 < γ < 0.98. This effectively distributes the reward for taking the action an among states in
proportion with their posterior, p(s|xn).



5.1 Gaussian mixture model

The first set of experiments is run on synthetic data generated from a Gaussian mixture probability distri-
bution. The experiment is set up as follows:

1. randomly initialize K normal distributions for the data source;
2. sample this mixture randomly switching between these K Gaussians to generate the complete data set;
3. reinforce the action selection such that if the xn came from distribution k, selecting the action ak is

rewarded. This results in a classification scheme performance of which we can evaluate.
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Fig. 2.: Performance of the algorithm compared to the case where the EM algorithm was used for perceptual
coding with no feedback. a) 5-states/5-action setup with µi ∼ N (0, 2), σ2

i ∈ [0.5, 1]. b) 3-states/3-action
setup with µi ∼ N (0, 1), σ2

i ∈ [0.5, 1].

The figure 2 shows comparison of the algorithm presented here with a vanilla EM. Both algorithms
perform fairly well when the means of the generating sources are well separated (figure 2a). In this case
the alignment of EM with clusters in the data is more likely. In the second case, where the data clusters
significantly overlap, such an alignment is less likely, and this is the more important case that our algorithm
handles well (figure 2b). Our algorithm typically converges to the true source distributions (figure 3a).

An unguided EM does not typically result in a good estimate of the Q-table, while our algorithm results
in the Q-table, which is almost deterministic (figure 3b).

3 states 4 states 5 states

RLEM 91.67% 98% 97.47%
EM 67.33% 78.27% 77.07%

Table 1.: Classification accuracy results for the EM and RLEM algorithm on the IRIS data.

Further comparisons can be made on one of the standard data sets. We chose the well known IRIS data
set. It consists of 150 4-dimensional samples. The measurements come from three classes of plants. As in the
previous experiment with synthetic data the class information is only used to indicate that the algorithm
made the right guess assigning a label to a particular observation as described in the earlier sections. Plots
in figure 4 show the performance of the algorithm averaged over 10 runs while using 3, 4 and 5 states
respectively. The table 1 shows the classification accuracy of RLEM and the EM with no feedback.

5.2 Mixture of HMMs

In the final set of experiments we address the problem of reinforcement-driven classification of the speech
utterances. The goal is to learn to respond to simple voice commands used for dog training. We need to
learn how to differentiate between these commands having no initial labeling such that the agent’s actions
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Fig. 3.: a) Typical result of the training of the proposed algorithm (top) and the usual EM (bottom). It
can be seen that EM did not arrive to the correct cluster assignment, while integration of the reinforcement
signal into parameter estimation resulted in the correct assignment. b) First column - Q-table, p(a|s) and
the joint pdf p(a, s) for the RLEM. Second column - the same for EM. The confusion of EM about true
clusters is reflected in the Q-table.
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Fig. 4.: Performance of the algorithm in the classification task on the IRIS data. a) Performance with 3
Gaussian components. b) 4 Gaussian components. c) 5 Gaussian components.
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Fig. 5.: a)-d) Mel-scale filter bank responses of utterances (a) ’roll over’, (b) ’lie down’, (c) ’sit’ and (d) ’heel’.
e) Classification accuracy of the reinforcement-driven clustering and a mixture estimated by EM with no
feedback.



yield maximum reward. For the purposes of this paper we limit the task to simply identifying the action we
are going to take and use the action selection error as a measure of classification accuracy.

The input to the model is a sequence of spectral coefficients of a mel-scale filter bank. Figures 5a)-d) show
examples of the spectrum of utterances used in the experiments. The data set consisting of 10 examples of
each utterance is projected onto the sub-space of three largest eigenvectors of a large sample of unconstrained
speech. Each component of a mixture distribution is modeled by an HMM ([6]).

In the training of HMM mixture parameters we weigh each data point with the posterior p(s|xn, an),
similarly to the case of the Gaussian mixture. For instance, new values of the transition probability matrix,
A, are essentially averaged with respect to the posteriors:

Aij =

∑
n

p(s|xn, an)Ãn
ij∑

n
p(s|xn, an)

(8)

where Ãn
ij is a contribution to Aij due to the sequence xn and is estimated in the usual manner:

Ãn
ij =

∑T n

t=1 p(qt = i, qt−1 = j|xn, λ)∑T n

t=1 p(qt = i|xn, λ)
(9)

The rest of the parameters of each HMM is estimated in a similar fashion. Figure 5e) shows the classi-
fication accuracy of the algorithm compared to having no reinforcement signal affect parameter estimation.
It shows a 10% increase in accuracy due to the feedback from action selection.

6 Discussion

The algorithm presented in this paper builds a useful connection between reinforcement learning algorithms
utilizing a Q-function and an EM-based state estimator. The advantage afforded by the algorithm comes
from being able to compute an estimate of the partitioning function p(s|xn) with additional evidence of an
assignment of each xn to the correct class given by the reinforcement signal.

One thing to note is that if we can iterate through the data set infintely many times and at each iteration
have access to the reinforcement, then it can be shown that the exact partitioning can be determined in only
K − 1 iterations. Of course, such an estimation is impossible on-line since only partial information about
correct labeling will be available (we can only guess a label for each data point once), while the algorithm
presented here will have no problems.

Another concern is that in the context of the current set of experiments, another approach is possible -
since the reward is immediate and serves as an indication of the correct class membership of each data point,
xn, we can use this information deterministically. That is, we can mark the input data which we assigned
correctly and never change their membership afterwards. This technique is reasonable when immediate re-
ward is available, however, with delayed reward, the problem of temporal credit assignment arises preventing
us from using it in such a straightforward manner. In order for the algorithm to remain general we need to
compute the component density estimates probabilistically, via p(a|s).

7 Future work

In our future work we plan to automatically select the number of components based on the information
content of the Q-table.

Another direction is to explore state transitions to perform the full reinforcement learning task, comparing
it to the full POMDP approach.
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