
Behavior-Friendly Graphics

Kenneth B. Russell and Bruce M. Blumberg
The Media Lab, MIT, 20 Ames Street, Cambridge, MA 02139

fkbrussel, bruceg@media.mit.edu

Abstract
Interactive autonomousand directable characters require

certain architectural support such as a motor system which
moves the character based on decisions made by the be-
havior system. While previous work has focused on these
higher-level systems, we focus on the infrastructure provided
by the graphics system. We describe how a graphics system
designed with synthetic characters in mind can be behavior-
friendly, simplifying motor and behavior system construc-
tion and making new characters easier to create. The sys-
tem described in this paper was the underlying support for
“Swamped!”, an interactive 3-D cartoon demonstrated in
the Enhanced Realities section of SIGGRAPH 98 [6, 8]. We
describe how our design and implementation allowed us to
achieve real-time performance in this Java application.

1 Introduction and Motivation

Most real-time interactive animated character systems [4, 10]
sport a three-tier architecture: the behavior system, respon-
sible for action selection; the motor system, responsible for
turning high-level commands from the behavior system into
motion of the character; and the graphics system, responsible
for rendering and managing the character’s geometry.

Previous work in the synthetic character domain has fo-
cused largely on the behavior and motor systems. Our group
recently moved to Java from a C++-based environment. Be-
cause of a lack of portable, high performance 3-D graphics
libraries for Java at the time, we needed to develop a graph-
ics layer that would shield the motor and behavior systems
from the specifics of the underlying graphics system (in our
case Cosmo3D and Performer) and deliver the highest per-
formance possible, since our experience with Java suggested
that a naive implementation would not take full advantage of
the performance of the underlying graphics system. We did
not use Java3D at the time because it was still under devel-
opment and not available on the SGI platform; however, the
lessons are equally applicable to an implementation based on
Java3D, or indeed any graphics library. As we revisited how
motor and behavior systems typically use a graphics system,
we made several useful discoveries about what functionality
is necessary, how the graphics system can simplify behav-
ior system construction, and how to achieve real-time 3-D

Figure 1. A scene from Swamped!, in which the chicken
has just lured the raccoon onto the bullseye with a fake egg
obtained from the Acme truck. See also the color plates.

graphics performance within Java.
A synthetic character system has certain domain-specific

characteristics which suggest design decisions for the graph-
ics system:

� Abstraction of resources. As demonstrated by Blum-
berg and others [4, 11], motor systems typically use
abstractions such as articulated variables (avars) or de-
grees of freedom (DOFs) to modify underlying graph-
ics resources such as transforms. More generally,
DOFs may need to handle joints, inverse kinematics,
and meshes. The desire to make very different types of
graphics resources appear the same, and to handle mul-
tiple implementations of the motor system with min-
imal reimplementation, suggest the abstraction level
should be moved into the graphics system rather than
remaining in the motor system.

� Object-object interaction. The system must support
inter-character interaction, primarily collision detec-
tion and response and grabbing of one character by
another. Typically, such interaction requires comput-
ing local-to-world transforms for kinematic chains. As
a result, an efficient joint-link model is needed.

� Limited scene graph access. As a result of using



abstractions such as avars or DOFs, only a few hooks
are needed into the underlying scene graph. More
generally, the scene graph is only accessed in certain
well-defined and limited ways once it is constructed.

� Unidirectional data flow. A character’s motion comes
either from the character itself (using either procedural
or artist-animated approaches) or from the world (the
application-side object which manages inter-character
interaction such as collision detection). Even in
the case of collisions, characters often respond in
character-specific ways. Thus, decisions of how a char-
acter moves are almost always made above the graph-
ics layer. This implies that data flows unidirectionally
from the application down to the graphics library at run
time.

� Cost of communication. Touching the scene graph
is potentially expensive for many reasons: the scene
graph may perform internal updates when writes oc-
cur, the native code interface may be slow, and the
scene graph may be running in another process or on
another machine. The fundamental assumption is that
the underlying scene graph API is native (written in
C++) and/or running in a separate process; either way
there is a cost to crossing that boundary.

� Portability and configurability. The graphics sys-
tem must target multiple platforms and scene graph
implementations. It should take advantage of multiple
processors or computers if available, and work equally
well if running as a library or in a separate process.
The distinction should be hidden from the motor and
behavior systems.

� Speed. The graphics system must be fast. A charac-
ter must not be constrained to six frames per second
(FPS) performance if it requires thirty to express its
personality.

These observations suggest the use of a behavior-friendly
graphics layer that sits between the motor system and the na-
tive graphics system to implement much of this functionality
and to take advantage of characteristics such as unidirectional
data flow to increase performance.

The structure of the rest of the paper is as follows. Sec-
tion 2 discusses related work and the specific contributions
of this paper. Section 3 defines our terminology and de-
scribes avars, DOFs, and the joint-link model. Section 4
describes the fundamental functionality the graphics system
must provide and how our system implements it. Section 5
discusses the issue of state management, which is crucial to
high performance. Section 6 describes our application and
its performance.

As a brief introduction to the discussion below, a char-
acter’s body in our system is ultimately represented in the
underlying graphics library as a scene graph composed of
implementation-specific nodes such as transforms, shapes,
and materials. We use standard modeling packages such as
3D Studio Max 2 to model our characters and export the ge-
ometry as VRML 2 files. At load time these files are read and
the underlying scene graph is constructed. In addition, the
graphics layer instantiates the objects that the higher layers of
the system (e.g., the motor and behavior systems) will need
in order to modify the underlying geometry at run time. The
most important of these objects are described below.

2 Related Work

Architectures of virtual reality systems are most closely re-
lated to this work. The early work of Zeltzer et al. [21]
describes the integration into an interactive framework, and
application of, modules controlling, for example, user input,
inverse kinematics, and dynamics. Appino et al. [1] run such
modules on independent computers and use asynchronous
communication to avoid round-trip network delays. Shaw et
al. [15] decouple the application similarly, and in addition al-
low rendering of the scene independently of the computation
of the underlying simulation. Later work addresses the issue
of reducing lag in such multiprocessor situations. Wloka [20]
describes a model for estimating lag and a “just-in-time” syn-
chronization approach to minimize it by scheduling processes
at the proper times. Jacobs et al. [7] perform just-in-time
data acquisition at the appropriate moment in the computa-
tion loop to minimize end-to-end lag, and also extrapolate
tracking information from their input devices.

The Menv system described by Reeves et al. [11] breaks
up a modeling and animation system into a set of tools which
run in separate processes and communicate via shared mem-
ory. While interactivity is important in this application, this
system focuses on enabling the artist to create new animations
for characters rather than on generating real-time output.

In the domain of interactive animated characters, Per-
lin et al. [10] consider the distribution of characters across
both local- and wide-area networks. They run characters’
behavior engines on separate computers, rendering from a
dedicated machine. Russell et al. [12] applied a similar dis-
tributed computation scheme to Blumberg’s behavior system
architecture.

The focus of this work differs from the above in several
ways. Much of the virtual reality work focuses on the ne-
cessity of increasing throughput and decreasing lag for the
purpose of making a head- or hand-tracking system more re-
sponsive. Our application is much more forgiving of lag, as
the user interacts through high-level gestures [8], and we use
a projection display for output. Many of the VR applications
described in the above papers do not deal with hierarchically



structured objects such as characters with limbs. However,
the paradigm we describe of separating the application (such
as physical simulation) from the graphics system is present in
most of these systems, usually out of necessity; most of these
VR systems are implemented in heterogeneous environments
of networked single-CPU computers. We go one step further
and specifically describe how unidirectional data flow may be
attained between our application and graphics subsystem and
why this is important for applying parallelism and increasing
performance.

Menv addresses many of the same issues as this work
(grabbing, for example) and also describes an architecture
for implementing an authoring tool for computer animation.
This work focuses instead on the graphics support required
to implement animated characters with behavior; a tool like
Menv might be used to author individual animation segments
for characters in a system such as ours.

While earlier work in the interactive character domain
has considered the problem of distributing computation and
increasing throughput, this work has three specific goals not
addressed by these earlier works: to describe the graphics-
level support needed by a character with behavior, to show
how implementing this functionality in the graphics layer
rather than the motor or behavior systems simplifies behavior
system construction, and to show how this functionality can
be implemented for good performance on both single- and
multi-processor systems, providing real-time (30 FPS) per-
formance in a Java application performing 3D graphics in a
multi-processor configuration.

3 Avars, DOFs and the Joint-Link Model

We borrow from Reeves et al. [11] the term articulated
variable, or avar, to indicate the abstraction of a graphics re-
source. Avars can map directly to entities in the scene graph:
for example, a Transform node could have rotation, trans-
lation, and scale avars created for it, depending on which
fields of the transform the character’s animations are actually
modifying. Avars can also map to more abstract entities like
poses of a deforming mesh. Each avar caches the value of its
underlying resource to avoid performing a scene graph call
when its value is queried. For this reason the uniqueness of
avars is critical, and each node in the scene graph is responsi-
ble for creating avars for its fields. A set call on an avar sets
only the cache, allowing the motor system to perform multiple
sets during its update without sending redundant informa-
tion to the graphics system. Get calls return the cached
value without accessing the scene graph. A sync method
initializes the avar’s value from the scene graph state, and
because all motion is generated by the character or the world,
needs to be called only at the beginning of time. Changes
are sent down via a commit method, which is potentially
time consuming and is therefore done only once per frame,

at the end of the character’s behavior update. As all run time
interaction with the scene graph is mediated through avars,
it is crucial for performance reasons that the application not
sidestep the avar mechanism (Section 5).

A degree of freedom, or DOF, is the motor system’s in-
terface to an avar, and adds a locking mechanism necessary
for the motor system to arbitrate control of joints among con-
flicting motor skills. Our motor system is patterned after that
described by Blumberg [4]. Since different implementations
of the motor system might have different mechanisms for
dealing with conflicting motor skills, the locking mechanism
was left in the motor system, but the basic abstraction of
the graphics resources was moved into the graphics system’s
avars.

The joint-link model organizes all of the avars for a charac-
ter’s geometric model into a hierarchy, to provide information
about its current configuration. The joint-link model can be
queried to obtain a world-to-local or local-to-world transform
for any joint in the character. While this information is avail-
able in the scene graph’s structure, using the avars’ caches
avoids scene graph calls when the joint-linkmodel is queried.
Using the joint-link model, grabbing functionality can be im-
plemented entirely in the application, rather than requiring
modifications of the scene graph’s structure (Section 4.3).

4 Core Functionality

4.1 Kinematic Animation

A graphics system for synthetic characters must first and fore-
most support forward kinematic animation. Since most scene
graph APIs support hierarchical transforms, the implementa-
tion of kinematic animation in the graphics system requires
only the creation of avars for joints which were animated by
the artist beforehand. We deduce which joints are in use by
examining the content of VRML 2 files which specify the
character’s motion, allowing us to export animations from
off-the-shelf packages directly into our system.

An artist-generated animation comes into our system as
a series of keyframes specifying the orientation of each joint.
As the animation plays, the two keyframes closest to the
current time are determined, and an Interpolator object
computes the joint’s state, typically using spherical linear
interpolation [18].

4.2 Mesh Animation

A mesh animation is a set of poses. Each specifies the vertex
positions for a piece of geometry and has an associated alpha
value, typically between 0.0 and 1.0. This mechanism can
be used to perform facial animation as described by Perlin
[10]: for example, “0.7 happy, 0.3 sad”. It can also be used
to animate deforming meshes through longer sequences such
as a walk cycle; in this case each alpha value corresponds to
a keyframe in the animation.



Rather than expose the vertices of the geometrical object
to Java, we created a MeshAnim class which allows the Java
application to set per-keyframe alpha values. Vertex positions
are interpolated in C++ code, drastically reducing the amount
of data sent from the application to the native graphics library.
A MeshAnim might contain keyframes for several underly-
ing pieces of deforming geometry (for example, the body
and feet of a chicken; see Section 6), and further, contain
several animations for all of these geometries (for example,
walk, hop, and fly.) Each alpha value corresponds to a pose
of all the underlying deforming geometries; note that we re-
quire that all animations loaded into a MeshAnim animate
the same set of geometries. The alpha values for all of the an-
imations are concatenated linearly, so theMeshAnim’s value
is an array of floating point numbers. A MeshAnimAvar
provides a cache for this array.

In order to make mesh animations appear the same to
the motor system as kinematic animations, we created a
MeshAnimInterpolatorwhich keeps track of the range
of alpha values in the underlying MeshAnim corresponding
to a particular animation. When the interpolator’s value is set
to a value between 0.0 and 1.0, it determines the two adjacent
keyframes to the current position in the animation and sets
their alpha values to blend between the two. We currently
interpolate linearly between adjacent keyframes for mesh an-
imations, although more sophisticated interpolation schemes
could be used to provide better results.

4.3 Grabbing

Grabbing conceptually enforces a constraint: one character
grabs another, attaching the grabbed character to the grabber’s
end effector. In our system, grabbing is implemented using
the joint-link model (Section 3), which provides the local-to-
world transform for the end effector. This is then composed
with the grabbed character’s current desired orientation and
an optional offset transform to determine its new position
each frame.

A similar result could be obtained by reparenting the ge-
ometry of the grabbed character in the scene graph, which
would require less per-frame computation. This approach
would, however, expose the scene graph structure to the Java
application, reducing portability. In addition, it would re-
quire that the geometric structure of the character correspond
directly to the hierarchy in the scene graph. This correspon-
dence does not hold for characters animated entirely with
MeshAnims, because one piece of geometry (the “skin”)
corresponds to several pieces of rigid geometry connected by
transforms in a kinematically animated character. We allow
MeshAnim-animated characters to grab others by animating
a set of transforms corresponding to the character’s hierarchy
simultaneously with the deforming mesh. These transforms
contain no geometry, however.

ALIVE [3] implemented grabbing as a motor skill. Push-
ing this functionality down into the graphics system makes
creation of new characters simpler because the default grab-
bing behavior “does the right thing” with no additional imple-
mentation work. Both grabber and grabbee are notified that
a grab has begun or ended and can make behavior-level deci-
sions on this information, so customization, such as playing
a squirm animation upon being grabbed, is also possible.

4.4 Collision Detection and Response

Rather than perform full polygon-polygon collision detection,
we chose to use simplified bounding volumes. Our system
currently supports spheres and oriented bounding boxes that
can either be specified by the artist or computed automat-
ically by the graphics system. The bounding volumes are
updated by the application rather than the native graphics
layer to maintain unidirectional data flow. Collision response
can be turned on and off on a per-character basis, and we
support VRML-style “proximity sensors” which are collid-
able objects that do not induce a collision response in the
character.

When a collision is detected between two characters, the
behavior system of each collided character is notified. Char-
acters can thereby react to collisions in more sophisticated
ways than following the simple “no interpenetration” rule
enforced by the graphics system. For example, the houses in
our system wiggle when they are collided against to indicate
that they are live characters with which one can interact.

Support for collision detection in the graphics system,
combined with a link to the behavior system, vastly sim-
plifies behavior system construction. ALIVE, for example,
required behaviors to be added to each character for proximity
detection and collision response.

5 Achieving High Performance

5.1 Smart State Management

As mentioned in Section 1,we make the fundamental assump-
tion that accessing the scene graph is an expensive operation,
for writes as well as for reads. The application therefore
needs to be clever about where it stores its state to minimize
calls down into the native graphics layer.

The avar mechanism provides caches for all values being
read or written in the scene graph below, with the following
two results: first, redundant writes to a particular avar do
not cause redundant communication with the native graph-
ics layer, since avars are written once per frame when their
commitmethod is called. Second, and more importantly, all
“get” calls to the scene graph are avoided at run time. Gets
are especially expensive because they require the application
and native graphics layer to synchronize. When the native
graphics layer is embedded in the same process as the appli-
cation, as when it is used as a library, this synchronization is



Figure 2. System architecture, indicating links across which
parallel processing can occur.

irrelevant. However, when the native graphics layer is run in
parallel, as on a multiprocessor or multi-computer configura-
tion, synchronization is disastrous to performance. To make
the caches work properly, it is crucial that the application not
sidestep the avar mechanism and deal with the scene graph
directly.

5.2 Parallelism Support

On a uniprocessor machine a serial implementation of the
native graphics layer is most efficient. However, running the
native graphics layer in parallel to the application can provide
a significant speed improvement when another processor or
computer is available. Unidirectional data flow at run time is
the primary property of the system which makes it amenable
to parallelization. This property came about because of the
nature of the graphics system’s design; for example, complex
scene graph reorganization and geometry creation at run time
were prohibited. While it may seem that the constraints
imposed by this design were too restrictive, in practice we
found that the system handled all of the operations we needed
to build our characters, and the speed improvements afforded
by a parallel implementation more than made up for the initial
adjustment to our interface design from that of a more general
scene graph API.

Our parallelization approach partitions the program into
two distinct pieces: the application (written in Java), and the
graphics (written in C++). The strong distinction between the
two is indicated in Figure 2. The application and graphics

class BiDirPipe f
public:

virtual bool read(void *dest, int size) = 0;
virtual bool write(void *dest, int size) = 0;
virtual bool poll() = 0;
virtual void flush() = 0;
virtual void lock() = 0;
virtual void unlock() = 0;

g;

Figure 3. BiDirPipe base class.

programs run either in separate processes on the same com-
puter or on two different computers connected by a network.
In both configurations all of the communication between Java
and the graphics program occurs via a small native class called
a BiDirPipe (Figure 3), which is implemented either with
shared memory [17] or a socket [16].

The simple protocol used to communicate between the
Java application and the graphics process is similar to that in
a Remote Procedure Call [16] mechanism; see Appendix A
for details. All graphics API methods returning void, most
significantly rendering, are done in parallel to the main ap-
plication. The structure is essentially a software pipeline for
the graphics system on top of that already implemented by
the scene graph API.

An early comparison between serial and parallel bindings
of Cosmo3D on a multiprocessor SGI Onyx2 showed an
increase from 19.2 FPS for the serial implementation to 31.25
FPS for the parallel, a 50% speed improvement. Note that
this did not require any changes to the underlying graphics
library, but merely changed the interface to it.

6 Results

We developed an interactive 3D cartoon, “Swamped!” [6, 8],
in which the protagonist, K.F. Chicken, thwarts the raccoon’s
attempts to steal his eggs; see Figure 1 and the color plates.
Swamped! was demonstrated as part of SIGGRAPH 98’s
Enhanced Realities exhibition. The chicken is a directable
character, controlled by the user via a plush toy instrumented
with sensors, while the raccoon is fully autonomous. The
raccoon is a standard hierarchical model with 43 rotational
joints and a face morphed among six primary facial expres-
sions using mesh animation; the model contains 8000 tri-
angles. The chicken is a combined hierarchical model and
deformable mesh; its body and feet are animated solely with
mesh animation, while its head and wings are rigid pieces
of geometry which have squash and stretch added with non-
uniform scales. The chicken has over 600 keyframes for all of
its body animations (for example, walk, jump, and run), and
contains 3500 triangles. Three houses animated with mesh
animation total roughly 6000 triangles.

Swamped! has been run on a two-processor 400 MHz
Pentium II PC using Cosmo3D, on an 8-processor Silicon
Graphics Onyx2 using Performer, and in a hybrid mode in
which the Java application runs on a PC, communicating over
100Mbps Ethernet to the Performer-based graphics system
running on the Onyx2. Because the Java just-in-time com-
piler is highly optimized on the PC, the latter is the fastest
configuration: the per-frame behavior and motor system up-
dates take roughly 20 ms, while the writing of the current
frame’s graphics commands to a socket takes 10 ms. We
achieve sustained 30 FPS performance because all render-
ing is done in parallel, no round-trip queries are made to the



graphics system by the Java application at run time, and the
underlying graphics library is fast enough to keep up with the
Java application. The limiting factor is the communication
overhead.

7 Conclusion

We have presented a graphics system which is “behavior-
friendly”, designed with synthetic characters in mind. We
have described the criteria which the graphics system must
meet, the structure which the synthetic character domain sug-
gests, and the advantages, such as unidirectional data flow,
that structure provides. We have discussed kinematic and
mesh animation, grabbing, and collision detection and re-
sponse in the context of our graphics system, and have shown
how moving higher-level concepts into the graphics layer
simplifies behavior system construction, making new char-
acters easier to design. Finally, we have shown that using
a parallel approach it is indeed possible to achieve real-time
3-D graphics performance in a non-trivial Java application.

8 Acknowledgments

We thank the rest of the Swamped! team: Michal Hlavac
(who also drew Figure 2), Christopher Kline, Michael P.
Johnson, Teresa Marrin, Bill Tomlinson, Andrew Wilson,
Song-Yee Yoon, and Marc Downie; our UROPs who helped
on this project as well as Swamped!: Jeremy Lueck, Dan
Stiehl, Zoe Teegarden, and Jed Wahl; and Dr. Joseph Paradiso
for the chicken’s sensor systems.

References

[1] P. A. Appino, J. B. Lewis, L. Koved, D. T. Ling, D. A.
Rabenhorst, and C. F. Codella. An architecture for
virtual worlds. Presence, 1(1):1–17, 1992.

[2] David Beazley. Simplified wrapper and interface gen-
erator. 1995. http://www.swig.org/.

[3] Bruce Blumberg. Old Tricks, New Dogs: Ethology
and Interactive Creatures. PhD thesis, Massachsetts
Institute of Technology, 1996.

[4] Bruce Blumberg and Tinsley Galeyan. Multi-level di-
rection of autonomous characters for real-time virtual
environments. In Computer Graphics Proceedings,
SIGGRAPH 95, pages 47–54. ACM, 1995.

[5] Jürgen Döllner and Klaus Hinrichs et al. Modeling
and animation machine/virtual rendering system. 1998.
http://wwwmath.uni-muenster.de/˜mam/.

[6] Bruce M. Blumberg et al. Swamped!: Using plush
toys to direct autonomous animated characters. In
SIGGRAPH 98 Conference Abstracts and Applications.
ACM, 1998.

[7] M. Jacobs, M. Livingston, and A. State. Managing
latency in complex augmented reality systems. In Pro-
ceedings, Symposium on Interactive 3D Graphics, 1997.

[8] M. P. Johnson, A. Wilson, B. Blumberg, C. Kline, and
A. Bobick. Sympathetic interfaces: Using a plush toy to
direct synthetic characters. In CHI 99, 1999. To appear.

[9] Sheng Liang. Java Native Interface: Program-
ming Guide and Reference. Addison-Wesley, 1998.
http://java.sun.com/products/jdk/
1.1/docs/guide/jni/.

[10] Ken Perlin and Athomas Goldberg. Improv: A sys-
tem for scripting interactive actors in virtual worlds.
In Computer Graphics Proceedings, SIGGRAPH 96,
pages 205–16. ACM, 1996.

[11] William T. Reeves, Eben F. Ostby, and Samuel J. Leffler.
The Menv modelling and animation environment. Jour-
nal of Visualization and Computer Animation, 1(1):33–
40, August 1990.

[12] K. Russell, B. Blumberg, A. Pentland, and P. Maes.
Distributed alive. In SIGGRAPH 96 Technical Sketches.
ACM, 1996.

[13] Kenneth B. Russell. An automatic C++ to Scheme in-
terface generator. 1995.
http://www.media.mit.edu/˜kbrussel/
Header2Scheme/.

[14] Kenneth B. Russell. A Scheme binding for Open Inven-
tor. 1995. http://www.media.mit.edu/
˜kbrussel/Ivy/.

[15] C. Shaw, M. Green, J. Liang, and Y. Sun. Decoupled
simulation in virtual reality with the mr toolkit. ACM
Transactions on Information Systems, 11(3):287–317,
July 1993.

[16] W. Richard Stevens. UNIX Network Programming,
chapter 4. Prentice Hall, 1990.

[17] W. Richard Stevens. Advanced Programming in the
UNIX Environment, chapter 14. Addison-Wesley, 1992.

[18] Alan Watt and Mark Watt. Advanced Animation and
Rendering Techniques, chapter 15. Addison-Wesley,
1992.

[19] Jeff White. A Java binding for Open Inventor. 1996.
http://www.igd.fhg.de/CP/kahlua/.

[20] Matthias Wloka. Lag in multiprocessor virtual reality.
Presence, 4(1):50–63, 1995.



void Java graphics Transform setTranslation(
jobject javaTransform,
jfloat x, jfloat y, jfloat z) f
Transform *xform =
ExtractCPlusPlusTransformFromJavaTransform(
javaTransform);

xform->setTranslation(x, y, z);
g

Figure 4. Serial mechanism for glue code, illustrating
the mapping of the setTranslation method of a
Transform class from Java to C++.

[21] D. Zeltzer, S. Pieper, and D. Sturman. An integrated
graphical simulation platform. In Graphics Interface
’89, pages 266–74, Toronto, Canada, 1989. Canadian
Inf. Process Soc.

A Interface Specifics

There are two ways to bind a native C++ library into an in-
terpreted language: a standard, serial method, and our new,
parallel method. This section compares the two and describes
the specifics of our parallel interface. We restrict our example
to Java and the Java Native Interface [9] for calling C++ code
from Java, although our method could be applied to any lan-
guage with a foreign function interface.

Methods in a Java class can be specified as “native”,
meaning the interpreter will call a C function rather than a
Java method. A C++ library can be bound into Java by creating
a Java-side wrapper class for each C++ class, which contains
native methods analogous to those in the C++ class. Each
of these native methods turns around and calls the method
on the underlying C++ object. Figure 4 illustrates the standard
mechanism for this Java to C++ mapping, which we use for our
uniprocessor graphics library binding. There are tools avail-
able to generate such glue code automatically [13, 2], and
all currently available 3D API bindings for interpreted lan-
guages (for example, Ivy [14], Kahlua [19], and MAM/VRS
[5]) follow this pattern.

To allow parallel processing of graphics calls, we ex-
plicitly split the C++ graphics layer into its own process,
and manage communication with the Java process with a
BiDirPipe (Figure 3). All Java calls to set methods
on graphics objects correspond to a write on this pipe. All
calls to get methods must write the request to the pipe,
flush it, and wait for the graphics process to respond. Asyn-
chronous writes from the graphics process back to Java are
not allowed in our protocol. Figure 5 illustrates the Java
side of this communications mechanism. In the graphics pro-
cess, a dispatcher reads the message ID and calls a function
which reads the rest of the message and calls the appropriate
method (setTranslation) on the C++ object. For clarity,
byte swapping macros are not included in this example, but
are required when passing elementary types such as ints and

typedef enum f
TRANSFORM SET TRANSLATION,
...

g GraphicsMessageId;

typedef struct f
// For example, ‘‘TRANSFORM SET TRANSLATION’’
int messageId;
// For the C++ object
void *nativePtr;
// New values for
// the transform’s translation
float x, y, z;

g MessageV3f;

void Java graphics Transform setTranslation(
jobject javaTransform,
jfloat x, jfloat y, jfloat z) f
BiDirPipe *pipe =
ExtractBiDirPipeFromJavaGraphicsObject(
javaTransform);

MessageV3f message;
message.messageId =
(int) TRANSFORM SET TRANSLATION;
message.nativePtr =
ExtractCPlusPlusTransformFromJavaTransform(
javaTransform);

message.x = x;
message.y = x;
message.z = x;
pipe->lock();
pipe->write(&message, sizeof(message));
pipe->unlock();

g

Figure 5. A complete example of the Java side of our parallel
processing glue code mechanism. All of the C++ code in the
setTranslation method is executed in another process,
in parallel to the Java code which called this native method.

floats between little-endian and big-endian architectures; see
Stevens [16] for details. Our convention, as in many RPC
implementations, is to send only big-endian data over the
pipe.

This parallel glue code structure requires a significant
amount of additional mechanism over the standard serial
structure. In addition, it is best suited for applications which
are cleanly divisible into modules which have unidirectional
data flow, and must be accompanied by Java-side caches to
avoid round trip calls to the remote process. Despite the extra
effort required to implement it, this new glue code structure
provides significant advantages over the serial version. The
ability to distribute the computation and the associated per-
formance increase is primary among these. Debugging of the
graphics process is made easier, since it is not embedded in
the Java process. In addition, graphics calls may be made
in multiple Java threads regardless of whether the underlying
C++ graphics library is thread-safe, since communication is
mediated and serialized by the BiDirPipe.


