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Abstract

Drawing from ideas in both traditional animation and modern philosophy, we present a methodology for designing
synthetic characters. The goal of our approach is to constructintentionalcharacters that are both compelling, in the
sense that people can empathize with them, and understandable, in that their actions can be seen as attempts to satisfy
their desires given their beliefs. We also present a simple, value-based framework that has the flexibility to implement
the subsystems necessary for the construction of intentional characters.

1 Introduction

One of the most promising intersections of entertainment
and AI research is in the creation of believablesynthetic
characters—simple but complete three-dimensional sit-
uated agents who can do and express the right things
in a particular situation or scenario. Examples of these
types of agents include non-player characters in com-
puter games, digital ‘extras’ in Hollywood movies, and
computer-based artificial pets. Often these characters do
not need to perform complex reasoning about the world
or build intricate plans to achieve difficult goals. Instead
they may effectively play out their roles by reacting to
internal and external influences in ways that are both pre-
dictable and consistent with the scenario for which they
were designed.

In the process of learning to build these types of char-
acters we have often found ourselves struggling with two
fundamental problems. First, what kinds of properties or
qualities have we, as observers, come to expect from a
believable character? Second, given these expectations,
what is the ‘right way’ to go about implementing them?

This paper presents an overview of the lessons we
have learned from our experience in building several
complex synthetic characters. We begin by discussing a
theory of how people go about understanding characters
and then identify some subsystems that we have found to
be important in building characters that are compelling
and easy to understand. Next, we overview several ap-
proaches to these subsystems and show how, by separat-
ing out the semantic differences of these approaches, we
can arrive at the basic activity of each. We then describe
a simple value-based framework we have developed for
character construction, showing how each subsystem can
be implemented with the four components of our frame-
work. Finally, we conclude with some results from our
experiments with this framework and suggest directions
for future exploration.

2 Expectations of a Synthetic
Character

To learn how to build believable characters we look back
upon the rich history of traditional character animation.
When looking at a character brought to life by a great
animator we know exactly what that character is think-
ing and feeling at every instant and, while we may not
know exactly what it is about to do, we can always call
upon our perception of its desires and beliefs to hazard a
guess. Even when our guess is wrong, the resulting be-
havior nearly always “makes sense”.

Classics likeThe Illusion of Life(Thomas 1981) ex-
plain the art of creating believable characters, which is
fundamentally the art of revealing a character’s inner
thoughts—its beliefs and desires—through motion,
sound, form, color and staging. But why do these tech-
niques work? The American philosopher Daniel Den-
nett believes that they work because, in order to under-
stand and predict the behavior of the animate objects
around them, people apply what he calls theintentional
stance(1987). The intentional stance, he argues, involves
treating these objects as “‘rational agents” whose actions
are those they deem most likely to further their ‘desires’
given their ‘beliefs’” (1998).

Desires are the key to understanding and identifying
with a character. When we see the wolf look “longingly”
at Little Red Riding Hood, perhaps licking his lips, we
conclude that the wolf is hungry and wants to eat our
heroine. How do we arrive at this conclusion? By ap-
plying the intentional stance, of course! Why else would
he be acting hungry unless hewashungry?

Beliefs are what turn desires into actions, reflecting
influences such as perceptual input (“If I see a stream,
then I believe I will find water there”), emotional input
(“Because I am afraid of that person, I will run away
from him”), and learning (“The last time I was in this
field I saw a snake, therefore I will avoid the field to-
day”). We understand the actions of characters by infer-
ring how their beliefs influence the ways they attempt to
satisfy their desires.



How can we apply both the insights of skilled anima-
tors and knowledge of the intentional stance to build a
synthetic character that people find compellingand un-
derstandable? From the standpoint of engineering, we
can break these expectations down into a short list of
functional subsystems:

� Motivational drives

� Emotions

� Perception

� Action selection

2.1 Motivational Drives

For a character to appear properly motivated it must con-
tinue to work towards satisfying its desires while grace-
fully handling unexpected situations. For example, a
creature that is starving may temporarily ignore its hunger
in order to flee from an approaching predator. Once the
danger has passed, however, the creature should resume
searching for food. By biasing action selection towards
behaviors that will satisfy the internal needs of the crea-
ture, motivational drives provide a way to achieve goal-
oriented behavior.

Several researchers have addressed the problem of
motivations in the context of building creatures. One ex-
ample is the work of Blumberg (1996), who used tem-
porally cyclic ‘internal variables’ in the design of a vir-
tual dog to bias action selection and facilitate external di-
rection of synthetic actors. In another domain, Breazeal
(1998) has developed a motivational system for regulat-
ing interactions between a robot ‘infant’ and its human
caretaker, with the goal maintaining an environment suit-
able for learning.

Most approaches agree on the general behavior
of drives. Most importantly, they are cyclical and
homeostatic—positive or negative deviations over time
from the base state of ‘satisfaction’ represent under- and
over-attention, respectively, to a corresponding desire.
These desires can be attended to by the successful exe-
cution of attentive behaviors like eating, or by changes in
external stimuli, such as temperature fluctuations or inter-
actions with other creatures. When unattended to, drives
slowly increase over time; the effect of attentive actions is
to shift the value of the drive back towards its homeostatic
base state.

2.2 Emotions

Emotions bias action selection in much the same way as
drives. For example, a creature that is angry may be more
prone to violent behavior than one who is happy. How-
ever, emotions also bias the quality of the character’s mo-
tion. If the creature is sad it should walk sadly; if it is
fearful it should reach for objects in a manner which con-
veys its fear. In this way emotion helps observers to form
an empathic bond with the creature and makes its behav-
ior appear properly motivated (Thomas 1981).

There are many approaches in the literature to the
modeling of emotions and other affective phenomena. In

so-called ‘appraisal’ theories of emotion the individual is
said to make a cognitive appraisal of their current state
relative to a desired state. For example, Reilly (1996)
proposes that fear might be modeled as proportional to
“the likelihood of failing to achieve the current goal”
multiplied by “the importance of not failing”. Others
such as LeDoux (1996) argue that emotions can act at a
level far below the cognitive, since animals can feel emo-
tions without consciously understanding why. Combin-
ing these approaches, Velasquez (1998) presents a frame-
work that models how emotional systems interact with
the perceptual, motivational, behavioral, and motor sys-
tems.

The general consensus of these models is that, in-
stead of increasing slowly over time as do drives, emo-
tions typically exhibit a large impulse response followed
by a gradual decay back down to a base state. By altering
the decay term and the gains on stimuli one can adjust the
magnitude and slope of the impulse response, shaping the
characteristic response of the emotion. Adjusting these
parameters across the space of emotions is equivalent to
shaping the ‘temperament’ of the creature. Similarly, by
altering the bias term on each emotion predisposes the
creature to a particular emotional state, setting its ‘mood’.
These decay, bias, and stimulus terms represent the influ-
ences of a variety of systems1, which in turn are affected
by the current emotional state.

It is perfectly appropriate to model the influences of
multiple emotions upon internal processes such as action
selection, but it is difficult for human observers to vi-
sually perceive more than one emotion at a time. This
is why animators tend to emphasize the most important
emotion of a character, avoiding “mixed emotions”. Be-
cause we are designing characters for humans to interact
with, it is important for the underlying emotional model
to support some notion of a ‘dominant’ emotion. This
dominant emotion can then be used to parameterize mo-
tion and expression, giving the observer insight into the
internal desires and beliefs of the character.

One example of such a parameterization is the anima-
tion system of Rose, Cohen, and Bodenheimer (1997),
in which motor commands are specified in terms of
verbs (“walk”, “reach-for”) and adverbs (“sadly”, “impa-
tiently”). Through the use of multi-dimensional interpo-
lation, this system can be used to continuously modify a
character’s motion in order to represent the changing state
of one or more emotions (for example, making a charac-
ter move as if it is mostly happy, but slightly impatient
and somewhat tired).

2.3 Perception

Fundamentally, a situated, embodied agent needs a way
to “make sense” of the world in which it is situated. By
this we mean two things. First, the creature needs a
method of sensing the world around it; second, it must
have a mechanism for evaluating the salience of incom-
ing sensory information. The combination of a sen-

1E.g., factors include the neurobiological (e.g., hormones), motiva-
tional (intense hunger), cognitive (an impending conference deadline;
the perception of a predator), and sensorimotor (posture)



sory stimulus and its corresponding evaluation mecha-
nism is known as aperceptual elicitoror what ethologists
(Lorenz 1973, McFarland 1993) refer to as areleasing
mechanism.

Sensory information can be provided to a synthetic
creature many forms, most of which fall into the three
basic categories: real-world physical sensing, synthetic
vision, and direct sensing. Physical devices like the tem-
perature sensors in the motors of the Cog robot (Brooks
1996) and the infrared sensors on the mobile robots of
Mataric (1994) are typical of real-world sensors. Syn-
thetic vision techniques attempt to extract salient fea-
tures from a physical scene rendered from the viewpoint
of the creature; examples include the ALIVE system of
Maes (1996) and the artificial fish of Tu and Terzopolous
(1994). In direct sensing, creatures gain information by
directly interrogating the world or an object within the
world include; this is the approach taken by the boids of
Reynolds (1987) and many video games.

One of the important contributions of Blumberg
(1996), building on ideas from Lorenz (1973), Baerends
(1976), and McFarland (1993), is the notion that exter-
nal perceptual influences must be reduced to a form that
is compatible with internal influences such as motiva-
tions and emotions. Using a consistent internal “common
currency” is essential for addressing the issue of behav-
ioral relevance—a piece of rotting food should be as com-
pelling to a starving creature as a delicious-looking slice
of cake is to a creature that has already eaten too much.
Given this representational paradigm, opportunistic be-
havior is simply a side effect of the relative difference in
weighting between external and internal influences.

2.4 Action Selection

Regardless of the particular implementation, the funda-
mental issues for any action selection scheme to address
are those of adequacy, relevance, and coherence (Brooks
1990). Adequacy ensures that the behavior selection
mechanism allows the creature to achieve its goals. Rel-
evance, as noted above, involves giving equal consid-
eration to both the creature’s internal motivations and
its eternal sensory stimuli, in order to achieve the cor-
rect balance between goal-driven and opportunistic be-
havior. Coherency of action means that behaviors exhibit
the right amount of persistence and do not interfere with
each other or alternate rapidly without making progress
towards the intended goal (i.e., behavioral aliasing).

In an effort to achieve these goals in noisy and dy-
namic environments, the last two decades of agent re-
search have seen a shift away from cognitivist ‘Plan-
ning’ approaches towards models in which behavior is
characterized by the dynamics of the agent-environment
interaction. In these environments,nouvelle AI re-
searchers argue, collections of simple, competing behav-
iors that are tightly coupled with sensors and actuators
can be more effective than complex planning mecha-
nisms, while exhibiting many of the same capabilities.
Examples of these approaches include the Pengi system
of Agre and Chapman (1987), the subsumption architec-
ture of Brooks (1986), the spreading activation networks

of Maes (1991), and the “Society of Mind” theories of
Minsky (1988).

In an attempt to leverage the advantages of both ap-
proaches, some hybrid systems like that of Firby (1987)
have used a planner to make high-level behavioral deci-
sions while using a reactive system for low-level control
during behavior execution.

Inspired by ethological theories of behavior, some
systems use a hierarchical organization to break compli-
cated tasks down into specialized cross-exclusion groups
(Minsky 1988) in which mutually-exclusive behaviors
compete for dominance, using mutual and lateral inhi-
bition to control arbitration (Ludlow 1976). These in-
clude most notably the Hamsterdam system of Blumberg
(1994) and the work of Tyrrell (1993).

3 A Value-based Framework

In the previous section we talked about some of the im-
portant building blocks of a character that acts and emotes
in a way that people find understandable and compelling.
But how should one go about implementing these sub-
systems? In our experience we have found it useful to
try a variety of approaches; this continual improvisation
is made easier when the underlying framework makes it
easy to implement and integrate different models.

The traditional approach to building creatures has
been to focus on each of these subsystems individually.
However, if we step back for a moment and consider
them as a whole, two important regularities become ap-
parent. First, there is a high degree of interdependence
among subsystems—perception, emotions, and drives in-
fluence action selection, and the results of action selection
in turn affect the external state of the world and the inter-
nal state of the creature. Second, the function of each can
be interpreted as a quantitative mechanism. For example,
the changing value of emotions and drives indicate the
state of internal needs, perceptual elicitors determine the
relevance of percepts, and action selection mechanisms
choose the most appropriate behavior from among multi-
ple competing ones.

What this suggests is that there is a great deal of
common functionality among these subsystems. In many
cases the functions performed by these subsystems can
be seen assimply different semantics applied to the same
small set of underlying processes. Consequently, instead
of struggling to integrate multiple disparate models for
each subsystem, it makes more sense to build them all on
top of a framework that provides these shared constructs.

3.1 The Four Components

We have constructed this type of framework from four ba-
sic underlying components. The coherency of our frame-
work comes from the fact that our primary internal rep-
resentation is the floating-point value. In addition to be-
ing an intuitive way to think about emotions, drives, and
sensory input, value-based frameworks have a number of
other advantages. They are relatively easy to implement



and fast at run-time, have useful parallels with reinforce-
ment learning and neural networks, and are easily extend-
able because external semantics are kept separate from
internal representation.

Granted, not everything is best represented numer-
ically. However, for the purposes of getting along in
the world, the processes which could potentially produce
non-numeric representations (sensing and cognition, e.g.)
can be seem as means to one end—action. And before
any creature takes action it must first decide what action
to take, which is a qualitative evaluation. Therefore, for
the purposes of action selection, all semantic representa-
tions in our system are first converted to a value.

3.1.1 Sensors

In our system, the sensor primitive is an abstract com-
ponent that operates on arbitrary input and outputs a set
of objects appropriate to the sensor’s functional crite-
ria. Sensors typically use the external world or the in-
ternal state of the character as input. In addition, they
may use the output of a different sensor as input; in
this manner a directed, acyclic data-flow sensing network
may be formed. For example, aVisibleObject-
Sensor could find all the visible objects in the world
(through direct sensing, computational vision, or any ar-
bitrary method), passing its output to aDogSensor to
filter out everything but dogs.

3.1.2 Transducers

The transducer primitive operates on a set of input ob-
jects to produce a single floating-point output; transduc-
ers are the gateway through which sensor data enters the
computational substrate. The values produced by trans-
ducers are often objective and the result of basic com-
putations, such as the distance to the first sensed object.
However, there is nothing to restrict a transducer from re-
turning a subjective result from a complex computation—
reasoning with predicate calculus about a set of input ob-
stacles and returning the best heading in which to move,
for example. Chains of sensors and transducers form the
perceptual elicitors that allow the creature to react to in-
ternal and external situations.

3.1.3 Accumulators

The third primitive in our framework, the accumulator, is
the primary unit of computation. Its inputs and gains are
typically the output of transducers or other accumulators,
and by constructing feedback loops it is possible to create
highly connected networks which exhibit useful temporal
behavior. The valueVt of an accumulator at timet for N
inputs and gains is:

Vt =

N�1X

i=0

inputt;i � gaint;i (1)

whereN is arbitrary.

3.1.4 Groups

The fourth primitive, the group, is used to organize accu-
mulators into semantic groups and impose arbitrary be-
havior upon them. For example, a group might force the
value of its accumulators to be zero except for the accu-
mulator with the highest value. This abstraction keeps
the syntax and configuration of the accumulators inde-
pendent of their group semantics.

3.2 From Components to Subsystems

As an illustration we will now show one way in which
each subsystem can be constructed from the components
of our framework.

3.2.1 Drives

Motivational drives can be expressed using an accumula-
tor with a feedback loop whose gain is at least one. At-
tentive and aggravatory stimulus inputs are given nega-
tive and positive gains, respectively, and one additional
input-gain pair represents the magnitude of the growth
term. The setup in Figure 1 creates a drive in the style of
Breazeal (1998).

Vt-1

growth
term

Vt = sum({input i x gaini})

inputs

1

output

-1 0.1 1

value of attentive
behavior or elicitor

gains

Figure 1: An accumulator-based motivational drive

Assuming that each stimulusi is a positive-valued
stimulus working to satiate the drive, this configuration
increases in value over time from a homeostatic base state
of zero, according to (2).

Vt = V t�1 + growtht �
X

i

stimulust;i (2)

3.2.2 Emotions

Emotions can be implemented with a configuration sim-
ilar to that used for drives where, instead of acting as a
growth term, the input-gain pair biases the homeostatic
base state. By limiting the gain on the feedback loop to
the range(0; 1) we can effect a gradual decay over time
in the value of the emotion. This configuration, show in
Figure 2, varies in time according to (3).

Often it is useful to organize emotions into cross-
exclusion groups for the purposes of identifying the dom-
inant emotion. By adjusting the inhibition between the
competing emotions we can tailor the personality of the
creature—making a fearful creature less prone to happi-
ness, for example.

Vt = (V t�1 � decayt) + biast +
X

i

stimulust;i (3)
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Vt = sum({input i x gaini})
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Figure 2: An accumulator configured as an emotion

3.2.3 Action Selection

A behavior is simply an accumulator that is semantically
associated with a particular behavioral routine that it ex-
ecutes while ‘active’; typically this involves sending a
message (e.g., “walk”) to an underlying motor system.
Their inputs are the outputs of emotions, drives, and per-
ceptual elicitors; whether a behavior is considered ‘ac-
tive’ or not is determined by the semantics of its asso-
ciated group. For example, autonomic behaviors like
breathing and blinking might be contained in a group
whose policy is to activate any behavior with a value
above a certain threshold.

To achieve ethologically-inspired action selection
policies, mutually exclusive behaviors can be organized
into groups with cross-exclusion and mutual inhibition
semantics and forced to ‘compete’ on the basis of their
output values. Hierarchical action selection in the style
of Blumberg (1996) and Tyrrell (1993) is easily imple-
mentable by associating each behavior with a reference
to another group.

This method of implementing action selection has the
advantage of making behavior design independent of ac-
tion selection policy, allowing the designer to use the
same behavior in many different contexts. For example,
under normal circumstances a character might execute a
swallowing behavior at regular intervals; this same be-
havior, however, might be a sub-behavior with an explicit
order in the context of eating a meal. In our framework
the same behavior can be used in both situations with-
out requiring the designer to implement or havea priori
knowledge of policy-specific details (e.g., connections to
parent behaviors, execution order, etc.). This flexibility
facilitates creating libraries of generic behavioral routines
from which a variety of characters can be constructed.

4 Future Work

There are a many areas in which our system could be ex-
tended or improved. Most pressing is the need for better
character design tools. The framework we have presented
was intended as a kind of assembly-level language for
building the various components of a complete character.
While this flexibility has proven useful and valuable, it is
currently tedious to construct complex characters in this
fashion. We are currently looking into the development
of a high-level behavior language or graphical interface
from which we could compile the low-level internal rep-
resentations discussed in Section 3.

Another area that we intend to pursue is the incorpo-

Figure 3: Two of the characters inSwamped!

ration of learning. Though we have not yet implemented
this in our existing characters, given the similarities be-
tween our work and the Hamsterdam system of Blumberg
(1996) we are confident that our framework will accom-
modate a similar model of adaptation.

5 Conclusion

Drawing from ideas in both traditional animation and
modern philosophy, we have presented a methodology
for designing synthetic characters. The goal of our ap-
proach is to constructintentionalcharacters that are both
compelling, in the sense that people can empathize with
them, and understandable, in that their actions can be seen
as attempts to satisfy their desires given their beliefs. We
also presented a simple, value-based framework that has
the flexibility to implement the subsystems necessary for
the construction of intentional characters.

The concepts presented here were used to success-
fully build the many autonomous and semi-autonomous
characters inSwamped!, an interactive cartoon experi-
ence premiered at SIGGRAPH 98. In this exhibit the par-
ticipants use asympathetic interface(Johnson 1998) to
influence the behavior of a chicken character, with the in-
tent of protecting the chicken’s eggs from being eaten by
a hungry raccoon. The raccoon character is arguably one
of the most complex fully autonomous synthetic charac-
ter built to date, comprised of 84 distinct behaviors influ-
enced by 5 separate motivational drives and 6 major emo-
tions. In addition, the continuously changing emotional
state of the raccoon is conveyed through dynamically in-
terpolated character motion and facial expressions.
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